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Abstract— Decoding a severely blurred2D barcode can be
considered as a special case of blind image restoration issue.
In this paper, we propose an appropriate system model which
includes the original image with the particularities related to
barcode, the blur and the observed image. We develop an unsu-
pervised algorithm that jointly estimates the blur and detects the
symbols using the maximum likelihood (ML) criterion. Besides,
we show that when taking into account the spatial properties
of the barcode, the prohibitive complexity of the ML algorithm
can be reduced without degrading its performance. Simulation
results show that the algorithm performs accurate estimation of
the blur and achieves good performance for symbol detection
which is close to that obtained with supervised algorithm.

I. I NTRODUCTION

Introduced in 1952 [1], barcode is an effective means for
automatic data identification and is used in many fields such
as transport, mail, trade,... [?]. The success of this technology
is due to the simplicity of data representation and its low cost.
Originally, barcodes represent data through the width and the
spacing of parallel lines, and are referred to as1D barcodes.
Binary data can also be depicted as geometric patterns such
as dots or squares within images known as2D barcodes. The
latters are progressively flooding the markets of electronic
tickets and the traceability of transactions. In comparison with
their predecessors,2D barcodes have a bigger capacity of
information storage and a more robust code error correction.
However, when the barcode acquisition is imperfect, both
the bad focalisation and the camera movement give rise to
blur which severely degrades the performance of the reader
cf. fig 1. Therefore an algorithm for blur identification and
image restoration is necessary to recover the initial transmitted
information.
Many algorithms [2]–[5] deal with blind restoration of image
and depend both on estimation methods and on hypotheses
aggregated in a stochastic model of the pair (hidden image,
observed image). Some of them deal with interpixel interfer-
ence coming from blur and are referred as blind deconvolution
algorithms [4], [5]. Unlike barcode case, most are concerned
by a continuous hidden process modeling degraded photos
for instance. On the other hand, amongst works dedicated
to barcodes, let’s mention the work proposed by Pavlidis et
al. [?] who have published a study related to information
theory fundamentals outlining the process for barcode design
using error detection and correction techniques. Tsi et al.[?]

have developed a method that allows the calculation of the
working range in case of a CCD-based reader. Houni et al [?]
have studied the performance in the framework of information
theory. Furthermore, for decoding2D barcode works mainly
focus on preprocessing techniques and consist of simple
threshold detectors which can’t overcome significant blurs
[6]. However, in [7] an iterative structure based on a factor
graph representation has been developed, this algorithm is
suitable for strongly blurred acquisition but has the drawback
of assuming the filter impulse response of the blur known. In
the framework of1D barcode technologies, we have proposed
in [8] a joint blur and symbol estimator that takes advantage
of the cyclostationnarity of the hidden process to estimate.
The extension of this algorithm to2D barcode is the main
goal of this paper. Its significant bottlenecks are the mod-
eling of the 2D data and the induced complexity of the
estimation algorithms. Then, the main contributions of the
proposed work consist in: i) Modeling the observed image as
a Hidden Markov Model and covering the image with a one
dimensional path by preserving the Markovien property . ii)
Taking into account the spatial properties of the 2D barcode,
which induces a cyclo-stationary hidden Markov process iii)
This cyclo-stationarity reduces significantly the cardinality of
the states set, with trivial state transition probabilities into
one period. iv) In consequence, a near optimal reception
with low complexity based on the EM algorithm is proposed.
This algorithm performs the maximum likelihood estimates of
the blur and the noise power and the maximum marginal a
posteriori when decoding the data symbols.
The rest of the paper is organized as follows: the model of
the blurred2D barcode is presented in section 2. Section 3
describes the Expectation-Maximization algorithm used for the
blur identification. The symbol detection criterion is detailed in
section 4. In section 5, performances of the proposed algorithm
are illustrated via simulations and compared to supervised
algorithms (knowing the blur). Finally a conclusion is drawn
in section 6.

Notation: : ⌊x⌋ returns the nearest integer less than or equal
to x. ⌈x⌉ returns the nearest integer greater than or equal tox.
xi:j = (xi, xi+1, ..., xj)

T . xT is the classical matrix transpose.
xi,: designs the vector(xi,0, ..., xi,L−1)

T . The cardinal of a set
Ω is denoted|Ω|. 0L,L′ is the zero matrix ofL rows andL′



Fig. 1. (a):Original image (b): Blurred image

columns.IL is theL- identity matrix.i mod j is the reminder
of the division ofi by j.

II. SYSTEM MODEL

Let x′
0,0, ..., x

′
0,N ′−1, x

′
1,0, ..., x

′
M ′−1,N ′−1 be a set of

M ′ × N ′ bits to transmit. Each bit is represented by a dot
of sizerx × ry in a 2D barcode. So each pixel of the barcode
is given by xm,n = x′

⌊ m
rx

, n
ry

⌋ , (m, n) ∈ {0, ..., M − 1} ×

{0, ..., N − 1}, with M = rxM ′ and N = ryN ′. During
acquisition, the barcode is degraded by blur coming from both
the optical block and the camera movement which is modeled
by a 2D finite impulse response filter of sizeL×L. Besides, an
additive white Gaussian noise takes into account the residual
stochastic imperfections of the model.
In order to simplify the presentation, we assume here that
the image as well as the dot are square matrices, that is
rx = ry = r andM = N . Using matrix notation, the observed
imageY = [ymn] obeys to the following equation:

ym,n = HT Xm,n + wm,n ∀ (m, n) ∈ {0, ..., M − 1}2 (1)

where H =
(

hT
0,:, h

T
1,:, ..., h

T
L−1,:

)T
is the impulse response

vector made of rows of the2D impulse response filterh.
Because the blur is the result of the bad focalisation and
the camera motion, it belongs to the class of symmetric and
concave blur [3], [9], [10], so the problem of phase ambiguity
is avoided in statistical estimation.
wm,n is a white Gaussian noise with varianceσ2.

Xm,n =
(

xT
m,n:n−L+1, x

T
m−1,n:n−L+1, ..., x

T
m−L+1,n:n−L+1

)T

is the interfering pixel vector at the site(m, n).
Xm,n verifies the two following equations:

Xm,n = BXm−1,n + Vm,n (2)

Xm,n = B′Xm,n−1 + V ′
m,n (3)

with, B =

(

0L,L2

IL2−L 0L2−L,L

)

,

Vm,n =
(

xT
m,n:n−L+1, 01,L(L−1)

)T

B′ is a block diagonal matrix formed byL elementary matrices
(

01,L

IL−1 0L−1,1

)

,

V ′
m,n = (xm,n, 01,L−1, ..., xm−L+1,n, 01,L−1)

T

Equations (2) and (3) govern respectively vertical and horizon-
tal path in the displayed2D barcode. It is clear from equations

(2) and (3) that(Xs)s∈S , with s = (m, n) andS the designed
path, is a Markov chain whose transition matrix depends on
the direction of the move from a pixel to another (cf.fig 2).
Any decoder based on these equations can be constructed and
will keep the Markovian property. A path in the image could
simply be a column by column path, row by row path and also
more general path such as the Hilbert Peano one. On the other
hand, when considering the barcode spatial properties (thedot
resolutionr > 1), (Xs)s∈S is cyclo-stationary Markov process
for which the states and the transitions probabilities depend on
the direction of the path and the location relative to a dot (cf.fig
2).

Pθ(Y, X) = P (X0)

|S|−1
∏

s=1

P (Xs|Xs−1)

|S|−1
∏

s=0

fYs|Xs,θ (ys)

(4)
whereYs|Xs ∼ N(HT Xs, σ), θ =

(

σ2, H
)T

and P (X0) is
the initial probability.
States can be represented in a trellis whose intricacy conditions
computation complexity. We evaluate complexity as the num-
ber of multiplicative operations needed to compute forwardor
backward probabilities for all states in a given position(m, n)
in the the trellis. In our case this number is simply equal to
number of states in the trellis. For standard application, i.e
without considering the dot resolution(r = 1), detection is
very hard to perform, almost impossible, due to the prohibitive
complexity of the trellis which contains2L2

states. However,
when taking into account the resolutionr > 1, the number of
states is not the same for each position(m, n) and depends
on the position in the dots. The complexity is then evaluated
as the mean number of states among one dot. In general, if
L > rx andL > ry, the complexity is given by

C =
1

rxry

ry
∑

j=1

rx
∑

i=1

2(1+⌈L−i
rx

⌉)
(

1+⌈L−j

ry
⌉
)

(5)

It is clear that the complexity is reduced, for images which
have the same size it is a decreasing function ofr

L (cf. table
I). Therefore the number of paths in the trellis decreases and
the detection of the optimal sequence is more robust to noise
[8].

Fig. 2. A path in a displayed 2D barcode



L = 3

r = 3

L = 4

r = 3

L = 5

r = 3

r = 1 29 216 225

r > 1
82
9

≃ 9 16
832
9

≃ 92

TABLE I
COMPLEXITY OF THE TRELLIS

III. C HANNEL ESTIMATION

Channel estimation is performed using maximum likelihood
criterion which is given by :

θ̂ = argmax
θ

fY,θ (y) (6)

wherefY,θ is the likelihood of the observation. The evaluation
of the likelihood is not tractable, therefore the maximum is
approximated using the Expectation-Maximisation algorithm
(EM) [?]. At the ith iteration, the two following steps are
performed:
E step

Q(θ, θ(i−1)) = EX|Y,θ(i−1) [log(Pθ(X, Y ))]
M step

θ(i) = argmaxθ Q(θ, θ(i−1))
For 1D detection and a resolutionr = 1, Xs is a stationary
Markov process and the estimation algorithm of(H, σ2) has
been proposed by Kaleh et al [11]. The algorithm has been
extended to a larger resolution in [8]. For2D detection and
when considering the dot resolutionr > 1, the hidden Markov
process is a cyclo-stationary process whose states belong to
the setξ = {ξ0, ..., ξP−1}. At the ith iteration the channel
coefficients and the noise variance estimates are respectively
given by these two equations:







|S|−1
∑

s=0

P−1
∑

p=0

Pθ(i−1) (Xs = ξp|Y ) ξpT

ξp







H(i)

=

|S|−1
∑

s=0

P−1
∑

p=0

Pθ(i−1) (Xs = ξp|Y ) ysξ
pT

(7)

σ2(i)

=
1

|S| − 1

|S|−1
∑

s=0

P−1
∑

p=0

Pθ(i−1) (Xs = ξp|Y ) ×

|ys − H(i)ξp|2 (8)

The marginal a posteriori probabilityPθ(i−1) (Xs = ξp|Y ) is
calculated using the Forward Backward algorithm [12].

IV. SYMBOL DETECTION

Symbol detection is based on the maximisation of the
marginal a posteriori probability (MAP). For each symbol
x′

s, it consists in choosing the value{0, 1} which maximises
Pθ(x

′
s|Y ).

We denote{Xs} the sequence which includes all vectors of
interpixel interference related to the symbolx′

s.

Let {ϑ} be a realisation of this sequence, andΩ is the set of
all the realisations of{Xs} .

Pθ(x
′
s = 0|Y ) =

∑

{ϑ}∈Ω

Pθ(x
′
s = 0, {Xs} = {ϑ}|Y )

=
∑

{ϑ}∈Ω

Pθ({X
s} = {ϑ}|Y )Pθ(x

′
s = 0|Y, {Xs} = {ϑ})

=
∑

{ϑ}∈Ω/x′

s=0

Pθ({X
s} = {ϑ}|Y )

The sequence{Xs} = {Xs
0 , ..., Xs

|Xs|−1}, and its realisa-
tion {ϑ} = {ϑ0, ..., ϑ|Xs|−1}. Since X is Markovian, then
Pθ({X

s} = {ϑ}|Y ) is given by:

Pθ({X
s} = {ϑ}|Y ) = Pθ (Xs

0 = ϑ0|Y ) ×
|Xs|−1
∏

g=1

P (Xs
g+1 = ϑg+1|X

s
g = ϑg, Y ) (9)

where, P (Xs
g+1 = ϑg+1|X

s
g = ϑg, Y ) is obtained in the

channel estimation step.

CHANNEL AND SYMBOL DETECTION ALGORITHM

From previous sections, we deduce the algorithm of joint
channel estimation and symbol detection (CESD):

Algorithm 1 Channel Estimation and Symbol Detection algo-
rithm

1: Calculate the number of states and the transition probability
matrices.

2: Initialisation, H(0), (σ2)(0).
We denote byε a predetermined threshold

3: while |
Q(θ, θ(i)) − Q(θ, θ(i−1))

Q(θ, θ(i−1))
| > ε do

4: Calculate the marginal posterior probability using the Forward
Backward algorithm [12].

5: Estimation ofH andσ2 from (7) and (8).
6: end while
7: Detection of symbol as described in section IV.

V. SIMULATION RESULTS

The performances of the proposed algorithm are illustrated
through numerical simulations. In the following, a set of binary
symbols{0, 1} have been considered and the results have been
obtained withNs = 1000 Monte Carlo runs. For each run, we
generate a new image of sizeM×M , M = 35 with a barcode
resolutionr = 2 and a new channel of sizeL × L, L = 2.
The threshold of the EM algorithm is fixed toε = 10−4.
Here we propose to study the impact on symbol detection of
the model described in section II, the resolution of the barcode,
the estimator bias and the choice of the path in the image.
Therefore we consider:

• A supervised algorithm for whichθ is perfectly known,
and symbol detection is made using the MAP criterion.
It is called Supervised MAP ans it provides benchmark
performance for unsupervised algorithms.



• Two algorithms constructed without considering the
cyclo-stationary of the hidden Markov process,r is
supposed to be equal to1. Both of them are based on
the MAP for the symbol detection. The first algorithm
a priori knows the blur and the noise power, it is called
Supervised MAP-1. Named EM-MAP-1 the second algo-
rithm includes a channel estimator based on the EM.

• An algorithm taking into account the dot resolution,
however a row by row path is considered. Each row is
treated separately: symbol detection is performed as de-
scribed in section IV with the difference that the marginal
a posteriori probability is calculated given observation
ym,: = (ym,0, ..., ym,M−1) that is Pθ(Xg = ξg|Y ) is
replaced withPθ(Xg = ξg|ym,:). Besides, the parameters
are supposed to be known, then the algorithm is called
Supervised MAP-RR.

• The CESD algorithm described in previous sections, it
jointly estimates the channel and the symbols, and takes
into account the spatial properties of the barcode. Besides,
it used a path that recovers the whole image.

In simulations,Eb/N0 is the energy per bit to noise power
spectral density ratio, with the energy per bit defined as:

Eb = r2HT E
[

XkXT
k

]

H (10)

Channel estimation

The Normalised Root Mean Squared Error (NRMSE),
which assesses the quality of the estimation of the channel,
is defined as:

NRMSE =

√

(H − Ĥ)T (H − Ĥ)

HT H

whereH andĤ are respectively the true channel coefficients
vector and the estimated one. Fig.3 shows the performance of
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Fig. 3. NRMSE vsEb/N0

the estimation of the channel impulse response in term of the
NRMSE, with and without considering the dot resolution. The
difference between curves is explained by the fact that when
taking into account the original image structure, the quality
of the estimation of the marginal a posteriori probability
Pθ(i−1) (Xs = ξp|Y ) is improved, which directly improves the
estimation of the channelH (cf. equation 7).

Symbol detection
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Fig. 4. BER performance

Fig.4 shows the Bit Error Rate (BER) performance versus
Eb/N0. Supervised MAP and Supervised MAP-1 refer respec-
tively to the algorithms with and without considering the dot
resolution. As illustrated in Fig.4, when taking into account
that the dot resolutionr is larger than1 the BER decreases.
Indeed, in this case the number of paths in the trellis is reduced
so that the detection of the optimal sequence becomes more
robust to noise.
Moreover, the gain of performance obtained with the CESD
when comparing to the supervised MAP-RR is explained
by the fact that the latter is constructed without consider-
ing the dependence between rows i.e each row is treated
separately. Indeed, decision on symbolx′

m,i is based on
the posterior probability using information of the rowym,:,
that is P (x′

m,i|ym,:). In contrast with the CESD algorithm,
symbol detection is based on a posteriori probability exploiting
information given by the whole imageP (x′

m,i|Y ). This clearly
illustrates the relevancy of considering a path that coversthe
whole image and takes into account the dependence between
rows and columns.
Finally, it is clear that the BER performance for the proposed
algorithm is close to that obtained with a non blind decoder,
(CESD and Supervised MAP).

VI. CONCLUSION

In this paper, we have proposed a joint channel and sym-
bol blind estimator for severely degraded2D barcode. The
algorithm takes advantage of both the spatial properties of
the2D barcode and the Markovian property of the interfering
pixel vectors. We have shown that these properties enable the
calculation of the maximum likelihood of the blur, the noise
power and the symbols. They also reduce the complexity of
the algorithm.
Simulations assess the efficiency of the algorithm and, in
particular, they point out the gain obtained by taking into
account the spatial properties of the2D barcode. Besides,
results attest the impact of taking into account the dependency
between rows and columns in the image. Finally, performances
of the proposed unsupervised algorithm are close to those
obtained by a supervised one, which illustrates the precision
of parameter estimation.
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