J. B. Reitz and E. Solomon, Propylene Oxidation on Copper Oxide Surfaces:?? Electronic and Geometric Contributions to Reactivity and Selectivity, Journal of the American Chemical Society, vol.120, issue.44, pp.11467-78, 1998.
DOI : 10.1021/ja981579s

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nano- Nature, vol.407, pp.496-505, 2000.

R. V. Kumar, Y. Diamant, and A. Gedanken, Sonochemical Synthesis and Characterization of Nanometer-Size Transition Metal Oxides from Metal Acetates, Chemistry of Materials, vol.12, issue.8, pp.2301-2306, 2000.
DOI : 10.1021/cm000166z

A. Macdonald, Superconductivity: Copper oxides get charged up, Nature, vol.334, issue.6862, pp.409-419, 2001.
DOI : 10.1038/35106685

C. K. Xu, Y. K. Liu, G. D. Xu, and G. Wang, Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor, Materials Research Bulletin, vol.37, issue.14, pp.2365-72, 2002.
DOI : 10.1016/S0025-5408(02)00848-6

W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu et al., Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route, Advanced Materials, vol.11, issue.1, pp.67-76, 2002.
DOI : 10.1002/1521-4095(20020104)14:1<67::AID-ADMA67>3.0.CO;2-Z

S. Wang, Q. Huang, X. Wen, X. Li, and Y. S. , Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x???=???1,2) wires, Physical Chemistry Chemical Physics, vol.4, issue.14, pp.3425-3434, 2002.
DOI : 10.1039/b201561g

C. T. Hsieh, J. M. Chen, H. Lin, and H. Shih, Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism, Applied Physics Letters, vol.82, issue.19, pp.3316-3324, 2003.
DOI : 10.1063/1.1569043

J. Chen, S. Z. Deng, N. S. Xu, W. X. Zhang, X. G. Wen et al., Temperature dependence of field emission from cupric oxide nanobelt films, Applied Physics Letters, vol.83, issue.4, pp.746-754, 2003.
DOI : 10.1063/1.1595156

X. Jiang, T. Herricks, and X. , CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air, Nano Letters, vol.2, issue.12, pp.1333-1341, 2002.
DOI : 10.1021/nl0257519

T. Yu, X. Zhao, Z. X. Shen, Y. Wu, and W. Su, Investigation of individual CuO nanorods by polarized micro-Raman scattering, Journal of Crystal Growth, vol.268, issue.3-4, pp.590-595, 2004.
DOI : 10.1016/j.jcrysgro.2004.04.097

Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim et al., Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films, Nanotechnology, vol.16, issue.1, pp.88-92, 2005.
DOI : 10.1088/0957-4484/16/1/018

T. W. Barbee, R. L. Simpson, A. Gash, and J. Satcher, -laminate-based ignitors US Patent Specification WO, Nano, p.2, 2005.
URL : https://hal.archives-ouvertes.fr/jpa-00227453

C. Rossi, K. Zhang, D. Estève, A. P. , C. J. Tailhades et al., energetic materials for MEMS: a review IEEE, Nano J. Microelectromech. Syst, vol.16, issue.4, 2007.

B. Zong, Y. Wu, G. Han, Y. B. Luo, P. Wang et al., Synthesis of Iron Oxide Nanostructures by Annealing Electrodeposited Fe-Based Films, Chemistry of Materials, vol.17, issue.6, pp.1515-1535, 2005.
DOI : 10.1021/cm0484697

K. S. Gadre and T. Alford, Crack formation in TiN films deposited on Pa-n due to large thermal mismatch Thin Solid Films, pp.125-155, 2001.