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SUMMARY

The method of weighted residuals can efficiently enforce time-periodic solutions of flexible structures experiencing
unilateral contact. The Harmonic Balance Method (HBM) based on Fourier expansion of the sought solution is a
common formulation, though wavelet bases that can sparsely define nonsmooth solutions may be superior. This
hypothesis is investigated using a full three-dimensional blade with unilateral contact conditions on a set of Nc
discrete contact points located at its tip. The unilateral contact conditions are first regularized and a distributional
formulation in time is introduced allowing L2.S1/N trial functions to properly approximate in the time-domain the
solution to the governing equations. The mixed wavelet Petrov-Galerkin solutions are found to yield consistent or
better results than HBM, with higher convergence rates and seemingly more accurate contact force prediction.

KEY WORDS: wavelet analysis, Petrov-Galerkin method, weak formulation, unilateral contact conditions,
nonsmooth dynamics

1. INTRODUCTION

Efficiently predicting the vibratory responses of flexible structures which experience unilateral contact is
becoming of high engineering importance primarily because of possible subsequent mechanical failure
originated by fatigue. This type of response is increasingly common in industrial applications due to
implementation of light materials and thin designs involving larger displacements together with tighter
operating clearances between components. For example, consider aircraft engines where slender, twisted
blades rotate at high rotational velocity within stationary casings where minimal clearance is desirable
for turbine energy efficiency. Simulating contact between the blades and casing is not a trivial exercise
since unilateral contact is usually described by inequalities and complementary conditions [49]. In the time
domain, structural displacements and velocities which satisfy these non-penetration Signorini conditions
are known to respectively feature absolute continuity and bounded variation only [41]. This implies
displacements are not necessarily differentiable everywhere in the defined domain and velocities may
exhibit jumps; these types of problems are generally referred to as nonsmooth. Broadly speaking, existence
of solutions is still an open problem and intense research is devoted to the derivation of efficient time-
stepping solution methods [1, 28].

This class of unilateral problems can also be approached using periodic vibration theory. This allows the
original initial-value formulations to be transformed into formulations that are periodic in time [25]. In
structural mechanics, two families of numerical techniques can efficiently describe approximated periodic
solutions while maintaining computational efficiency. The first is commonly known as the shooting method
which consists of finding the initial conditions that realize a periodic motion; for free responses, the period
of the motion can also be an unknown. The overall approach relies on time integration of the governing
equations over one period using a nonlinear solver which iterates on the initial conditions, and possibly
the period. The second technique is based on weighted residual formulations which are of interest in the
current investigation. This method involves approximating the solution using a set of time-dependent
basis functions, called trial functions, and enforcing the respective residual error to be orthogonal to an
independent set of weighting functions [24, 39]. The orthogonality is enforced using an inner product
in the sense of a scalar product adequately defined on a functional Hilbert space. Unlike the shooting
method which can become numerically sensitive to possible jumps in the velocity field, weighted residual
techniques directly enforce the periodicity conditions while the remaining possibly regularized unilateral
contact constraints and governing local equations of motion are satisfied in a weak integral sense [47]. It
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is worth noting that the well-known Harmonic Balance Method (HBM) is a weighted residual approach
where both the trial and weighting functions are Fourier series. The main goal of the current work is to
explore relevant basis functions whose order of smoothness can be adapted to a particular system to attain
accurate approximations and rapid convergence.

The paper is broken into five sections: Section 2 introduces the system of interest; Section 3 reviews
the weighted residual formulation in time; Section 4 provides an overview of the different basis functions
under investigation; Section 5 specifies the unilateral contact model; and Section 6 presents and compares
results for a number of basis function combinations.

2. SYSTEM OF INTEREST

The current investigation is motivated by the contact interaction between blade tips and the surrounding
casing in modern turbine engines. Structural contact is a consequence of improved energy efficient
technology resulting in tight operating clearances between the rotor and casing; slight out-of-roundness of
the casing can potentially yield severe damage [35, 36].

The model is simplified to a single blade, shown in Fig. 1; details of the model can be found in Section 5.
The blade is subjected to unilateral contact by a rigid wall harmonically moving; the harmonic displacement
is described by a time-dependent T -periodic function y.t/ which simulates the blade rotating within an
out-of-round casing. Accordingly, the domain N� D � [ �d [ �� [ �c is occupied by the blade of interest
where � is an open set of R3 whose boundary � is the union of non-intersecting sets: �d, where the
boundary displacement is prescribed; �� , where the boundary forces are prescribed; �c, where the contact
conditions are enforced.

(rigid) casing with
prescribed time-dependent

displacement y.t/

vibrating blade

�cdistance
g4.xc;4; t /

distance
g7.xc;7; t /

Figure 1. Schematic of the rotor blade undergoing unilateral contact conditions. The continuous contact interface �c
is approximated by Nc D 7 contact points.

As a first approach, the contact interface �c is simplified to Nc D 7 contact points denoted xc;i 2 R3,
i D 1; : : : Nc and located on the tip of the blade, see Fig. 2: they are used to enforce unilateral contact
conditions in a pointwise fashion where friction is ignored (i.e. contact is purely in the radial direction). This
pointwise contact approximates the pressure distribution over the blade tip; this is deemed an acceptable
simplification given the other approximations made in the current investigation.
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The discrete gap which exists between the tip and the oscillating casing boundary is uniquely defined
by Nc gap functions as gi .xc;i ; t / D g0;i � n � .u.xc;i ; t / � y.t//, i D 1; : : : ; Nc where n is the normal to
the surface at the considered contact point, and g0 D .g0;i /iD1;:::;Nc , the initial gap distances. These gap
distances are stored in a vector g.xc; t / D .gi .xc;i ; t //iD1;:::;Nc . When the gap closes to 0, the blade tip
comes into contact with the boundary and unilateral contact conditions must be satisfied. The existence of
periodic solutions of period T is assumed. The unknown displacement u.x; t / has to satisfy the following
complementary boundary value problem:

1. local equation of motion

� Ru.x; t / � div � D f.x; t /; 8x 2 �; 8t (1)

2. linear strain and linear elasticity constitutive law

" D
1

2

�
ruCr>u

�
I � D D W "; 8x 2 N�; 8t (2)

3. conditions of periodicity in time

u.x; t C T / D u.x; t / and Pu.x; t C T / D Pu.x; t /; 8x 2 N�; 8t (3)

4. boundary condition in displacement

u.x; t / D 0; 8x 2 �d; 8t (4)

5. boundary condition in force

� � n D 0; 8x 2 �� ; 8t (5)

6. unilateral contact conditions (to be satisfied for each contact point)

gi .xc;i ; t / � 0 I �i .t/ � 0 I �i .t/gi .xc;i ; t / D 0; i D 1; : : : ; Nc; 8t (6)

In the above equations, � signifies density, f.x; t / the potential external body forces acting on the blade,
the superscript > denotes a transpose, and the dot superscript represents a temporal derivative. Structural
damping is incorporated later by assuming ˇ-damping of the elastic modulus, as detailed in Section 3. It
is assumed in Eq. (5) that the potential other external loadings on �� (e.g. aerodynamic or pressure) are
negligible compared to the unilateral contact loads.

The quantity �.t/ D .�i .t//iD1;:::;Nc , that mechanically is a contact force for node-wise contact
conditions, stems from the enforced non-penetration conditions g.xc; t / � 0 (to be read component-
wise) and is necessarily non-negative (by convention). The complementarity condition �i .t/gi .xc;i ; t / D 0,
i D 1; : : : ; Nc states that the contact forces �.t/ and the corresponding distances g.xc; t / separating the
blade tip contact points from the oscillating boundary may not be zero at the same time. These three
conditions are such that the mathematical object pairing the contact force to the displacement is not a
function in the usual sense. It is also known that the displacement field may be non-differentiable at
given instants within the period of motion and the velocity field may be discontinuous. This motivates the
derivation of numerical techniques capable of efficiently handling this nonsmoothness. As a first approach,
the unilateral contact inequalities (6) are simplified and replaced by a penalty function; an exponential
spring Kp is used to approximate the contact forces. For a single contact location, the gap gi .t/ in Fig. 1
separates the tip of the blade and the exponential spring. The penalty function is of the form

fc;i .u.xc;i ; t // D max
�
ac.e�˛gi .xc;i ;t/ � 1/; 0

�
: (7)

Specific values for the penalty function are provided with the other model parameters in Section 5.
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3. WEIGHTED RESIDUAL FORMULATIONS IN TIME

The method of weighted residuals is a classic method of obtaining numerical solutions to boundary value
problems by expanding the sought solution as a finite sequence of time-dependent basis functions in a
proper functional space [24], commonly referred to as trial functions. The periodicity conditions result in
a problem which can be formulated on a circle in time denoted S1 where the period of the steady-state
solution T has been normalized to 1 [4]. Accordingly, these basis functions are taken from the L2.S1/N
Hilbert space [21]. The subsequent residual is rendered orthogonal to a set a linearly independent functions
of the same space, referred to as weighting functions, through an inner product. Trial and weighting
functions may contain the same basis function but not necessarily: the Galerkin method is a special case
where the weighting functions are taken from the same functional space as that of the trial functions;
the Petrov-Galerkin method involves the selection of weighting function comprising a basis which is
independent of the trial function [16]. The purpose of this study is to seek various Hilbert spaces of square
integrable functions defined on the circle S1 which efficiently predict the displacement of the blade.

To solve Eqs. (1) through (6), the unknown displacement is expanded into a truncated series of N
functions separated in space and time:

u.x; t / D
NnodX
iD1

# i .x/ Qui .t/ (8)

where Qui .t/ are the nodal displacements at the Nnod nodes of the mesh shown in Fig. 2, and # i .x/, the
shape functions in space within the standard Finite Element Method which is here implemented for the
spatial variable using quadratic hexahedral elements [3, 30]. The corresponding dynamics is then reduced

Figure 2. Finite element mesh of rotor blade; red dot shows unilateral contact nodes

through a slightly adapted version of the Craig-Bampton method [2, 26]. The blade itself is a considered as
the unique substructure of the system, its root defining �d is clamped and the Nc nodal displacements in
the radial direction at the contact points (red nodes in Fig. 2) form the boundary degrees-of-freedom. The
remaining internal degrees-of-freedom are synthesized. The resulting truncated set of component modes
and full set of static modes, which capture the dynamics of the contact interface in our study, are then
calculated. This yields the following reduced-order vector ordinary differential equation of size N in the
Craig-Bampton basis:

M RQu.t/C C PQu.t/CK Qu.t/ D fext. Qu.t/; t/ (9)

where N � Nnod, together with the remaining periodicity conditions in time and the unilateral contact
conditions. Here M and K are the base-constrained mass and stiffness matrices for the blade, and ˇ-
damping is enforced such that C D ˇK to account for structural damping. The displacement vector Qu.t/
in Eq. (9) stores the temporal unknowns Qui .t/, i D 1; : : : ; N . Similarly, fext. Qu.t/; t/ stores the reduced
external forcing functions, if any, as well as the reduced contact forces stemming from the regularized
contact force introduced in Eq. (7).
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The remainder of the derivation involves a weighted residual formulation in the time dimension. Three
forms of the weighted residual method are discussed: the strong integral form, the weak form, and the
distributional formulation. For this discussion, it is understood that Qu (the trial functions) and Qv (the
weighting functions) are time-dependent vectors, i.e. Qu.t/ and Qv.t/, but for the sake of clarity the .t/ is
omitted below.

3.1. Strong integral form

The standard weighted residual formulation of a differential equation is commonly termed the strong form.
Taking the inner product of Eq. (9) with a weighting function stored column-wise in v results in the strong
integral form of the equation: find Qu 2 H 2.S1/N such that

8Qv 2 L2.S1/N ;
Z
S1

�
Qv>M RQuC Qv>C PQuC Qv>K Qu � Qv>fext. Qu; t /

�
dt D 0 (10)

This strong form of the equation is not necessarily the best framework for obtaining a solution [30]; for
this example involving a vector ordinary differential equation of order 2, the solution must be at least H 2,
limiting the permissible basis of trial functions�.

3.2. Weak form

The respective weak form of the weighted residual statement can be obtained by performing one integration
by parts over the domain S1 for all terms containing a double time derivative in Eq. (10). This results in:
find Qu 2 H 1.S1/N such that

8Qv 2 H 1.S1/N ;
Z
S1

�
�PQv>M PQuC Qv>C PQuC Qv>K Qu � Qv>fext. Qu; t /

�
dt D 0 (11)

The integral form of the weak formulation offers the advantage of shifting a portion of the functional
smoothness requirement from the trial functions onto the weighting functions. More precisely, both the
trial and weighting functions must now be H 1. This allows the trial functions to be chosen from a wider
permissible space [30].

3.3. Formulation in a distributional sense

The above procedure of obtaining the solution from the weak formulation by performing integration by
parts on the weighted residual statement can be extended one step further. Theoretically, this extension is
not necessary since it is known that displacements should be absolutely continuous in time, though it may
assist in the numerical derivations and allow very simple basis functions to be considered [45]. A weaker
formulation is proposed by integrating again the terms involving time derivatives of the trial functions.
This formulation can be understood in the sense of distributions, also known as generalized functions, ie:
find Qu 2 L2.S1/N such that

8Qv 2 H 2.S1/N ;
Z
S1

�
RQv>M Qu � PQv>C QuC Qv>K Qu � Qv>fext. Qu; t /

�
dt D 0 (12)

Here the double time differential on the field variable is transferred to the weighting function and the
continuity requirement on the trial function is reduced. As discussed later, the desired displacement
functions Qu can now be described using a series of constant piecewise functions for instance.

3.4. Time discretization

Let each nodal displacement Qui .t/ be approximated by a combination of M linearly independent
trial functions qk.t/, k D 1; : : : ;M defined on t 2 S1. Similarly, let each Qvi .t/ be approximated by
a combination of linearly independent weighting functions pk.t/, k D 1; : : : ;M also defined on t 2 S1.

�A very brief description of the Sobolev spaces used herein can be found in the Appendix.
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Collectively, this leads to

Qui .t/ D

MX
kD1

aikqk.t/ and Qvi .t/ D

MX
kD1

bikpk.t/; i D 1; : : : ; N (13)

or, equivalently in a vector form:

Qu.t/ D ‚.t/a and Qv.t/ D �.t/b (14)

In Eq. (14), ‚.t/ and �.t/ are rectangular matrices of dimension N �NM ; a and b are vectors of size
NM � 1.

Each of the strong, weak, and distributional formulations can now be discretized with proper time-
dependent basis functions. The overall goal of this paper is to discuss the numerical properties of certain
wavelet bases to efficiently solve the problem of interest. Depending on the selected formulation, the
order of derivation acting on Qu.t/ and Qv.t/ (i.e. ‚.t/ and �.t/ respectively) will affect the admissible
basis functions. The arbitrariness of the weighing function in Eq. (10), (11), and (12) is reflected by the
arbitrariness of vector b and the corresponding discretized versions are:

� strong integral form:Z
S1

��
�>M R‚ C �>C P‚ C �>K‚

�
a � �>fext.‚a; t /

�
dt D 0 (15)

� weak form:Z
S1

��
� P�>M P‚ C �>C P‚ C �>K‚

�
a � �>fext.‚a; t /

�
dt D 0 (16)

� distributional form:Z
S1

��
R�>M‚ � P�>C‚ C �>K‚

�
a � �>fext.‚a; t /

�
dt D 0 (17)

The resulting nonlinear equations can generically be recast in the following form

Ga � f.a/ D 0 (18)

where Ga and f.a/ respectively stand as the linear internal and the nonlinear external contributions in
Eq. (15), (16), and (17).

3.5. Matrix condensation

It is useful to note that after discretization in space and time, the penalty-like contact force is applied to
only seven degree-of-freedoms (i.e. the radial components of the contact nodes). This allows the equations
of motion to be condensed to seven active degrees-of-freedom. Consider the partitioning of Eq. (18) into
passive p and active a degrees-of-freedom as follows [13]:�

Gpp Gpa
Gap Gaa

��
ap
aa

�
�

�
0

fa.aa/

�
D

�
0
0

�
: (19)

In this form fa.aa/ is the displacement-dependent nonlinear contact force. The first block row of Eq. (19) is
linear and gives

ap D �G�1pp Gpaaa (20)

resulting in the condensation equation�
Gaa �GapG�1pp Gpa

�
aa � fa.aa/ D 0 (21)
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or

NGaa � Nf.aa/ D 0 (22)

for simplicity. The square matrix and vectors of Eq. (22) are of size 7M . Eq. (22) is nonlinear and
must be solved using an appropriate solver. Condensing the equations of motion reduces the number of
unknowns in the nonlinear solution, hence reducing computational times and generally increasing the rate
of convergence.

4. TRIAL AND WEIGHTING FUNCTION BASES

The selection of functional bases to be used in the above approaches is an important factor in approximation
accuracy and computational efficiency [3, 30]. A priori selection of the optimal bases for unilateral contact
problems is not a trivial matter due to potential nonsmoothness of the response. In the current investigation
a number of bases are investigated to compare the quality of approximation, including Fourier functions,
B-spline wavelets, Daubechies wavelets, and Haar wavelets.

4.1. Harmonic balance and Fourier series

The harmonic balance method (HBM) is a special case of the weighted residual method where the Fourier
basis is used for both the trial and weighting functions [33]. This technique is particularly effective when
dealing with smooth nonlinear systems; convergence is often reached with very few terms. It has been
used to study steady state response of turbine engine blades with friction dampers using a multiterm
approximation [46]. This approach was extended to unilateral contact and friction conditions [27] through
an Alternating Frequency/Time domain strategy proposed by Cameron et al. [10] and Pilipchuk [38]. It is
worthy to note that the HBM formulations of Eqs. (15), (16), and (17) are identical.

The Fourier basis for L2.S1/ is defined as f1g [ fcos.2m�t/; sin.2m�t/jm 2 N�g where m signifies
the harmonic number of the function. The first six functions are shown in Fig. 3.

0 1

−1

0

1

(a) constant term

0 1

−1

0

1

(b) cos.2�t/

0 1

−1

0

1

(c) sin.2�t/

0 1

−1

0

1

(d) cos.4�t/

0 1

−1

0

1

(e) sin.4�t/

0 1

−1

0

1

(f) cos.6�t/

Figure 3. First six functions of the Fourier basis

Fourier basis functions feature an infinite degree of smoothness. While this property can be beneficial in
some cases, it is unclear whether Fourier functions are optimal when simulating potentially nonsmooth
problems. It is possible that a large number of harmonics would be required to accurately capture the
nonsmooth response, or the approximation may exhibit Gibbs phenomenon at localized discontinuities in
the sought displacement and velocity fields. Accordingly, other basis functions featuring a lesser degree of
functional smoothness are explored.
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4.2. Brief review of discrete orthogonal wavelets

Discrete orthogonal wavelet families are composed of highly localized, oscillatory functions which
provide a basis of L2.R/ and can be adapted to the periodic domain L2.S1/ [31]. These localized
characteristics, or compact support, allow sparse representation of piecewise signals including transients
and singularities [9]. This makes them useful functions for use in the Galerkin approach when nonsmooth
solutions are predicted [43]. There are a large number of wavelet families and definitions thereof; both
Mallat [31] and Strang [43] provide excellent introductions to wavelet theory and history. Galerkin methods
using appropriate discrete wavelet families as the trial functions have been shown to accurately approximate
the solutions to both ordinary and partial differential equations [5, 6, 37, 48, 12, 8].

The discrete wavelet family is built from scaling functions �.t/ and wavelet functions  .t/. These
functions are analogous to the low-pass and high-pass filters of a filter bank [43]; decomposition using
scaling functions will give a “smoothed” approximation of the original signal, while decomposition using
wavelet functions provides the details of the signal, or high-frequency content.

The exact decomposition of a continuous time signal Qui .t/ can be written

Qui .t/ D
X
k

gk�J;k.t/C

mX
jDJ

X
`

hj;` j;`.t/ (23)

and

�J;k.t/ D 2
J=2�.2J t � k/ (24)

 J;k.t/ D 2
J=2 .2J t � k/ (25)

where J; k 2 Z; J is the dilation parameter (i.e. level), k is the translation parameter, andm is the maximum
resolution given by the sampling rate of the function Qui .t/.

The span of the scaling functions at level J is commonly denoted VJ , while the wavelet span is denoted
WJ . For orthogonal wavelet families, WJ is the orthogonal complement to VJ in VJC1

VJC1 D VJ ˚WJ : (26)

Provided the wavelet family is orthogonal [43], the space of square-integrable functions on the real line
L2.R/ can be decomposed using multiresolution analysis as a nested sequence of closed subspaces [31]

� � � � V�2 � V�1 � V0 � V1 � V2 � � � � � L2.R/ (27)

such that

lim
J!1

VJ D L2.R/: (28)

This implies that VJ , the subspace composed of the set of scaling functions at level J , can approximate
any function in L2.R/. A reduced orthonormal basis of L2.R/ is constructed by truncating the wavelet
terms, resulting in

Qui .t/ D
X
k

uk�J;k.t/ (29)

The accuracy of this approximation increases as the level J is increased. This property of the scaling
functions makes them excellent trial and weighting functions in weighted residual methods because they
can be adapted to the accuracy level required. The reduced orthonormal basis of scaling functions is used
in the current investigation. This approach of increasing the level of scaling functions, rather than including
wavelet functions to increase approximation accuracy, is a common approach in the literature [34] and
used in the bulk of the applicable references cited in this paper.
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4.2.1. Periodization of wavelet families Standard wavelet definitions (i.e. scaling and wavelet functions)
are commonly built on the real line. The functions can be adapted to periodic functions of L2.S1/ by
utilizing a standard periodization technique [31, 17, 32]. Let �.p/.t/ be the periodized form of the scaling
function �.t/ defined on R

�
.p/

J;k
.t/ D

X
`2Z

�J;k.t � `/ 0 � k � 2J � 1: (30)

This is equivalent to “wrapping around” the support R on S1 through summation. The finite size of the
interval results in the condition J � 0

V0 � V1 � V2 � V3 � � � � � L2.S1/ (31)

such that

lim
J!1

VJ D L2.S1/: (32)

A number of periodic discrete wavelet families exist [31]. The investigation considers three families to
determine how they perform in unilateral, nonsmooth contact problems: B-spline, Daubechies, and Haar.

4.3. Orthogonal cubic B-spline scaling functions

The scaling function � for the orthogonal cubic B-spline wavelet family built on R is given as [7]

�.t/ D
X
k

ckB3.t � k/ (33)

where cubic B-spline B3.t/ can be written using the following formulas

B3.t/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

t3=6 .0 � t � 1/

�t3=2C 2t2 � 2t C 2=3 .1 � t � 2/

t3=2 � 4t2 C 10t � 22=3 .2 � t � 3/

�t3=6C 2t2 � 8t C 32=3 .3 � t � 4/

0 .otherwise/:

(34)

The coefficients ck can be determined using [7]

ck D c�k D
1

�

Z �

0

cos.k�/p
p3.cos �/

d� .k � 0/ (35)

where k is an integer. The cubic polynomial p3 is given as

p3.cos.�// D
1

630
.cos3.�/C 60 cos2.�/C 297 cos.�/C 272/: (36)

Numerical simulations showed that truncating the summation in Eq. (33) at �50 � k � 50 is sufficient;
larger k terms add negligibly to the summation. After periodization to S1 and normalization byR 1
0
�J;k.t/ dt D 1 [11], sample orthogonal cubic B-spline scaling functions for J D 0; 1; : : : ; 5 are shown

in Fig. 4

4.4. Daubechies Wavelets

The Daubechies wavelet family is defined by a set of L filter coefficients fp` W ` D 0; 1; : : : ; L � 1g, where
L is an even integer. The scaling function is defined by the fundamental two-scale equation [11]

�.t/ D

L�1X
`D0

p` �.2t � `/ (37)
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Figure 4. Examples of the first six levels of periodized orthogonal cubic B-spline scaling functions

which has fundamental support over the finite intervals Œ0; L � 1�. This equation can be used to determine
the value of the scaling function at dyadic points t D n=2J , n D 0; 1; : : : using the algorithm provided by
Chen et al. [11]. The exact solution for derivatives of the Daubechies scaling functions are also available
up to derivative order L=2 � 1.

The wavelet filter coefficients p` were derived by Daubechies to produce scaling and wavelet functions
with specific properties [11, 14], some of which include:

� the area under the scaling function is unityZ 1
�1

�.t/ dt D 1 (38)

� the coefficients sum to two
L�1X
`D0

p` D 2 (39)

� the scaling function and its translates are orthogonalZ 1
�1

�.t/�.t � k/ dt D ı0;k k 2 Z (40)

The corresponding scaling functions are highly nonsmooth and fractal in nature: as one increases the
resolution of the functions, the shape does not converge but rather continues to increase in complexity. This
makes accurately estimating the inner products of such scaling functions with each other prone to error
when numerical integration is used [40].

When Daubechies scaling functions are used in a Galerkin approach, it is necessary to derive the
inner products of the scaling function with itself or derivatives of itself. The exact solution to these inner
products can be found by using the recursive nature of the fundamental equation on L2.R/ [5, 11]; the
solution to these inner products are commonly referred to as connection coefficients. When Daubechies
scaling functions are periodized on S1, the wrapping procedure results in functions which are no longer
scale-invariant at low J values (scale-invariance requires wavelets at any scale to be a pure dilation of the
mother-wavelet). Fig. 5 provides examples of the periodized scaling functions for L D 6. Interestingly,
the lack of scale-invariance for small J values does not invalidate the connection coefficient algorithms
derived for unbounded domains; the connection coefficients can simply be wrapped around the periodic
domain as necessary [40].
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Figure 5. Examples of the first six levels of periodized 6 coefficient Daubechies scaling functions (DB6)

4.5. Haar scaling functions

The simplest Daubechies wavelet family requires only two filter coefficients (p0 D p1 D 1) and is
commonly known as the Haar wavelet family [20]. The Haar scaling functions are rectangular tophat-type
functions; the father scaling function is defined on t 2 R as

�.t/ D

�
1 .0 � t < 1/

0 .otherwise/:
(41)

Since the compact support of the father scaling function is S1, the periodized function is equivalent.
Example Haar scaling functions for J D 0; 1; : : : ; 5, normalized by Eq (38), are shown in Fig. 6.
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5. MODEL DEVELOPMENT

The mixed finite-element/wavelet-Galerkin model of the rotor blade undergoing unilateral contact
introduced in Section 2 is based on the NASA 67 rotor, a transonic fan stage rotor containing 22 blades.
The geometry [44] is commonly used for validation of aerodynamic simulation for rotating machinery
codes. Limited documentation is available regarding structural analysis of the blade; Doi [15] reports the
blade is manufactured from a titanium alloy with the following properties: elastic modulus of 117:2 GPa,
Poisson’s ratio of 0.3, density of 4539:5 kg m�3.

The mesh, shown in Fig. 2, is constructed in ANSYS using 20-node quadratic-hexahedral elements; the
blade-foot is rigidly constrained. The mesh was adjusted until the first 30 eigenmodes converged to within
1 %. Seven nodes along the blade tip (roughly equally spaced) are selected as contact nodes (21 degrees-
of-freedom). This mesh is then further synthesized through an adapted version of the Craig-Bampton
method [2, 26] using 20 component modes, resulting in a final model size of 41 degrees-of-freedom.
Validation of this reduced model showed mode convergence of 1 % or better for the first 20 modes, thus
the mesh of the finite element model is deemed acceptable for use in the unilateral contact simulation.

The contact penalty function parameters ac and ˛ in Eq. (7) are selected to simulate contact with a rigid
wall: ac D 104 N, ˛ D 5 � 104 cm�1. To select these values, penalty function parameters were increased
until the results converged such that small increases in the penalty function parameters negligibly affected
the predicted response; further increase in the parameters did not significantly decrease wall penetration and
only served to diminish the conditioning of the system. The beta-damping ˇ in Eq. (9) is set to ˇ D 10�5 s,
which results in light damping .< 0:5 %/. Note, the penalty function of Eq. (7) assumes elastic contact. It
is possible incorporating a restitution coefficient to simulate the dissipation found in inelastic contact could
help improve convergence in the time-marching solution [22, 18].

To act as a comparison solution, the unilateral contact finite-element equations detailed above are solved
using a variable-order numerical differentiation formula (NDF) time-stepping algorithm [42]. As the
time-stepping solution does not solve for the periodic response directly, the solution is deemed to have
converged to its periodic state when the rms of the relative error between the tip displacements for the i and
i � 1 periods is below 10�5 %. For boundary oscillation frequencies between 50 � 1000 Hz this generally
required simulation of 100 � 200 periods of vibration; this approach is possible because the structural
damping causes the transient response to decay away, albeit slowly.

5.1. Weighted residual formulation

Table I lists the combination of trial and weighting functions employed in the current investigation; where
wavelet families are listed (B-spline, Haar, Daubechies), it is implied the scaling functions are used
according to Eq. (29). The integrals involved in Eq. (18) are computed as discrete inner products using

Table I. List of trial and weighting function combinations

Trial function Weighting function
Fourier Fourier
B-spline B-spline

Daubechies 6 Daubechies 6
B-spline Fourier

Haar Fourier
Haar B-spline

1024 points for all but the Galerkin formulation using Daubechies functions. For the Daubechies Galerkin
cases, the inner products are derived using the connection coefficients as mentioned in Section 4.4.

6. RESULTS

The six combinations of trial and weighting functions listed in Table I are employed to solve the condensed,
nonlinear weighted residual formulation given in Eq. (22) for prescribed boundary frequencies ranging
between 50 Hz to 1000 Hz. The computed evolution of the blade tip displacement vs. boundary frequency
for the center contact node is shown in Fig. 7, normalized over one period of vibration.
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Figure 7. Evolution of the blade tip center displacement for 50 Hz to 1000 Hz boundary frequencies

Blade resonances near 320 Hz and 785 Hz are identified by the large amplitude tip deflections. Results
at 450 Hz are selected to compare the basis function combinations listed in Table I; the tip displacements at
this frequency are still relatively large thus large contact forces were expected. This typically results in
numerical convergence difficulties thus comparison at this frequency should highlight the strengths and
weakness of the proposed formulations.

6.1. Tip displacement

Samples of the predicted tip displacement responses at 450 Hz using 32 (J D 5) and 128 (J D 7) basis
functions are provided in Fig. 8. All results shown are for the center contact node. All contact nodes were
found to interact with casing wall and produce unique responses; the center node response was deemed a
representative response thus only these results are shown for brevity.

The HBM method (Fourier:Fourier) approximates the tip displacements well using both 32 and 128
basis functions compared to the time-stepping solution. This is expected as the displacement curves are
relatively smooth and well suited to the HBM method. The B-spline Galerkin formulation appears to have
difficulty accurately computing the response using fewer basis functions but improves as the number of
functions increases. The Daubechies Galerkin formulation (DB6:DB6) appears to perform well for both
cases shown, though a quantitative analysis of the results in Sec. 6.5 show it is slightly less accurate than
HBM.

The Haar:Fourier and Haar:B-spline formulations result in a stepped approximation of the tip
displacement due to the blocky nature of the Haar scaling functions, particularly noticeable for lower
numbers of basis functions. As the number of basis functions is increased, the step-size of the Haar function
within the period is reduced, and at 128 basis functions the approximation follows the time-stepping
solution closely. The benefits of using Haar scaling functions as trial functions become more evident when
viewing the predicted contact forces, as discussed in Section 6.3.

6.2. Tip velocity

Consideration is also given to the accuracy with which the trial functions can predict velocities. For all
displacement approximations where the trial basis functions can be differentiated pointwise to approximate
velocities using Eq. (13), the following equality is used:

PQui .t/ D

MX
kD1

aik Pqk.t/: (42)
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Figure 8. Blade tip center displacement over one period T at 450 Hz forcing frequency

The only cases where Eq. (42) is not valid are those involving Haar trial functions; Haar scaling functions
are piecewise constant functions thus they cannot be directly differentiated in the usual sense (i.e. pointwise)
to determine velocities. Velocities for these cases can be approximated by assuming the derivative of a
Haar scaling function is the combination of a positive delta function at t1 and a negative delta function at t2,
where t1 corresponds to the positive jump discontinuity in the Haar scaling function and t2 corresponds to
the negative jump. Using a set of these functions as Pqk.t/ in Eq. (42) provides a reasonable approximation
to the corresponding velocity field for cases involving Haar functions.

The approximate center-node tip velocity response at 450 Hz is plotted in Fig. 9 for all cases using both
32 and 128 basis functions. The delta function representation discussed above can be seen in Figs. 9(e)
and 9(f) for the 32 basis function case; only discrete points at the tips of the delta functions are shown for
the 128 basis function case for clarity of the figure.

It is visible from these approximations that there is a sharp change in velocity due to the contact condition
about halfway through the period. This type of response is known to typically produce in ringing due to
Gibbs phenomenon at the sharp gradient change using Fourier trial functions. While this phenomena was
found to exist, it was slight and not readily visible on the plot. Interestingly, the ringing is more pronounced
in the Galerkin B-spline case, suggesting this formulation may not be an optimal basis for this particular
simulation.

The 128 function DB6:DB6 combination closely follows the time-stepping solution, more accurately
predicting the sharp gradient changes which the HBM solution smoothed out. This is a result of a few
DB6 scaling function characteristics: vanishing moments up to order 2 allowing accurate approximation of
smooth curves; and the highly localized and fractal nature of the function which capture the nonsmooth
changes in the response.

For cases involving Haar trial functions the functional velocity envelope is reasonably approximated by
the delta function representation, especially as the number of basis functions is increased. They appear to
do particularly well in capturing the rapid gradient changes.
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Figure 9. Blade tip center velocity over one period T at 450 Hz forcing frequency

6.3. Tip contact force

The contact forces at the blade tip, calculated using the penalty function provided in Eq. (7), are computed
at the seven contact nodes simultaneously. The contact force magnitudes for the seven nodes predicted at
450 Hz using the time-stepping method are presented in Fig. 10.
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The contact force for the middle node predicted at 450 Hz are presented for the six combinations in
Fig. 11. Notice the time duration of the contact forces coincide with the interval where the tip displacement
equals the boundary displacement of Fig. 8 as this is the only period during which the blade tip is in contact
with the oscillating boundary.
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Figure 11. Blade tip center contact force over one period T at 450 Hz forcing frequency

The effect of Gibbs phenomenon can be seen in the HBM and Galerkin B-spline cases at the nonsmooth
transition between a free and forced blade tip. When simulating contact using a rigid contact law, this
ringing can be detrimental to numerical convergence as it artificially causes the blade tip to bounce
repeatedly off the boundary. This can cause the nonlinear solver to diverge from the desired solution.

The DB6 Galerkin formulation does well in capturing both the smooth sections and the nonsmooth
transitions, particularly using 128 basis functions. The use of Haar trial functions does especially well in
locating the nonsmooth transition. It is hypothesized that if a rigid contact law is enforced the Daubechies
or Haar scaling functions will perform better relative to the other functions; this will be investigated in
future work.

6.4. Energy norm convergence

Convergence of the normalized energy norms for each basis combination at 450 Hz are given in Fig. 12(a).
For these results the distributional form of the governing equations discussed in Section 3.3 are used in
all cases. Results using the strong and weak forms of the governing equation are discussed further in
Section 6.7.

The system energy is calculated as

E D
1

2
PQuTM PQuC

1

2
QuTK QuCEpenalty: (43)

where Epenalty is the energy stored in the penalty springs used to enforce contact. The scalar energy norm is
calculated as the rms value of the system energy E over a single period; this is then normalized by the
energy norm from the time-stepping solution. The velocity terms PQu are calculated as detailed in Section 6.2.
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Figure 12. Convergence for center contact node at 450 Hz as the number of basis functions are increased: (a) energy
norm; (b) blade tip displacement error; (c) contact force error; (d) run-time

As shown in Fig. 12(a), all combinations of trial and weighting functions converge to the time-stepping
solution (i.e. energy norms are approximately unity using 256 basis functions). The HBM, Galerkin
B-spline, and B-spline:Fourier formulations show energy norms close to unity even using relatively few
basis functions. The combinations utilizing Haar trial functions tend to under-predict the system energy
when few trial functions are used. This is predictable considering the blocky nature of the response (e.g
Fig. 8(e)) which gives a coarse representation of the periodic displacement and velocity responses.

Also notice the large energy norms predicted for the DB6:DB6 formulation using 32 or few basis
functions. This is due to poor representation of the response compared to the time-stepping solution. Whilst
the DB6:DB6 formulation has many good attributes for solving nonsmooth contact problems, these results
suggest a greater number of basis functions may be necessary to predict globally accurate solutions as
compared to the HBM method (see Section 6.7 for further discussion).

6.5. Tip displacement and wall force relative error

It is also desirable to quantify the global approximation error for the blade tip displacement and resulting
wall force as predicted using the weighted residual combinations. The time-stepping solution is again used
as a comparison solution and the results for the center contact node are shown. The rms displacement error
over one period is plotted for the six basis function combinations in Fig. 12(b), while the rms wall force
error is plotted in Fig. 12(c).
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As shown in Fig. 12(b), the HBM and B-spline:Fourier approaches have the lowest error when 128 or
few basis functions are used. This quantifies the visual evidence reported in Section 6.1. The relative error
using Haar trial functions is largest out of the combinations investigated. This is expected due to the blocky
nature of the Haar scaling functions; however the mid-points of the Haar functions match very well to
the trend of the time-stepping solution. This suggests that if only a low resolution approximation of the
response is required, the Haar scaling functions still perform well.

The Galerkin DB6 case performs reasonably well throughout, though is always outperformed by the
Fourier cases. This is attributed to the fact the displacement curves are relatively smooth thus well suited to
HBM. The benefits of the nonsmooth DB6 scaling functions to accurately predict sharp gradient changes
is not beneficial here. However, as shown in the force error plot Fig. 12(c), the Daubechies wavelets show
promise in predicting the non-smooth contact force.

The relative errors in the predicted contact forces are presented in Fig. 12(c). The HBM and B-
spline:Fourier formulations perform the best when fewer basis functions are employed, but the DB6:DB6
case produce the most accurate prediction of the contact force once 256 functions are employed. This is
again attributed to the ability of the Daubechies basis to represent sharp gradient changes, such as the
transition from free vibration to contact with the casing. The Haar:Fourier formulation does not perform as
well, but not as poorly as expected. This is attributed to the Haar functions ability to accurately capture the
flat portion of the force response, and adequately represent the zone of contact.

6.6. Relative computational cost

While each formulation requires computation of the same number of unknowns for a given basis size, the
computational cost of each method was found to differ. The difference between the methods shown in
Fig. 12(d) is mainly due to the number of iterations required for the non-linear solver to converge. The
Galerkin B-spline and methods involving Haar functions were found to require significantly more iterations
in general compared to the other methods.

The DB6 Galerkin formulation required the least amount of computing time for the non-linear solution
to converge at all basis sizes. In general, this formulation required significantly fewer iterations for the
non-linear solver to reach the convergence criteria. It is hypothesized that this is due to the more accurate
representation of the contact forces which prevented numerical “bouncing” or “ringing”.

The HBM solution also performed very well. Note, fast-Fourier transforms were not employed in
this investigation to allow a more balanced comparison between the methods. If the FFT method were
incorporated into the code this would significantly reduce run times for HBM cases. Fast-wavelet transforms
are also available for Daubechies wavelets and will be investigated further to determine the benefits to
computational time.

6.7. Principal Angles Between Subspaces

The solution predicted using a weighted residual technique must exist in the approximate solution space
defined by the trial and weighting functions chosen. The Galerkin and Petrov-Galerkin approaches require
the projection of the trial function basis (and/or its derivative) onto the weighting function basis (and/or its
derivative); it is within this projected space that the approximate solution is determined. Increasing the
dimensionality of either the trial or weighting functional bases only improves the prediction accuracy if
the inner product of the bases expands the approximate solution space to encapsulate more of the L2.S1/
space.

Principal angles provide a measure of the commonality or “overlap” of the trial and weighting function
spaces, where Shonkwiler [23] shows that there are an equal number of principal angles as trial (or
weighting) functions. If the trial and weighting functions span the same space, all the principal angles
will equal zero and the approximate solution space will be large. If the trial and weighting functions are
orthogonal to each other, all the principal angles will equal 90ı and the approximate solution space will be
null. The more principal angles with values close to 0 implies the projection of the trial functions onto
the weighting functions span a larger approximate solution space and thus can potentially provide more
accurate predictions.

The principal angles for the six Galerkin and Petrov-Galerkin combinations with 64 degrees-of-freedom
are provided in Fig. 13 for the three projections required in the weaker form (distributional approach)
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Figure 13. Principal angles for Galerkin and Petrov-Galerkin subspaces with 64 basis functions. TF signifies trial
function, WF signifies the weighting function, and the superscript .n/ signifies the derivative order.

outlined in Section 3.3: TF.0/!WF.0/; TF.0/!WF.1/; TF.0/!WF.2/. For example, TF.0/!WF.1/

signifies the trial function basis being projected onto the first derivative of the weighting function basis.
Also included are the principal angles for TF.1/!WF.1/ which is required if the weak form is used.

As expected the Fourier:Fourier combination has principal angles equal to zero for all but a couple of
dimensions. Consider TF.0/!WF.2/ for example: the trial function basis contains the 0th Fourier term (i.e.
the constant offset vector), whereas in the second derivative of the weighting functions this vector is null.
Thus when TF.0/ is projected onto WF.2/ the information contained in the 0th Fourier term is lost, hence
the single 90ı principal angle value. All other basis vectors are shared by both spaces so the remaining 63
principal angles are nil as illustrated in Fig. 13(a).

This property is not shared for all Galerkin bases. In Fig. 13(b) the principal angles for the B-Spline
Galerkin method are shown and have a greater range than the Fourier:Fourier case. This implies the
projected solution space is somewhat smaller for the B-Spline Galerkin approach. This aides in the
explaining why the relative errors shown in Fig. 12(b) and 12(c) are larger for B-Spline:B-Spline than for
Fourier:Fourier.

Note that for all the Galerkin combinations TF.0/!WF.0/ and TF.1/!WF.1/ the principal angles are
all zero. This is because for these cases the trial and weighting function bases are the same. This implies the
well-known fact that the weak formulation may provide better prediction accuracy than the distributional
formulation, where TF.0/ ! WF.2/ is required. Numerical simulation verifies this hypothesis, but the
improvement in accuracy is orders of magnitude less than the relative error thus results for the weak form
are not included in the discussion.

For the Petrov-Galerkin cases shown in Fig. 13(d) to 13(f), all the required projections result in a
reduction of the solution space. The combinations involving Haar functions as the trial basis tend to have
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large mean principal angles, which attests to the Haar:Fourier and Haar:B-Spline combinations performing
poorly according to Fig. 12(b) and 12(c).

Fig. 13(c) shows the DB6:DB6 formulation also has a large mean for its principal angles. This aids in
explaining why the numerical convergence of this formulation was poor using 64 basis functions or fewer;
the approximate solution space is relatively small. As the total number of trial and weighting functions
is increased, this increases the number of degrees-of-freedom with low principal angle values making
possible an accurately predicted solution.

7. FURTHER BLADE RESULTS

While this investigation focuses on determining effective functional basis for predicting blade response
under unilateral contact conditions, a few post-processed FEA results are included below to highlight the
practicality of the proposed approach.

7.1. Full-field result profiles

Once the periodic displacements from the reduced FEA model are computed using the wavelet-Galerkin
method, the full-field displacements of the blade can be reproduced using the adapted Craig-Bampton
method [2, 26]; Fig. 14 shows the displacement field during the periodic response at 320 Hz. From these
results, stress and strain contours can be created using standard finite element methods.

Figure 14. Displacement field in deformed blade during a single time-step of periodic response at 320 Hz

7.2. Forced response

Another result of interest is the ability to construct the frequency response function for the unilateral contact
condition. The penalty function simulating contact is effectively a stiffening condition, thus the resonant
peaks for the system are expected to increase in frequency relative to the no-contact response.

To capture this nonlinear response an arc-length continuation method [19] is utilized. The frequency
response function over one of the system’s resonant frequencies is shown in Fig. 15 using both the HBM
and Galerkin DB6 combinations with 256 basis functions. To compute the forced response, the position of
the rigid boundary is kept constant and a harmonic point load is introduced to the contact node.

As shown, the stiffening behaviour of the unilateral contact condition is captured by both trial:weighting
function combinations; other combinations showed similar approximations. These results are promising as it
implies the arc-length continuation method can be accurately applied to both Galerkin and Petrov-Galerkin
approaches using the distributional formulation for a number of different bases.
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Figure 15. Frequency response function over the 1st fundamental frequency of the unilateral contact system

8. CONCLUSIONS

The method of weighted residuals for capturing the periodic responses of unilateral contact problems
has been investigated on an industrial blade for a number of trial:weighting function combinations. The
contact condition is simulated using an exponential penalty function approach. To extend the allowable
trial function bases, a weak and a distributional formulations are presented which transfer trial function
continuity requirements to the weighting functions. This allowed piecewise constant Haar scaling functions
to be used as a trial basis in the current investigation. Results show that a number of trial:weighting function
combinations produce accurate solutions which rapidly converge as the size of the discrete spaces is
increased. As expected, Fourier functions perform well as a trial basis, though nonsmooth functions such
as Haar and Daubechies scaling functions are also attractive since they provide comparable prediction
accuracy and even out perform the Fourier functions in some measures.

Research is continuing on this subject. The goal is to improve on the penalty approach by implementing
an exact unilateral contact Lagrange multiplier method. The hypothesis is that nonsmooth trial functions
will be able to approximate these flat sections better than Fourier functions, and thus could provide better
contact force estimation and improved convergence for nonlinear solution algorithms.

Furthermore, the results from this investigation show that the prediction accuracy using wavelet scaling
functions may increase at a greater rate than Fourier function when the global scale is increased. However,
this global scale increase may not be optimal. In most cases the coarse wavelet functions can reasonably
predict general trends in the response, it is only locations of sharp gradient changes where fine scale
functions are required (i.e. very short compact support); this local increase in resolution is not possible
with Fourier trial functions [29]. Future work will focus on resolving only these high gradient areas using
wavelets and leaving coarse scaling functions to describe the smooth sections. Increased accuracy shall be
met while minimizing the number of basis functions required.
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A. SOBOLEV SPACES

In the paper, S1 denotes the circle compact support that can be identified to the interval .0; 1/ on the real
line. Due to the periodicity conditions in time that should be satisfied by the solution, integral forms are
readily derived on this set.

Below is a list of the Sobolev spaces defined on S1 with brief descriptions on how they relate to the
current investigation:
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� L2.S1/ is the space of square integrable functions on the circle.
� H 1.S1/ is the space of square integrable functions on the circle in which the first derivative (in a

distributional sense) is also square integrable.
� H 2.S1/ is the space of square integrable functions on the circle in which the first and second

derivatives (in a distributional sense) are also square integrable.
� L2.S1/N is the space containing N square integrable functions on the circle, where N is the number

of spatial degrees-of-freedom in the current investigation—this is analogous for H 1.S1/N and
H 2.S1/N .
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