Fusion of IR and Visible Light Modalities for Face Recognition

Pierre Buyssens 1, 2 Marinette Revenu 1 Olivier Lepetit 2
1 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : We present a low resolution face recognition technique based on a special type of convolutional neural network which is trained to extract facial features from face images and project them onto a low-dimensional space. The network is trained to reconstruct a reference image chosen beforehand, and it has been applied in visible and infrared light. Since the learning phase is achieved separately for the two modalities, the projections, and then the new spaces, are uncorrelated for the two networks. However, by normalizing the results of these two non-linear approaches, we can merge them according to a measure of saliency computed dynamically. We experimentally show that our approach obtain good results in terms of precision and robustness, especially on new and unseen subjects.
Type de document :
Communication dans un congrès
BTAS, Sep 2009, Washington DC, United States. pp.1-6, 2009, 〈10.1109/BTAS.2009.5339031〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00805793
Contributeur : Image Greyc <>
Soumis le : mardi 9 avril 2013 - 12:19:23
Dernière modification le : jeudi 7 février 2019 - 17:47:35
Document(s) archivé(s) le : jeudi 11 juillet 2013 - 15:05:28

Fichier

BTAS2009.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Pierre Buyssens, Marinette Revenu, Olivier Lepetit. Fusion of IR and Visible Light Modalities for Face Recognition. BTAS, Sep 2009, Washington DC, United States. pp.1-6, 2009, 〈10.1109/BTAS.2009.5339031〉. 〈hal-00805793〉

Partager

Métriques

Consultations de la notice

159

Téléchargements de fichiers

169