K. Bathe, Finite Element Procedures in Engineering Analysis, Journal of Pressure Vessel Technology, vol.106, issue.4, 1982.
DOI : 10.1115/1.3264375

D. Boore, Simulation of ground motion using the stochastic method, Pure and Applied Geophysics, vol.16034, pp.635-676, 2003.

M. &. Broggi and . Schuëller, Efficient modeling of imperfections for buckling analysis of composite cylindrical shells, Engineering Structures, vol.33, issue.5, pp.1796-1806, 2011.
DOI : 10.1016/j.engstruct.2011.02.019

E. Capiez-lernout, C. Soize, and &. Mignolet, Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity, Computational Mechanics, vol.197, issue.7, pp.87-97, 2012.
DOI : 10.1007/s00466-011-0629-y

URL : https://hal.archives-ouvertes.fr/hal-00684289

E. Capiez-lernout, C. Soize, and &. Mignolet, Nonlinear stochastic dynamical post-buckling analysis of uncertain cylindrical shells, 11th International Conference on Recent Advances in Structural Dynamics, 2013.

H. Kanai, Semi-empirical formula for the seismic characteristics of the ground motion, Bulletin of the Earthquake Research Institute, vol.35, pp.309-325, 1957.

P. C. Kree and . Soize, Mathematics of random phenomena random vibrations of mechanical structures, 1986.

G. Michel, Flambage de coques minces cylindriques sous un chargement dynamique de cisaillement, 1997.

G. Michel, A. Combescure, and &. Jullien, Finite Element simulation of dynamic buckling of cylinders subjected to periodic shear, Thin-Walled Structures, vol.36, issue.2, pp.111-135, 2000.
DOI : 10.1016/S0263-8231(99)00032-4

URL : https://hal.archives-ouvertes.fr/hal-00450331

G. Michel, A. Limam, and &. Jullien, Buckling of cylindrical shells under static and dynamic shear loading, Engineering Structures, vol.22, issue.5, pp.535-543, 2000.
DOI : 10.1016/S0141-0296(98)00132-1

M. Mignolet, A. Przekop, S. Rizzi, and &. S. Spottswood, A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures, Journal of Sound and Vibration, vol.332, issue.10, 2012.
DOI : 10.1016/j.jsv.2012.10.017

M. Mignolet and . Soize, Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems, Computer Methods in Applied Mechanics and Engineering, vol.197, issue.45-48, pp.3951-3963, 2008.
DOI : 10.1016/j.cma.2008.03.032

URL : https://hal.archives-ouvertes.fr/hal-00686140

R. Murthy, X. Wang, R. Perez, M. Mignolet, and &. L. Richter, Uncertainty-based experimental validation of nonlinear reduced order models, Journal of Sound and Vibration, vol.331, issue.5, 2012.
DOI : 10.1016/j.jsv.2011.10.022

H. Pradlwarter, G. Schueller, and &. C. Schenk, A computational procedure to estimate the stochastic dynamic response of large non-linear FE-models, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.7-8, pp.7-8, 2003.
DOI : 10.1016/S0045-7825(02)00595-9

H. J. Pradlwarter and . Schueller, Reliability of deterministic non-linear systems subjected to stochastic dynamic excitation, International Journal for Numerical Methods in Engineering, vol.21, issue.4, pp.1160-1176, 2011.
DOI : 10.1002/nme.3017

R. C. Sampaio and . Soize, Remarks on the efficiency of POD for model reduction in non-linear dynamics of continuous elastic systems, International Journal for Numerical Methods in Engineering, vol.45, issue.3, pp.22-45, 2007.
DOI : 10.1002/nme.1991

URL : https://hal.archives-ouvertes.fr/hal-00686148

G. G. Saragoni and . Hart, Simulation of artificial earthquakes, Earthquake Engineering & Structural Dynamics, vol.10, issue.3, pp.249-267, 1974.
DOI : 10.1002/eqe.4290020305

C. G. Schenk and . Schuëller, Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.35-36, pp.35-36, 2007.
DOI : 10.1016/j.cma.2007.03.014

L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quarterly of Applied Mathematics, vol.45, issue.3, pp.561-571, 1987.
DOI : 10.1090/qam/910462

C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.12-16, pp.12-16, 2005.
DOI : 10.1016/j.cma.2004.06.038

URL : https://hal.archives-ouvertes.fr/hal-00686187

C. Soize, Stochastic Models of Uncertainties in Computational Mechanics, Lecture Notes in Engineering Mechanics 2, 2012.

C. Soize, E. Capiez-lernout, J. Durand, C. Fernandez, and &. L. Gagliardini, Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.1, pp.150-163, 2008.
DOI : 10.1016/j.cma.2008.04.007

URL : https://hal.archives-ouvertes.fr/hal-00686138