
Improving the Performance of Message Parsers for
Embedded Systems

Jigar Solanki
LaBRI, University of Bordeaux

Talence, France
jigar.solanki@labri.fr

Laurent Réveillère
LaBRI, University of Bordeaux

Talence, France
laurent.reveillere@labri.fr

Yérom-David Bromberg
LaBRI, University of Bordeaux

Talence, France
david.bromberg@labri.fr

Bertrand Le Gal
IMS, University of Bordeaux

Talence, France
bertrand.legal@ims-

bordeaux.fr

Tégawendé F. Bissyandé
LaBRI, University of Bordeaux

Talence, France
tegawende.bissyande@labri.fr

ABSTRACT

Supporting standard text-based protocols in embedded sys-
tems is challenging because of the often limited computa-
tional resources that embedded systems provide. To over-
come this issue, a promising approach is to build parsers di-
rectly in hardware. Unfortunately, developing such parsers
is a daunting task for most developers as it is at the cross-
roads of several areas of expertise, such as low-level network
programming, or hardware design. In this paper, we pro-
pose Zebra, a generative approach to drastically ease the
development of hardware parsers and their use in network
applications. To validate our approach, we have used Ze-
bra to generate hardware parsers for widely used protocols,
namely HTTP, SMTP, SIP, and RTSP. Our experiments
show that Zebra-based parsers systematically outperform
software-based parsers.

1. INTRODUCTION
Embedded systems are increasingly required to interact

both among them and with legacy infrastructures to pro-
vide advanced services to end-users. This kind of commu-
nication among heterogeneous entities requires a protocol
to manage their interaction. Traditionally, because of their
highly constrained resources, they have used non-standard,
application-specific, binary protocols where message pars-
ing and message construction are simple [23]. The use of
non-standard protocols, however, complicates the interac-
tion with other systems, as it is required in many emerging
applications. Thus, attention is turning to the use of stan-
dard text-based protocols. For example, the SIP protocol is
now being used in sensor networks [12] and mobile ad-hoc
networks [13, 21].

Standard text-based protocol message parsers are typi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

cally implemented in software as Finite State Machines
(FSM), using a low-level language such as C to provide ef-
ficiency. However, developing such parsers is challenging
because of the limited resources, particularly with regards
to computational power, memory, and energy, that embed-
ded systems often provide. Indeed, such FSM may contain
several hundred states and several thousand complex tran-
sitions, making the size of corresponding parsers too large
(several dozen kilobytes) for embedded systems. To sim-
plify parser construction, automatic approaches including
Gapa [3] and Zebu [4] have been proposed for generating
a FSM implementation from a high-level specification of a
protocol. However, to the best of our knowledge, existing
automatic approaches do not address embedded systems re-
quirements and, in particular, have not explored the use of a
dedicated hardware to improve their performances, i.e., the
resulting generated code is still CPU intensive.

Implementing a FSM using a dedicated hardware archi-
tecture improves performance compared to a software-based
implementation. Indeed, a hardware parser can be designed
specifically to execute multiple computations in parallel, in
one processor clock cycle. Moreover, conditional jumps,
which are massively used in software implementation of FSM,
are processed in one clock cycle without pipeline break penal-
ties. Finally, a hardware-based FSM requires a lower work-
ing frequency to reach the same performance than its soft-
ware counterpart, and thus consumes less energy.

Nonetheless, developing a network application that uses
hardware parsers is challenging, requiring not only expertise
in hardware design and integration, but also a substantial
knowledge of the protocols involved and an understanding
of low-level network programming. For instance, hardware
design relies on low-level languages (HDL) such as VHDL [2]
or Verilog [1] whereas application software is often based on
widely used programming languages like Java or C. These
issues are challenging to take into account individually, and
the need to address all of them at once makes hardware pro-
tocol message parsers development particularly difficult.

In this paper, we propose a co-design based architecture
and a generative approach for building and using hardware
parsers in a network application. To this end, we present
a domain-specific language, Zebra, for describing standard
text-based protocol message formats and related processing

constraints. Zebra is an extension of ABNF [10], the variant
of BNF used in RFCs to specify the syntax of network pro-
tocol messages, implying that the programmer can simply
copy a network protocol message grammar from an RFC to
begin developing a parser. It extends ABNF with annota-
tions indicating which message fragments should be stored
in data structures, and other semantic information.

A Zebra specification is processed by a compiler that gen-
erates both the HDL source code of the hardware parser
implemented as a FSM, and the associated C code to drive
it. The application runs on top of a middleware that hides
low-level details to developers and manages the generated
hardware parsers. The contributions of this paper are as
follows:

• We have designed and implemented a generative ap-
proach for building hardware parsers for embedded
systems. Our approach is based on a co-design ar-
chitecture to provide hardware parsing capabilities to
software applications.

• We have conducted a set of experiments on protocols
such as HTTP, RTSP, SIP, and SMTP to assess our
approach. Preliminary results show a speedup of mes-
sage parsing up to 11 compared to equivalent parsers
fully implemented in software, and up to 1850 com-
pared to parsers extracted from widspread deployed
Internet servers.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the callenges of building network applica-
tions for embedded systems. Section 3 introduces the Ze-
bra hardware platform designed to support the execution of
message parsers, the middleware to manage the underlying
hardware units, and the Zebra language to describe message
formats, and its compiler that produces necessary HDL and
C code. Section 4 assesses the performance and memory
footprint of Zebra-based parsers compared to parsers fully
implemented in software. Finally, Section 5 presents related
work and Section 6 concludes.

2. BUILDING NETWORK APPLICATIONS

FOR EMBEDDED SYSTEMS
The lowest part of a network application, known as the

protocol-handling layer, enables communication between ap-
plications through application-centric protocols. It must
take into account both the constraints of the protocol, which
determine the message structure, and the requirements of
the application, which determine how the message elements
will be used. Typically, the protocol-handling layer con-
sumes 25% of the total message processing time [8, 9, 24].
Further, the inherent complexity of network protocol mes-
sage formats makes the development of this layer very dif-
ficult. When the protocol-handling layer makes available
a message element to the application logic, it provides the
information about the message according to a logical view.
Such a presentation includes some interpretation of the mes-
sage elements, for instance with each kind of message ele-
ment being represented by its proper application-level type.
The information about a message required by the applica-
tion logic may differ according to the nature of the appli-
cation being implemented. For instance, an application to
retrieve the temperature from a sensor needs to look at a few

message elements to perform its task. On the other hand, a
logging application needs additional information such as the
actual destination, the requester and some time-stamps.

Considering the limited ressources that embedded systems
often provide, developing such a network application is a
challenging task. To reduce developer expertise while pro-
viding application efficiency, developers are mainly faced to
deal with three development methodologies (See Figure 1).
In the first methodology (Figure 1¶), developers do not have
to develop from the ground up the protocol-handling layer.
In fact, developers leverage on existing parsers (called there-
after legacy parsers) to process input messages. Thus, de-
veloping a network application consists in writing its ap-
plication logic with some glue code to interact with the
required underlying legacy parsers. If this approach dras-
tically reduces developers’ tasks, it lacks in terms of effi-
ciency. Legacy parsers are general-purpose: they are as
much as possible compliant to standard protocols without
being optimized for specific needs of a particular applica-
tion. To overcome this drawback, in the second methodology
(Figure 1·), a protocol-handling layer relies on a dedicated
software parser specifically designed according to the appli-
cation being developed. Such parsers are generated via a
compiler that takes as input a high level specification. Such
specifications indicate which message fragments, and other
semantic information are required for the application logic.
Thus, the complexity of the underlying FSM of generated
parsers is reduced, and thus their overall efficiency is im-
proved as such parsers parse only the required message frag-
ments as opposed to legacy parsers that parse all message
fragments whatever the application logic.

To further improve efficiency, we argue that generated
parsers can be implemented as accelerated logical units us-
ing programmable logic devices (FPGA) or even dedicated
Application-Specific Integrated Circuits (ASIC) directly in-
terconnected with a micro-processor through a dedicated in-
terface. To minimize the need for developer intervention
in the complex process of developing and using a dedicated
hardware parser in a software application, we have enhanced
the previous methodology as illustrated in Figure 1¸. From
a high level specification, used to describe text-based pro-
tocol message formats and related processing constraints, a
compiler generates both HDL synthesisable specification to
be plugged in a hardware platform, and the associated C
code tailored to application needs. Correspondingly, with
this third methodology, we guaranty to developers a good
trade-off between efficiency and simplicity for developing
network applications.

We now describe in more details the Zebra approach [16]
that follows the aforementioned third methodology. First,
we introduce the Zebra language to describe message for-
mats, and its compiler that produces necessary HDL and C
code. We then describe the hardware platform we have de-
signed to support the execution of message parsers. Finally,
we present the middleware we have developed to drive the
underlying hardware-dedicated units and interconnect them
with the network application running on top of a general-
purpose micro-processor.

3. ZEBRA APPROACH
The most efficient way to implement an embedded system

application is to develop a fully-customized architecture, us-
ing FPGA or dedicated ASIC. However, hardware design

Application binary

Network application

handwriting

Legacy parser
Application

logic

integrating

Code compilation

General purpose processor

Application binary

Network application

handwriting

Parser
specifications

Application
logic

Code compilation

General purpose processor

Compiler

Dedicated
software parser

Application
binary

Network application

handwriting

Parser specificationsApplication
logic

Code
compilation

Compiler

Dedicated
software

Hardware
synthesis

Dedicated
hardware

Parsing units

M
an

u
al

 T
as

k
s

Manual task for the network application developper Automated task for the network application developper

Targetted System on Chip (SOC)

Methodology based on legacy
parser reusing

Methodology based on dedicated
software parser

Methodology based on dedicated
hardware parser generation

System on Chip

General purpose
processor

1 2 3

A
u

to
m

at
ed

 T
as

k
s

Figure 1: Different methodologies to design network applications

is a tedious and time consuming process compared to tra-
ditional software development. To alleviate the burden in
hardware-based implementations, the co-design methodol-
ogy proposes to slice an application based on performances
it requires. Parts of the application that require high per-
formance are implemented using dedicated hardware units.
Less sensitive performance parts are implemented as soft-
ware code running over a general-purpose micro-processor.

Consequently, in the following subsections, we present the
hardware platform we have designed to support the execu-
tion of message parsers. We then present the middleware we
have developed to drive the underlying hardware-dedicated
units and interconnect them with the network application
running on top of a general-purpose micro-processor. Fi-
nally, we introduce the Zebra language to describe message
formats, and its compiler that produces necessary HDL and
C code.

3.1 Zebra Hardware Platform
We have combined the micro-processor and parsing units

into one chip (SoC) to: (i) reduce power consumption, (ii)
simplify board layout, (iii) preserve signal integrity, (iv)
avoid electromagnetic interference and, (v) allow very fast
communication links between them. We use Field Programmable

Gate Array (FPGA) devices for system integration since
they are particularly suitable for embedded system proto-
typing [7]. However, proposed approach is not limited to
FPGA devices and can be easily extended to ASIC targets.

The Zebra platform consists of a general-purpose micro-
processor to execute the application logic, and a set of ded-
icated hardware units for message parsing. Our current im-
plementation relies on a LEON3 soft CPU core, which is an
open-source implementation of the SPARCv8 32-bit archi-
tecture, allowing its instruction set to be extended. The use
of such a soft CPU core, combined with the generation of
generic HDL code, enables to implement our system on any
ASIC or FPGA target, without any change.

In Zebra, parsing units are implemented as co-processors,
interconnected with the micro-processor through a set of

dedicated links. Particularly, a parsing unit has a specific
design that includes: a 32-bit data input interface for re-
ceiving data stream to parse from the micro-processor, a
32-bit data output interface to send back parsing results, a
set of both dedicated interfaces and control signals for man-
aging the parser. The 32-bit data interfaces enable up to 4
bytes transfer per micro-processor clock cycle. The instruc-
tion set of the micro-processor has been extended to provide
commands and read/write operations to each parsing unit.
The number of parsing units that can be embedded depends
on the size of the FPGA device and the complexity of the
protocol state machines.

3.2 Zebra Middleware
To process network messages, an application registers a

callback function to the Zebra middleware, gives the input
stream from which reading data, the protocol to use, and
additionally some optional parameters. The Zebra middle-
ware manages registered applications by reading data on
input streams as they are received and sending these data
to the corresponding parsing unit. The middleware then
reads parsing results from the output interface of the parsing
unit. When the parsing of a message element is completed,
the middleware executes ad-hoc code to make the value ac-
cessible by the application. Note that the middleware can
perform other computations while waiting for the parsing
units to complete their work. To increase sharing of parsing
units between several tasks, the middleware seamlessly save
and restore parser state when required. This context switch
on the hardware parsing units is very efficient and requires
only about 9 micro-processor cycles.

The Zebra middleware has been implemented in C and
successfully cross-compiled for the LEON3 micro-processor.
Additionally, we have modified the gcc toolchain to support
the extended instruction set that we have introduced for
controlling parsing units.

3.3 Zebra Language
To address the difficulty of implementing network pro-

tocol message parsers in hardware, we have developed the
domain-specific language Zebra. The main objective of the
Zebra language is to allow the developer to specify the mes-
sage syntax using a high-level notation, while minimizing
the need for developer intervention in the complex process
of translating this notation to synthesizable HDL code. The
Zebra language is inspired by Zebu [5, 4], a language for
describing HTTP-like text-based protocol message formats
and related processing constraints. Accordingly, the syntax
of Zebra is based on the ABNF [10] notation used in RFCs
to specify the syntax of protocol messages.

3.3.1 ABNF

An ABNF specification defines the syntax of protocol mes-
sages. It consists of a set of derivation rules, each defining
a set of alternatives (separated by |) that represent a se-
quence of terminals and nonterminals. ABNF also includes
a general form of repetition to indicate the number of oc-
currences of a terminal or non-terminal. As an example,
Figure 2 shows an excerpt of the ABNF specification of the
HTTP protocol as described in RFC 2616. The first rule
(line 3) defines a request as a request line, followed by a
sequence of message headers, followed by a blank line, and
then a payload (line 8). Line 9 defines the structure of a
request line, comprising not only tokens, as derived by e.g.

the nonterminal Method, but also withespace, as derived by
SP and CLRF. The nonterminal entity-header (line 11) is
defined as an alternation, as indicated by |, of the HTTP
headers. Line 14 defines the Content-Length header, which
is found in most HTTP messages. This header consists of
the key ”Content-Length”, which is case insensitive, imme-
diately followed by a colon and one or more digits.

1 The Content-Length entity-header field indicates the size of
the entity-body, [...]

2
3 Request = Request-Line ; Section 5.1
4 *((general-header ; Section 4.5
5 | request-header ; Section 5.3
6 | entity-header) CRLF) ; Section 7.1
7 CRLF
8 [message-body] ; Section 4.3
9 Request-Line = Method SP Request-URI SP HTTP-Version CRLF

10 Request-URI = "*" | absoluteURI | abs_path | authority
11 entity-header = Allow ; Section 14.7
12 | Content-Length ; Section 14.13
13 | ...
14 Content-Length = "Content-Length" ":" 1*DIGIT

Figure 2: Excerpt of ABNF specification from RFC

2616

3.3.2 Annotating an ABNF specification

To create a zebra specification, the developer only needs
to slightly refactor the ABNF specification. Reserved char-
acters have to be protected and repetitions need to be ex-
pressed using postfix operators: ? (optional), * (any), and
+ (some). Figure 3 illustrates the zebra specification for the
HTTP protocol. Once having created a basic Zebra speci-
fication, the developer can further annotate it according to
application-specific requirements.

Annotations define the message view available to the ap-
plication, by indicating the message elements that this view
should include. These annotations drive the generation of
the data structure that contains the message elements of the
parser. For example, three message elements are annotated

Request = Request_Line
((general_header
| request_header
| entity_header) CRLF)*

CRLF

message_body? {clen} ¸;

Request_Line = Method SP Request_URI ^uri · SP
HTTP_Version CRLF;

Request_URI = ’*’ | absoluteURI | abs_path | authority;
entity_header = Allow

| Content_Length
| ...

Content_Length = ’Content-Length: ’ digit+ ^clen as uint32 ¶;

Figure 3: Excerpt of Zebra specification for HTTP

in Figure 3. To make an element available, the programmer
only has to annotate it with the ˆ symbol and the name of
a field in the generated data structure that should store the
element’s value. For instance, in Figure 3, the Zebra pro-
grammer indicates that the application requires the URI of
the request line (·). Hence, the data structure representing
the message will contain one string field: uri.
Besides tagging message elements that will be available

to the application, annotations impose type constraints on
these elements (¶). This can be specified using the notation
as followed by the name of the desired type. For example,
in Figure 3 the Content-Length field value (¶) is specified
to represent an unsigned integer of 32 bits (uint32). A
type constraint enables representing an element as a type
other than string. The use of both kinds of annotations
allows the generated data structure to be tailored to the
requirements of the application logic. This simplifies the
application logic’s access to the message elements.

In our experience in exploring RFCs, the ABNF speci-
fication does not completely define the message structure.
Indeed, further constraints are explained in the accompany-
ing text. For example, the RFC of HTTP indicates that
the length of the body of a HTTP message depends on
the Content-Length field value (Figure 2, line 1). To ex-
press this constraint, the developer only has to annotate
the variable-length field message-body (¸) with the name of
the field, between curly brackets, that define its size (e.g.,
{clen} (¶)). Note that such fields must have be typed as
an integer.

The Zebra compiler generates a hardware parser tailored
to the application needs according to the provided anno-
tations, and associated C code to drive it. The hardware
parser corresponds to a FSM whose some transitions signal
the start or the end of message elements annotated in the
Zebra specification. Thus, when such transitions are fired,
the hardware parser writes into its output interface the name
of the message element being parsed, the current position of
the consumed data, and if it is the start or the end. This
information is then used by the Zebra middleware to execute
the corresponding generated C code, enabling to extract and
save the value of the parsed message element. Note that a
transition in the FSM is evaluated in only one single clock
cycle.

4. EXPERIMENTS
.
We have conducted a set of experiments to assess our ap-

proach. For our experiments, we use a ML507 development

board from XilinxTM that includes a Virtex-5 FPGA de-
vice. To allow general-purpose software code to be executed,
we have integrated a Leon-3 micro-processor configured at
50MHz (sparc processor) in the FPGA device. The proces-
sor runs a Linux 2.6.36 kernel. System-on-Chip implemen-
tation on the FPGA circuit are realized using the Xilinx ISE
toochain.

We have written Zebra specifications for four of the most
ubiquitous protocols on the Internet: HTTP, SMTP, SIP,
and RTSP. For each of them, we have used the Zebra com-
piler to automatically produce the corresponding VHDL and
C code. The generated VHDL code is then synthesized in
the FPGA device using the Xilinx ISE toolchain. The gen-
erated C code is cross-compiled using a modified vesion of
the SPARC gcc toolchain and plugged into the Zebra mid-
dleware.

In order to evaluate the processing time to parse an input
message from either HTTP, SMTP, SIP or RTSP, we have
developed a logging application, one for each protocol, that
logs messages received from the network. For each applica-
tion, we have implemented three versions: one fully imple-
mented in software-based on legacy parsers, one fully imple-
mented in software-based on parsers dedicated to applica-
tion needs, and one based on Zebra. Legacy parsers have
been exctracted from widspread deployed Internet servers:
Cherokee1 for HTTP, LibOSIP2 for SIP, GSTreamer3 for
RTSP, and Postfix4 for SMTP. For the software-based ver-
sions based on parsers dedicated to application needs, we
used the Ragel [22] tool to produce an optimized implemen-
tation.

We use as datasets real messages collected in a gradu-
ate students work area in our research laboratory during 2
hours. In our experiments, a client application replays a real
trace, extracting and sending each message of this trace.

4.1 Execution time
We have instrumented the code of the logging applications

to measure the parsing time for each received message. We
consider the median time over several successive executions.
Figure 4 presents the results of our evaluation with vari-
ous message sizes. We observe that legacy parsers do not
compete compared to application specific parsers. They are
at least 9 times slower than dedicated parser generated by
Ragel, as in the case of HTTP, and up to 185 times slower in
the case of SIP. Indeed, legacy parsers are designed to fully
support the various features of a protocol. Their general-
purpose nature make them usable in many different appli-
cation domains, including our logging applications, but at
the expense of a significant performance overhead.

Zebra-based are even more efficient than dedicated parsers
fully implemented in software. They are at least 2 times
faster, as in the case of SMTP, and up to 11 times faster
in the case of HTTP. When compared to legacy parsers,
Zebra-based parsers are from 68 times faster, as in the case
of SMTP, to 1850 times faster in the case of SIP.

4.2 Static memory footprint
We now consider the static memory requirements of log-

ging applications when compiled for the Leon-3 processor.

1Cherokee: http://www.cherokee-project.com/
2LibOSIP: http://www.gnu.org/software/osip/
3GSTreamer: http://www.gstreamer.net/
4Postfix: http://www.postfix.org/

Legacy parser Dedicated parser Zebra-based parser

Min Max Med Min Max Med Min Max Med

H
T
T
P Size 428 437 557 428 437 557 428 437 557

Time 183476 227678 231320 14050 14053 23274 1291 1317 1975
Avg 451.8 36.1 3.2
Factor 92 175 139 10 12 11 1 1 1

R
T
S
P

Size 56 210 151 56 210 151 56 210 151
Time 168802 132726 145920 3098 5456 6941 537 741 848
Avg 1072.9 37.1 5.1
Factor 172 314 179 5 8 7 1 1 1

S
IP

Size 274 1244 581 274 1244 581 274 1244 581
Time 1286710 2955595 2779204 9766 18637 16996 1001 1824 1548
Avg 3345.1 25.6 2.4
Factor 1285 2043 1792 9 11 10 1 1 1

S
M

T
P Size 8 420 202 8 420 202 8 420 202

Time 17162 650767 346034 2093 5482 3683 1134 1920 1522
Avg 1609.5 17.9 9.8
Factor 15 413 247 1 2 2 1 1 1

Size in number of characters ; measures in CPU cycles.

Figure 4: Legacy, dedicated and Zebra-based parsers

comparison

This includes the memory requirements of Linux, the size
of the compiled message parser, and the size of the com-
piled application logic. Without any application installed
and when running a minimal root filesystem, Linux uses
1.8MB. The size of the compiled message parsers across the
various versions is shown in Table 5. The compiled Zebra-
based generated code is only 1.8KB because most of the
complexity of message parsing is shift to hardware parsing
units. The last two columns also show the size occupation
of these parsing units and the size of the Leon-3 processor
on the FPGA.

Legacy Dedicated Zebra-based FPGA occupation
parser parser parser parser processor

HTTP 188.2 13.0 1.8 3% 30%
SMTP 457.7 81.4 1.8 7% 30%
SIP 183.5 31.1 1.8 12% 30%

RTSP 241.8 12.6 1.8 4% 30%

Figure 5: Compiled code size of parsers, in kilobytes

5. RELATED WORK
Over the last decade, many approaches have emerged to

avoid the painful task of hand writing network protocol mes-
sage parsers [3, 4, 14, 20]. These approaches mainly propose
a three-step process: (i) describing network protocol mes-
sages in a high-level specification, (ii) generating software
parsers from this high-level specification, and, (iii) provid-
ing a framework to ease the development of applications on
top of generated parsers. However, none of these approaches
specifically targets highly constrained embedded systems.
For instance, sensor networks relying on dedicated hardware
such as ASIC or FPGA do not have enough energy, code,
and memory to support the aforementioned approaches.

To overcome this issue, one emerging solution is to imple-
ment parsers directly in hardware. Hence, high-level speci-
fications of network protocol messages are mapped directly
into hardware description languages such as VHDL to be
then successively synthesized into ASIC or FPGA [17, 18,
19]. However, hardware parsers are provided as is and re-
quire strong understanding of hardware design fundamentals
to integrate them with network programming applications.
In contrast, the Zebra approach covers the development life-
cycle of a network message parser, from its specification to
the generation of hardware accelerators, to its integration

into network applications.
Many commercial and academic High-Level Synthesis (HLS)

tools have been proposed to generate hardware architectures
from algorithmic descriptions written in C, C++, or Sys-
temC [6, 11, 15]. However, these tools remain general pur-
pose and are mostly oriented to datapath applications [15].
Thus, they do not provide good results for control appli-
cations, such as protocol message parsers. For example,
hardware parsers generated using the LegUp tool [6] from
software-based parsers used in our evaluation are at least
4.5 times slower than their Zebra-based counterparts, and
consume up to 50 times more hardware resources.

To the best of our knowledge, Zebra is the only one solu-
tion that bridges the gap between HDL designs and system
software engineering in the context of control applications
for embedded systems.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented Zebra, a generative ap-

proach for building hardware parsers for embedded systems.
We have conducted a set of experiments on four commonly
used protocols to assess our approach. We show that Zebra-
based parsers are at least 68 times faster than legacy parsers
and at least 2 times faster than dedicated parsers generated
by Ragel. In addition to improving execution time of mes-
sage parsing, Zebra-based parsers requires only few bytes of
static memory, most of the processing being shift to hard-
ware accelerated parsing units.

We are currently investigating the dynamic reconfigura-
tion capabilities of FPGA to update at run-time the pro-
tocols supported by Zebra. We are also extending the
Zebra middleware to provide advanced scheduling of avail-
able parsing units based on active clients to reduce cache
misses when accessing received buffered messages stored in
central memory.

7. REFERENCES
[1] Ieee standard hardware description language based on the

verilog(r) hardware description language. IEEE Std 1364-1995,
1996.

[2] Ieee standard vhdl language reference manual. IEEE Std
1076-2000, 2000.

[3] N. Borisov, D. J. Brumley, H. J. Wang, J. Dunagan, P. Joshi,
and C. Guo. A Generic Application-Level Protocol Analyzer
and its Language. In 14th Annual Network & Distributed
System Security Symposium, 2007.

[4] L. Burgy, L. Réveillère, J. Lawall, and G. Muller. Zebu: A
Language-Based Approach for Network Protocol Message
Processing. IEEE Transactions on Software Engineering,
37:575–591, 2011.

[5] L. Burgy, L. Réveillère, J. L. Lawall, and G. Muller. A
language-based approach for improving the robustness of
network application protocol implementations. In 26th IEEE
International Symposium on Reliable Distributed Systems,
pages 149–158, Beijing, Oct. 2007.

[6] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski. LegUp: High-Level
Synthesis for FPGA-Based Processor/Accelerator Systems. In
Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’11,
pages 33–36, New York, NY, USA, 2011. ACM.

[7] R. Cofer and B. F. Harding. Rapid System Prototyping with
FPGAs: Accelerating the design process. Newnes, 1st edition,
2005.

[8] M. Cortes, J. Ensor, and J. Esteban. On SIP performance.
Technical report, Bell Labs Technical Journal 3, 2004.

[9] M. Cortes and J. R. Ensor. Narnia: A virtual machine for
multimedia communication services. In Proceedings of the
Fourth International Symposium on Multimedia Software
Engineering, pages 246–254, 2002.

[10] D. Crocker, Ed. and P. Overell. RFC 2234: Augmented BNF
for syntax specifications: ABNF, 1997. Status: PROPOSED
STANDARD.

[11] M. Fingeroff. High-Level Synthesis Blue Book. Xlibris
Corporation, 2010.

[12] S. Krishnamurthy. TinySIP: Providing seamless access to
sensor-based services. In 3rd International Conference on
Mobile and Ubiquitous Systems: Networking and Services,
number 4611 in Lecture Notes in Computer Science, pages 1–9,
2006.

[13] S. Leggio, J. Manner, A. Hulkkonen, and K. Raatikainen.
Session initiation protocol deployment in ad-hoc networks: A
decentralized approach. In 2nd International Workshop on
Wireless Ad-hoc Networks, 2005.

[14] A. Madhavapeddy. Creating High-Performance, Statically
Type-Safe Network Applications. PhD thesis, Cambridge
University, 2007.

[15] G. Martin and G. Smith. High-Level Synthesis: Past, Present,
and Future. IEEE Design & Test of Computers, 26(4):18–25,
July 2009.

[16] J. Mercadal, L. Reveillere, Y. Bromberg, B. Le Gal, J. Solanki,
and T. Bissyande. Zebra: Building efficient network message
parsers for embedded systems. Embedded Systems Letters,
IEEE, 4(99):69–72, 2012.

[17] A. Mitra, M. R. Vieira, P. Bakalov, W. A. Najjar, and V. J.
Tsotras. Boosting XML Filtering with a Scalable FPGA-based
Architecture. CoRR, abs/0909.1781, 2009.

[18] J. Moscola, J. W. Lockwood, and Y. H. Cho. Reconfigurable
Content-based Router using Hardware-Accelerated Language
Parser. ACM Transactions on Design Automation Electronic
Systems, 13(2):28:1–28:25, 2008.

[19] J. Öberg, A. Hemani, and A. Kumar. Grammar-Based
Hardware Synthesis from Port-Size Independent Specifications.
IEEE Transactions on Very Large Scale Integration Systems,
8(2):184–194, 2000.

[20] T. Stefanec and I. Skuliber. Grammar-based SIP Parser
Implementation with Performance Optimizations. In
Proceedings of the 11th International Conference on
Telecommunications, ConTEL ’11, pages 81–86, 2011.

[21] P. Stuedi, M. Bihr, A. Remund, and G. Alonso. SIPHoc:
Efficient SIP middleware for ad hoc networks. In Proceedings of
the 8th ACM/IFIP/USENIX International Conference on
Middleware, 2007.

[22] A. D. Thurston. Parsing Computer Languages with an
Automaton Compiled from a Single Regular Expression. In
Proceedings of the 11th International Conference on
Implementation and Application of Automata, CIAA’06,
pages 285–286, Berlin, Heidelberg, 2006. Springer-Verlag.

[23] B. Upender and P. Koopman. Communications protocols for
embedded systems. ACM Transactions on Programming
Languages and Systems, 11(7):46–58, 1994.

[24] S. Wanke, M. Scharf, S. Kiesel, and S. Wahl. Measurement of
the SIP parsing performance in the SIP Express Router. In
Dependable and Adaptable Networks and Services, number
4606 in Lecture Notes in Computer Science, pages 103–110,
2007.

