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Abstract—\We present a face recognition technique based achieve the face recognition. Wiskat al[15] used some
on the sparsity principle. Parsimony is used both to compute Gabor filters on the neighborhood of these points to compute
the face feature vector and to process the classification of a set ofjets to create theElastic Bunch Graph Matching

these vectors. Applied to visible and infrared modalities o the - -
Notre—Dame we showed that this approach has equal or better method (EBGM). Here the shape of the face is modeled into

performances than those of the state-of—art on this databas the jets to enhance the recognition.
This classification allows to use a simple method to merge the  The main drawback of these local approaches is their

scores of these two modalities in order to enhance significép  sensitivity to the features extractors. Even the best featu
the identification rates. We show also that this approach is gite classifier will fail if the extractor is not well chosen. Mere
robust to corrupted probe images. o e . . ’
over, it is difficult to deal with different scales and poses.
. INTRODUCTION The global approaches often take the face image as a

whole and perform a statistical projection of the image®ont

Face recognition is a topic which has been of increasing face space. The most popular technique caliggnfaces
interest during the last two decades due to a vast numb, pace. pop g

Iy : S
. L : : : (ﬁrst used by Turk and Pentland [14]) is based on a Principal
of possible applications: biometrics, video—surveilenad- _Components Analysis (PCA) of the faces. It has also been

vanced HMI or image/video indexation. One of the main, _ .. .
challenge in face recognition for the visible light modalit appllied tolerfrared.faces by Chest al. [6]. Junget al. [9]
use it conjointly with an analyse of the shape of the face.

is the illumination changes in uncontrolled condition. A

) . ﬁnother popular technique is tHésherfacesmethod based
way to_t_ackle thls_problem, and then to Increase th_e globan a Linear Discriminant Analysis (LDA), which divides the
recognition rate, is to use other modalities, like mfraret? '

: - . o : ace images into classes according to the Fisher critelion.
light, conjointly with visible light. Another advantage of has been applied early by Kriegmanal{10].

g‘;;aﬁ?nlilggtcii%g;;urlgﬂsr:;;rrﬁ the system to run even in A comparison of these methods is made by Socolinsky and
' ' Selinger in [12], or by Wuet al. in [17] where a Discrete
A. Classical approaches of the task Cosine Transform is also tested.
Several approaches have been proposed to the problem oMany classifiers have been used conjointly with these
automatic face recognition. Most of them are built with theylobal approaches: simple ones like distance between fea-

same two-steps scheme: tures, others more complex like Neural networks, Support
. extract relevant features from faces Vector Machine or some cascade of classifiers.
. classify these features The main drawback of the global approaches is their

isensitivity to the illumination changes for the visible Hig
[Fnodality, and the thermal distribution of the face over time
or the infrared modality. When the illumination (or the the
mal distribution) of a face changes, its appearance unédsrgo

While it can be difficult to characterize the features class
fiers, mainly due to the vast number different approache
the feature extraction phase in the litterature can be diid

into two parts : . . . .=
a non-linear transformation, and due to the linear prajecti

« the local approaches, which extract features and theﬂérformed by the global approaches, the classification can
combine them into a global model, fail
e

« the global approaches which take the image as a whol o _ S
to realize often a kind of linear projection of the high-B. Contribution of sparsity to face identification

dimensional space (i.e. the face images) onto a low— A sparse representationf an input signal refers to a
dimensional space. representation of this signal as a linear combination of
The local approaches first extract some local features (likease elements in which many of the coefficients are zero.
the location of the eyes, nose or mouth) by the use of special parallel can be drawn between this principle and face
feature extractors. The saliency of the extracted feanaless identification. Wrightet al. are the first (to our knowledge) in
then on the robustness of these extractors. The most popuUla8] to use sparse representations to process the clatisifica
local approach is th&lastic Graph MatchinEGM) where for face identification. A sparse representation of a face
a set of interest points is extracted from the face, and thesupposes that many coefficients of the decomposition over
a graph is created. Brunelli and Poggio [3] used geometrtbe gallery are zero, which then discard on first sight all
models like the distance between pairs of feature points these identities. In this paper, we propose to use a projecti



of a face onto a sparse dictionary as the feature extractone presented in [16] to process the identification. Given a

and the sparse principle for the classification. gallery with one image for each of thesubjects, the matrix
The paper is organized as follow: Section Il describes thd can be constructed by concatening theature vectors of

feature extraction process, classification method is éxgta gallery's faces. In an optimal sparsity scheme, a test sampl

in section I, and experimental results are shown in sectioy € R™ of classk will then be decomposed into € R”,

IV. In section V, we test the fusion of modalities, while inwhose coefficients entries are zero except the one assiciate

section VI we confront our approach to corrupted imagesvith classk:

Finally we present our conclusions and further work in y = Az with ||z||, =1 3)

section VII.
Unfortunately, this problem is hard to solve. It depends

II. FEATURES EXTRACTION essentially on the matrix4 which represents the features
In order to extract relevant features, we decompose fac@gthe gallery's faces. Nevertheless, one can decompose the

onto a dictionary, following a sparse scheme. The aim of th&St imagey on A into by relaxing the conditiorjz|, = 1,
sparse coding algorithm is to find a representafiore R™ like as we have done at section Il. The problem to solve then

for a given signaly’ € R™ by linear combination of an PECOMeS :
overcomplete set of basis vectors, which are the columns A

) | Z = argminl|z|; st y= Az
of a matrix D € R™*™ with n > m [11]. These columns or
are often callecatoms and are note@;. In optimal sparse A . )
coding, the problem is formulated as : & = argmin|z|; s.t. |y — Az[|; <e
This is a typically lasso problem, for which many algorithms
min || X[y s.t. Y = DX (1) have been developed. We choose to process by an iterative

where thel’—norm is defined as the number of non—zergft-thresholding approach [8], which is efficient and fast
elements in a given vector. This problem is NP—hard, foonce the solution has been computed, we have an estimate
tunately, under mild conditions, we can make a conve¥ of the test vectoy which is a linear combination of vectors

relaxation by turning thé’—norm into al'-norm [7]. The ©f 4

problem can then be written as : J= Y @A 4)
1=1,n
in [|[Y — DX+ \|X 2 . - .
XeRrm I Iz + Al 2) wherej is the approximation ofj, A; is thei*” column of

where ) is a sparsity penalty term. A, and most ofz; are Zeros. Finding_the identity of is
A lot of pre—defined dictionary exists in the litterature (hen processed by computing the residualsf y for each
such those based on wavelets, curvelets, ridgelets or DCgature vectord; of the gallery :
Although these dictionaries are well suited foartoon ri(y) = ly — Al (5)
images, they are not very efficient to deal with textures.
For our problem, it is more efficient to learn the dictionaryThe smallest residual then corresponds to the vediahat
directly from data. Starting from a random initializatioh o is the closest tg in the meaning of'—norm :
the atoms, learning the dictionary proceeds in an iterative . ; .
way, alternating thge two steps :ylg) minimize Eq. 2 with identity(y) = argmin;(ri(y)) ©)
respect toX keepingD constant, and 2) update the atoms A schematic view of the classification process is shown
of D with X found at previous step. on Fig. 1.
In this paper, we used for the two steps the OMP algorithm
conjointly with the K-SVD algorithm respectively. The OMP IV. EXPERIMENTS AND RESULTS
algorithm (for Orthogonal Matching Pursuit) [13] is a grged  In order to test the approach, we used tetre—Dame
algorithm which selects atoms iteratively until the errofl] (Collection X1) database (see Fig. 2 for samples of the
reconstruction is low or the maximum number of atoms hadatabase). It has the advantage to present images of subject
been reached. The K-SVD algorithm [2] updates the atonwith two modalities, visible and infrared, taken at the same
from the sparse representation provided by the first stefime.
It is based on a Singular Value Decomposition, and is a It can be divided into two parts : the first part, called
generalization of the K—Means, hence its name. Training set is composed o159 subjects who all have only
one image in infrared light and its visible counterpart. The
. CLASSIFICATION second part, calledest setis composed 082 subjects, for
A wide variety of approaches has been proposed to classifytotal of2292 infrared light images an@292 visible light
feature vectors. The popular subspace methods remain on theges.
observation that the images of faces under varying lighting While the train set contains no facial expressions or head
and expression lie on a special low—dimensional subspapesitions variations, the test set is composed of several
[10], often called theace subspaceThis is the assumption images containing variations in lighting, expressionsyital
we have done in this work. We use a similar approach as tlthanges and head positions. The test set is also divided into
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Fig. 1. Schematic view of the classification process: thdufeavector of a probe face is decomposed onto the galleurieavectors. From this
decomposition, residuals are computed, and identity isickd from the minimum residual.

- maximum number of atoms for the OMP algorithm has
been fixed to5, which means that each training pattern is

' decomposed into a sum &f atoms, the coefficients of the
other atoms bein@. The redundancy of the dictionary has

been set t@ which mean2 x 10 x 10 = 200 atoms to learn.
. ’ The iterative process has been stopped afiériterations. A
’ ‘ r LR random selection of00 atoms is presented Fig. 4. One can
l - ’ | E'l see that some atoms encode low frequency patterns, while
others are more oriented edge selective.

Fig. 2. Samples of the database for the Visible and IR maeslit

B. Creation of the Feature Vectors

) . Once the dictionary is learned, a face is then decomposed
two parts, calledsame-sessicand Time—lapsesets in order into non—recovering0 x 10 patches. The faces are of size
to test the lighting problem, and the recognition througheti 90 » 110, so there ar®9 extracted patches. Each of these
respectively. For each of these subsets, there are fileschame then decomposed onto the dictionary, see Fig. 5. The
f{a,b}I{f,m} which can be used for gallery or probe setyjecomposition consists on solving Eq. 2 without updating
during the test. These subsets have been designed to @@ atoms matrixD. In order to have a fast approximation
independantly the effect of a facial expressida: feutral of X we used an iterative soft—thresholding approach [8]
expressionfb: smiling expression), under different lighting \yhich minimizes|| X ||, .

(If: Feret style lightingIm: mugshot lightin The X's of each patch are then stacked into one column
In the rest of the paper, we assume that all the fac&gctor to form the face feature vector. Since each patch is

have been geometrically normalized according to the distandecomposed into 200—dimensional vector, the final face
between eyes, cropped and resized)@ox 110, as we can feature vector is of siz€00 x 99 = 19800.

see an example on Fig. 3.
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Fig. 5. Decomposition of a face image.

C. Results of Identification

In order to test the approach, we used the imagelists
provided with the database. The tests can be divided into
two experiments: th&ame—sessioand theTime—lapseex-
periments which mainly test the impact of illumination and
) o facial expression changes in a short (minutes) and medium
A. Learning of the Dictionary term (days or weeks) respectively. In both experimentsethe

In order to train the dictionary, we randomly extra6000 is only one image per subject in the gallery, acting like-a
patches of sizel0 x 10 with sufficient standard deviation image—to—enroll scenario. THeame—sessioexperiment is
(to avoid too uniform patches) from th&rain—set The composed of:

Fig. 3. Geometric preprocessing of the images
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Random selection afd0 atoms learned.

Probe

Gallery FAILF | FA[LM | FBILF | FB|LM
FAILF 008 | oo | 10
FAILM 0.96 o0 | oon
FBILF o0 | 0oz 100
FBILM oos | 007 | 008

TABLE 1l

RANK—0 RECOGNITION RATES FOR THETIme—-LapS&EXPERIMENT.
Top: VISIBLE, BOTTOM: IR.

Probe

Gallery FAILF | FA[LM | FBILF | FB|LM
FALE | 05 | 7o | o6 | o7
FALM | g3 | oss | o7 | o
FBLF | 077 | ora | o7 | 080
FBLM | 0% | os0 | o7e | ose

o 4 sets used as galleries and probes

« sets:1 image for each of th&2 subjects.
The Time—lapseexperiment is composed of:

« 4 galleries, and! probe sets
« gallery setsi image for each of thé3 subjects

« probe sets431 images of th&3 subjects.

TABLE Il
RANK—0 RECOGNITION RATES FOR THESame—SessidBXPERIMENT.
ToP: VISIBLE, MIDDLE: IR, BOTTOM: FUSION.

Probe

G FA|LF | FA|LM | FB|LF | FBI|LM
allery
1.00 1.00 0.98
FA|LF 0.98 0.97 1.00
1.00 1.00 1.00
0.98 1.00 0.98
FA|LM 0.96 0.95 0.96
1.00 1.00 1.00
0.97 0.97 1.00
FB|LF 1.00 0.92 0.97
1.00 1.00 1.00
0.98 0.98 1.00
FB|LM 0.98 0.97 0.98
0.98 1.00 1.00

about a probe face. A merging scheme then could enhance
identification rates. Since the classifiers for the two miedal
ties yield decision rankings as results, we chose to mesge th
results on the decision level. We have tested some algasithm
like the one presented in [4], which realizes a weighted sum
of the scores of the two modalities according to a measure of
saliency computed dynamically. Nevertheless, we found tha
the simple sum rule on the residual gives the best results.
That is, for a probe image, each residuals,, andr;, of
samplek in the galleries for the visible and ir modalities are
computed. Finals residuals for a samplén the gallery are

Tl = Tu, + Ti, (7
The smallest residual then correspond to the identity of
identity(y) = argmin(rg(y)) (8)

Results for the two experiments are presented Tables | andregyits of fusion scores for tH@ame—sessioand Time—

lapse experiments are shown in Tables Ill and IV respec-

The results for the&Same—sessiogxperiment, which is an tjely. They show that the fusion scheme always improves

easy test, are quite the same as those given in [4] based g hest result of one modality alone. They are also always
a Convolutional Neural Network, or those in [5] using PCApetier than those given in [4] and [5].

However, there is a significant improvement of recognition
rates for theTime—lapseexperiment.

Results at section IV-C show that visible modality per
forms better than IR. This result has already been shown
[4] and [5]. However the sets of mismatched probes of th
two classifiers do not necessarily overlap. This suggests t
the two modalities could offer complementary informations

V. FUSION

h

VI. TESTS ON CORRUPTED IMAGES

In order to test the robustness of our approach, we apply
two types of degradation to the probe images. Only the probe
images are corrupted, not the images from the galleries.
e apply the same protocol as above : 1) decomposition
6f the images onto the dictionary and 2) classification via
minimization of thel*—norm. For the two types of corruption,

we used the same test sets as above.



TABLE IV 1

RANK—0 RECOGNITION RATES FOR THETiIme—LapS&EXPERIMENT. T e S i
Top: VISIBLE, MIDDLE: IR, BOTTOM: FUSION. 9 o \"*"\"»\,,\,,\
g °°r 1
. 5
Probe T
Gallery FALF | FAILM | FBILF | FBILM g 05| |
0.95 0.92 0.87 0.87 g
FA|LF 0.83 0.79 0.76 0.77 >
0.98 0.96 0.94 0.93 £ o 1
0.95 0.93 0.87 0.85 g
FA|LM 0.83 0.81 0.77 0.77 g
0.99 0.97 0.95 0.92 £ ozf 1
0.86 0.83 0.93 0.91
FBILF 0.77 0.74 0.79 0.80
0.93 0.91 0.97 0.95 % o1 oz 03 o4 0s
0.92 0.87 0.88 0.88 amount of noise
FBILM 0.79 0.80 0.78 0.82
0.97 0.93 0.95 0.95 Fig. 7. Results for the “noisySame-sessioexperiment.
! visible —»7
. _
A. Noisy probes 8 ) T |
In this experiment, we corrupt the images by adding < T
some gaussian noise. The standard deviation of the gaussiarg | +\ |
distribution is computed according to a ratio of the dynamic =
. . . . [}
of the original image. The ratio we used a%, 20%, 30%, 2
40%, and50%. An example for these noises is shown on Fig. —f% oar 1
6. Results for thesame—sessicaind Time—lapseexperiments c
are shown on Fig. 7 and 8 respectively. These figures show 2 oz} 1
the mean ranlg-identification rates for thé2 and 16 sub—
experiments of the two experiments according to the amount . ‘ ‘ ‘ ‘
of noise in the probe images. The standard deviation to each ° o armount of noiee o4 oe
measure is quite similar to those reported in section IVeC, s _ o )
it has not been included in these figures to avoid burdening Fig. 8. Results for the “noisyTime-lapseexperiment.
them.
| for the Same—sessicemd Time—lapseexperiments are shown
-:n. on Fig. 10 and 11 respectively. These figures show the mean
y rank-0 identification rates for th@2 and16 sub—experiments
_5"" of the two experiments according to the amount of “missing
-_— pixels” in the probe images.
e = We can see that the visible modality resists far better
(a) Original (b) 10% (c) 20%

(d) 30%

Fig. 6.

As we might expect, identification rates decrease whil
noise strength increases. Moreover, this decrease is q
linear and is not significantly different for the two modalé.

B. “Missing pixels” probes

(e) 40%

(f) 50%

Percentage of noise in a probe image.

to missing pixels than infrared modality, which rafk—
identification rates quickly decrease.

VII. CONCLUSION AND FUTURE WORK

We presented a face recognition method for visible and
infrared light imagery. Based on the sparsity theory, it
decomposes a face onto a dictionary that has been learned
from data. Identification is then processed by considering
this feature vector as a linear combination of the gallery’s
feature vectors with as criterion the minimization of the
norm. Results on th&lotre—Damedatabase for thdime—
F gseexperiment are always better than the state-of-art (see

ab. V). Moreover, we show that a simple scores fusion
of the two modalities enhances always and significantly
the identification rates. We also show that this approach is

In this experiment, we corrupt the images by “removingquite robust to restricted corruptions applied to the probe
a ratio of pixels of the image. The value of these pixels is s@énages. We are conducting experiments to adapt this method

to 0. We used ratios from0% to 90% with a step 0f10%.

to bigger galleries sizes, to quantify the contribution of a

An example for this corruption is shown on Fig. 9. Resultsnultiscale sparse decomposition of faces, and to construct
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TABLE V

COMPARISON OF METHODS FOR THE TWO EXPERIMENT.SVIEAN
RECOGNITION RATE OVER THE12 (OR 16 SUB—EXPERIMENTS) AND
STANDARD DEVIATION IN PARENTHESIS BEST SCORE IN BOLD

same-session tlme-lapse

5] 4] this paper [5] 4] this paper
Visible 97.08 | 98.41 98.66 82.66 | 72.50 89.31
(3.13) | 197)| @17 (7.75) | (4.01) | (3.56)
R 9741 | 905 97.00 77.81 | 40.06 | 78.87
.01) | (427)| (.08 | (331)| 3.47)| (2.46)
. 100. 99.83 92.5 80.12 95.00
Fusion | N/A 1 "0y | (054) || @71)| 413)| @17

(f) 60%

(1]
(2]

(9) 70% (h) 80% (i) 90%

(31
(4

. 9. Percentage of “missing pixels” in a probe image.
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mean rank-0 identification rate
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- [6]
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[8]
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‘ [10]

Fig. 10.

. i
0.1 0.2 03 0.4 . 05 . 06
amount of missing pixels

0.7 0.8 0.9

Results for the “missing pixelSame-sessioaexperiment. (11]

[12]

0.8

mean rank-0 identification rate

T
visible —+—
ir

(23]
[14]

— [15]
N [16]

[17]

Fig. 11.

. ;
0.1 0.2 0.3 0.4 X 9.5 . 0.6
amount of missing pixels

0.7 0.9

Results for the “missing pixel§ime—lapseexperiment.

a cascade of sparse classifiers. Learning a rotation imtaria
dictionary could also help in case of non—frontal head pose.
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