
HAL Id: hal-00805648
https://hal.science/hal-00805648

Submitted on 23 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental velocity fields and forces for a cylinder
penetrating into a granular medium

A. Seguin, Yann Bertho, F. Martinez, Jérôme Crassous, P. Gondret

To cite this version:
A. Seguin, Yann Bertho, F. Martinez, Jérôme Crassous, P. Gondret. Experimental velocity fields and
forces for a cylinder penetrating into a granular medium. Physical Review E : Statistical, Nonlinear,
and Soft Matter Physics, 2013, 87 (1), pp.12201. �10.1103/PHYSREVE.87.012201�. �hal-00805648�

https://hal.science/hal-00805648
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 87, 012201 (2013)

Experimental velocity fields and forces for a cylinder penetrating into a granular medium

A. Seguin,1 Y. Bertho,1 F. Martinez,1 J. Crassous,2 and P. Gondret1
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We present here a detailed granular flow characterization together with force measurements for the quasi-
bidimensional situation of a horizontal cylinder penetrating vertically at a constant velocity in dry granular
matter between two parallel glass walls. In the velocity range studied here, the drag force on the cylinder does
not depend on the velocity V0 and is mainly proportional to the cylinder diameter d . While the force on the
cylinder increases with its penetration depth, the granular velocity profile around the cylinder is found to be
stationary with fluctuations around a mean value leading to the granular temperature profile. Both mean velocity
profile and temperature profile exhibit strong localization near the cylinder. The mean flow perturbation induced
by the cylinder decreases exponentially away from the cylinder on a characteristic length λ that is mainly
governed by the cylinder diameter for a large enough cylinder/grain size ratio d/dg: λ ∼ d/4 + 2dg . The granular
temperature exhibits a constant plateau value T0 in a thin layer close to the cylinder of extension δT0 ∼ λ/2 and
decays exponentially far away with a characteristic length λT of a few grain diameters (λT ∼ 3dg). The granular
temperature plateau T0 that scales as V 2

0 dg/d is created by the flow itself from the balance between the “granular
heat” production by the shear rate V0/λ over δT0 close to the cylinder and the granular dissipation far away.

DOI: 10.1103/PhysRevE.87.012201 PACS number(s): 45.70.−n, 45.50.−j, 83.80.Fg

I. INTRODUCTION

The characterization of forces on moving objects in granu-
lar matter is important in fields ranging from fluid mechanics
to geophysics and biophysics with, for instance, the practical
situations of meteoritic impacts on planets or asteroids [1]
and of the motion of living organisms in sand [2]. As a
matter of fact, a better understanding of meteoritic impacts
requires a better knowledge of the forces experienced by
impactors, and this gave rise to numerous physical studies
at the laboratory scale ([3,4] and references therein) or
by numerical simulations [5,6]. Most of these studies have
identified mainly two terms in the forces experienced by an
impactor: One term proportional to the square of the velocity
and independent of the depth during the initial stage of the
penetration (at high velocity) and one term proportional to the
penetration depth and independent of the velocity at the end of
the penetration (at low velocity) [3,4,6]. The stopping time has
been shown to display a nonintuitive behavior, with a smaller
value for larger impact velocity [3,4,6]. These behaviors for the
penetration of the impactor may depend on the packing fraction
of the grains [7]; the packing fraction also determines the grain
ejection, which can give rise to a spectacular upward vertical
jet for a fluidized packing [8,9] or to an opening corona for a
dense packing [10,11], quite similar to what is observed for
splashes in water of droplets or solid spheres [12]. Moreover,
the motion of certain living organisms in grains, such as sand
snakes, is interesting to understand in order to, for example,
create artificial robotics able to move in grains [2]. In these
last phenomena, the coupling between lift and drag forces is
important [13]. All these physical phenomena require a better
knowledge of the flow characterization around moving objects
in grains and the associated forces. In this work, we shall focus
on low velocity intrusions.

Many studies have been performed on the drag force
experienced by objects in relative vertical or horizontal motion

with grains, but fewer studies have been done concerning grain
flow characterization. In dense granular matter, the drag force
measured in velocity-controlled experiments has been found
not to depend on the velocity at low velocities, and to be
proportional to the surface area of the object and roughly to its
depth [14]. As in classical fluids, the corresponding drag force
has been shown to depend on the exact shape of the object [15].
This force may depend on the packing fraction [16], on the
vibration of the grains [17], or on possible dynamical air
effects [18]. Amarouchène et al. reported a kinematic study
of the flow around a thin disk placed in a Hele-Shaw cell and
submitted to a vertical granular chute flow [19]. The perturbed
streamlines were observed to be located in a parabolic shape
near the object with a triangular region of nonflowing or
slowly creeping grains, clearly due to the stabilizing friction
force from the two close walls [20,21]. The measured velocity
profile exhibited a nonlinear but monotonic variation away
from the object. Chehata et al. performed the same kind
of experiment for a cylinder in a much larger channel, and
they measured at the same time the velocity field using a
particle image velocimetry (PIV) technique and the drag force
experienced by the cylinder in the grain chute flow [22].
They reported measurements of the flow vorticity and velocity
fluctuations that showed shear localization near the cylinder,
and they noticed that the drag force is independent of the
grain velocity and proportional to the cylinder diameter. In
a horizontal bidimensional experiment of vibrated disks at
different packing fractions close to jamming, the measured
velocity field around an intruder dragged at a constant force
also exhibited shear localization [23]. In a horizontal quasi-
bidimensional experiment in which a thin but large cylinder is
pulled relative to a dense packing of millimetric alumina beads,
Takehara et al. [24] investigated motion at high velocities
for which the force is shown to increase quadratically with
velocity, and they observed high grain fluctuation motions and
velocity perturbation in a narrow zone around the cylinder that
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increases with the cylinder diameter. In the case of a dilute flow,
the drag force is also observed to be proportional to the square
of the velocity and proportional to the cylinder diameter and to
the effective density of the fluid as in classical hydrodynamics
with a drag coefficient that increases from about 1 at low Kn
to about 2–2.5 at high Kn [25,26], where the Knudsen number
Kn compares the mean free path in the gas to the object size.

In a previous work [27], we reported key results for both the
experimental measurements and a hydrodynamic modeling of
the canonical problem of the flow around a circular cylinder
and the associated drag force in the granular case. In the present
paper, we report the detailed experimental study of the mean
grain velocity profile and fluctuations around a horizontal
cylinder penetrating vertically in granular matter together
with drag force measurements. In Sec. II, we present the
experimental setup. Experimental results on the profiles of both
the mean velocity and the velocity fluctuations are presented
in Sec. III, whereas Sec. IV concerns force measurements. The
results are discussed in Sec. V before the conclusion.

II. EXPERIMENTAL SETUP

The experiments consist in the vertical penetration of a
horizontal cylinder at a given velocity V0 into a packing of
grains. The grains are rather monodisperse sieved glass beads
of diameter dg ranging from 0.5 to 4 mm with a relative
dispersion �dg/dg of about 10% around the mean value, and
density ρg = 2.5 × 103 kg m−3, contained in a rectangular box
of length L = 0.2 m, height H = 0.1 m, and width b = 40 mm
(Fig. 1). The granular medium is prepared by gently stirring
the grains with a thin rod, and the surface is then flattened
using a straightedge. We have checked that this preparation
leads to reproducible results with only small variations. The
solid volume fraction is � � 0.62 characteristic of a dense
granular packing, and the density of the granular medium is
thus ρ = ρg� � 1.5 × 103 kg m−3. The cell containing the
granular packing can be moved up along a vertical translation
guide at a given velocity V0 ranging up to 50 mm s−1 by a step
by step motor (Mavilor BLS-55). A steel cylinder of length b

and of diameter d ranging from 10 to 40 mm is first maintained
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FIG. 1. (Color online) Sketch of the experimental setup.

above the grains in between two vertical glass walls. The length
b of the cylinder is manufactured about 0.2 mm smaller than
the width b of the cell, and the cell is free to move along the
axial direction of the cylinder. In this way, the cylinder has
only minimal mechanical contact and thus solid friction with
the walls during its vertical displacement, and no grain can
fit between the cylinder and the walls and jam the system. As
the cell moves upward, the cylinder penetrates gradually at a
constant velocity in the granular medium. The entire dynamics
of the grains during the penetration is extracted by recording
their motion at the front glass wall using a high-speed video
camera that can take up to 1000 images per second in the full
resolution 1024 × 1024 pixels. The grains are lighted from the
front and a black curtain is put behind the cell so that the grains
appear in a white on black background with a good contrast.
The images are taken at a sampling rate f adjusted on the
velocity V0 to have f � V0/dg (e.g., f = 50 Hz for V0 = 10
mm s−1 and dg = 1 mm) so that the largest grain displacement
between two successive images is smaller than one grain
diameter. The successive images are then analyzed by particle
image velocimetry (PIV) software (Davis, LaVision) to get
the velocity fields of the grains as shown in Fig. 2. The size
of the final interrogation windows used in the correlation
technique is set typically to one grain diameter to have the
best resolution considering the discrete nature of the medium.
The spatial resolution of the obtained velocity field is thus one
grain diameter. As the cylinder and video camera are fixed in
the laboratory frame of reference and the grains move up, the
velocity field of the grains is measured in the frame of reference
of the cylinder. The grain velocity far from the cylinder
thus corresponds to the undisturbed upward imposed velocity
V0, whereas the velocity is disturbed close to the cylinder.
Considering the discrete nature of the granular medium and
the finite size of the PIV correlation window corresponding
to one grain diameter, the PIV calculation is distorted at a
distance from the cylinder surface smaller than half a grain
diameter so that velocity measurements will be reported only
outside this zone for radial distances r from the cylinder such
as r > (d + dg)/2. With a force sensor (FGP Instrumentation
FN3030) of range 50 N, we also measure in the meantime the
drag force experienced by the cylinder during its penetration in
the granular packing at the sampling rate 2 kHz. The cylinder
is related to the force sensor by a vertical thin rod of diameter 3
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FIG. 2. (Color online) Left: Typical instantaneous velocity field
obtained by PIV measurements for a cylinder of diameter d = 20 mm
penetrating in a packing of glass beads of diameter dg = 1 mm, at the
velocity V0 = 50 mm s−1. Right: sketch of the cylindrical coordinates
and used notations.
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mm and length 10 cm. Without grains in the cell, we checked
that the friction force of the cylinder on the glass walls is
totally negligible. With grains in the cell, we made sure that no
grain was fitting into the small spacing between the cylinder
sides and the walls and was distorting the force measurement
during the cylinder penetration. In the following, we present
velocity and force measurements that have been done for a
cylinder/grain size ratio in the range 10 � d/dg � 80 and for
a cylinder velocity 0.5 � V0 � 50 mm s−1 remaining smaller
than (gdg)1/2 � 70 mm s−1. In this velocity range, the flow
regime is expected to be quasistatic. The box length L was
chosen large enough (L/d > 5) to not play any significant
role in the measurements [28]. We also restrict ourselves to
penetration depth values zb not too close to H (zb � H − d)
so that there is no significant role played by the bottom
wall [28,29], and H will thus not be a relevant parameter
for the present results.

III. MEAN VELOCITY PROFILES AND VELOCITY
FLUCTUATIONS

A. Mean velocity

The instantaneous velocity field obtained at each time t

by the PIV technique is decomposed within the cylindrical
coordinates:

v(r,θ,t) = vr (r,θ,t)er + vθ (r,θ,t)eθ , (1)

where r is the distance from the cylinder center and θ is
the angle from the direction of motion (θ > 0 anticlockwise)
(Fig. 2). We have checked that the granular flow is bidimen-
sional: No transverse flow along the y direction perpendicular
to the glass side wall can be seen either from the side
(no grain appears at the glass wall or disappears from the
glass wall during the cylinder penetration) or from the top
(no transverse roll motion can be seen at the free surface).
In addition, the results presented in the following will be
for −π/2 < θ < π/2, i.e., for the upstream grain flow, and
we have checked that the downstream flow is very similar,
with thus an upstream-downstream symmetrical flow field
characteristic of low Reynolds number flows. Figure 3 shows
the successive instantaneous (a) radial velocity component
vr (r,θ,t) and (b) azimuthal velocity component vθ (r,θ,t) taken
at a given radial location r (here r − d/2 = 5 mm) as a
function of θ and normalized by the penetration velocity
V0. These velocity profiles are quite noisy as they are not
averaged at all, but they do not show any systematic time
evolution during the penetration. This observation holds
regardless of the radial position and the run. The velocity
profile around the penetrating cylinder can thus be considered
as stationary and is now time-averaged during each penetration
run. The corresponding time average v(r,θ ) =〈v(r,θ,t)〉t of the
instantaneous velocity profiles appears as a thick dashed line
in Fig. 3 and the corresponding standard deviation is indicated
by the surrounding two thick dotted lines. The radial velocity
vr (r,θ ) is maximum near the direction of motion (θ � 0)
and vanishes around the equatorial plane (θ � ±π/2), and
the opposite is true for the azimuthal velocity vθ (r,θ ), which
is maximal near the equator and vanishes near the axis of
motion. This suggests the usual simple θ dependence for the
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FIG. 3. (Color online) All 230 successive instantaneous (a) radial
and (b) azimuthal velocity profiles normalized by the penetration
velocity V0 taken at the radial location r = 15 mm at regular intervals
(�t = 20 ms) during the penetration interval 20 � zb � 70 mm (d =
20 mm, dg = 1 mm, V0 = 10 mm s−1). (– –) Time average value and
(· · ·) corresponding standard deviation. (—) Cosine and sine fits of
data by Eq. (2) with Ar � 0.5 and Aθ � 1.4.

two cylindrical velocity components:

v(r,θ )/V0 = −Ar (r) cos θ er + Aθ (r) sin θ eθ . (2)

The fits of experimental vr and vθ data by cosine and sine
functions are shown as thick solid lines in Fig. 3 and are rather
close to the averaged profiles. Doing such an analysis for all
the radial locations r allows us to obtain the radial functions
Ar (r) and Aθ (r), which prescribes the radial variation of vr

and vθ . Such functions are plotted in Fig. 4(a) and show a
strong flow localization around the penetrating cylinder.

As a matter of fact, Ar (r) and Aθ (r) tend toward the value 1,
corresponding to an undisturbed velocity field as soon as r �
40 mm and thus r � 2d. The radial function of the azimuthal
velocity Aθ (r) exhibits an overshooting maximum (Aθ > 1)
as a consequence of the incompressibility for the present two-
dimensional (2D) flow. This maximum is located very near the
cylinder at r � 17 mm � d and is followed by an inflection
point. The radial function Ar (r) of the radial velocity increases
from zero at the cylinder surface up to the asymptotic value
1 at large r , with an exponential law as shown by the straight
behavior of 1 − Ar (r) in the semilogarithmic plot in the inset
of Fig. 4(a). With this finding, assuming an incompressible
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FIG. 4. (a) Radial dependence of the radial and azimuthal velocity
components (•) Ar and (◦) Aθ , for V0 = 10 mm s−1, d = 20 mm and
dg = 1 mm. (—) Best fits by Eqs. (3a) with λ � 6.4 mm and λs �
9.7 mm for Ar (r) data, and λ � 7.6 mm and λs � 8.1 mm for Aθ (r)
data. Inset: 1-Ar (r) data in log-lin plot. (b) Radial dependence of the
stream function, B(r), obtained either from (•) Ar or (◦) Aθ data, and
(—) best fit from Eq. (5) with λ � 7.1 mm and λs � 9.2 mm. The grey
zone corresponds to the cylinder interior (r � 10 mm). The dashed
lines stand for (a) Ar,θ = 1 and (b) B(r) = r which corresponds to an
undisturbed velocity field.

flow with div v = (1/r)∂(rvr )/∂r + (1/r)∂vθ/∂θ = 0, and
taking into account the slip for the tangential velocity at the
cylinder surface vθ (r = d/2) �= 0, we adopt thus the following
expressions for fitting Ar (r) and Aθ (r) data:

Ar (r) = r − d/2 + λs

r

[
1 − exp

(
− r − d/2

λ

)]
, (3a)

Aθ (r) = 1 + r − d/2 + λs − λ

λ
exp

(
− r − d/2

λ

)
, (3b)

where λ is the characteristic length of velocity radial variation,
and the length λs characterizes the velocity slip tangential to
the cylinder surface. As a matter of fact, Aθ (r = d/2) = λs/λ

so that there is some slip for λs �= 0. The slipping length ls
defined as (∂vθ/∂r)(r = d/2) = vθ (r = d/2)/ls is related to
λs by ls = λs/(2 − λs/λ). As experimentally Aθ (r = d/2) =
λs/λ � 1, we have ls � λs . Thus the length λs corresponds
roughly here to the slipping length ls . The curves correspond-
ing to Eqs. (3a) are plotted as solid lines in Fig. 4(a) with the
best-fitting values λ � 6.4 mm and λs � 9.7 mm for Ar (r)

data, and λ � 7.6 mm and λs � 8.1 mm for Aθ (r) data. The
fitting curves are close to the data, and the λ and λs values
found independently from Ar (r) and Aθ (r) data are close,
which means that the present dense granular flow is nearly
incompressible. Note that as λs values are close to half the
cylinder diameter, the prefactor (r − d/2 + λs)/r in Eq. (3a)
is close to 1, thus explaining the exponential behavior observed
for 1 − Ar [inset of Fig. 4(a)].

As the flow can be considered to be bidimensional in the
(r , θ ) plane, one can introduce the scalar stream function
ψ(r,θ ) related to the velocity field by vθ = −∂ψ/∂r and
vr = (1/r)∂ψ/∂θ . Considering the θ dependence for the
velocity field of Eq. (2), the stream function can be written
as

ψ(r,θ ) = −V0 B(r) sin θ, (4)

where the radial function B(r) is related to the velocity radial
functions Ar (r) and Aθ (r) by Ar = B/r and Aθ = dB/dr .
The B(r) curves obtained either from Ar (r) or Aθ (r) data
of Fig. 4(a) are shown in Fig. 4(b). These curves are close,
meaning again that the present granular flow is close to being
truly incompressible. The average experimental B(r) data can
be fitted by the following empirical function deduced from
Eqs. (3a):

B(r) = (r − d/2 + λs)

[
1 − exp

(
− r − d/2

λ

)]
. (5)

For large radial distance r away from the cylinder (r �
2d), B(r) is close to linear in r , which corresponds to the
undisturbed flow. The interesting domain is thus the one close
to the cylinder (r � 2d) where B(r) deviates significantly
from r . The fit of the mean B(r) data of Fig. 4(b) by the
previous equation leads to λ = 7.1 mm and λs = 9.2 mm,
which correspond to intermediate values between the λ and
λs values deduced directly from Ar (r) and Aθ (r) data. In the
following, the presented λ and λs values have been obtained
by the fit of B(r) experimental data.

The λ and λs variations with the penetration velocity V0,
the cylinder diameter d, and the grain diameter dg are shown in
Fig. 5. One can see that neither λ nor λs depend on the cylinder
velocity V0 [Figs. 5(a) and 5(d)] with the nearly constant values
λ = 7 ± 1 mm and λs = 9 ± 1 mm. The λs values appear to
be proportional to the cylinder diameter d with the linear fit
λs = 0.4d very close to the data [Fig. 5(e)], and no significative
dependence on the grain diameter dg can be seen in Fig. 5(f)
with the nearly constant value λs = 18 ± 2 mm corresponding
again to about 0.4d. The λ values increase linearly with the
cylinder diameter d with a slope around 0.2 and a significative
nonzero value around 3 mm corresponding here to 3dg that may
be extrapolated for vanishing d [Fig. 5(b)]. The λ variations
with the grain diameter dg shown in Fig. 5(c) are small but
may increase from about 10–5 mm with an extrapolated value
d/4 for vanishing dg and a slope around 1.5. In conclusion,
these two characteristic lengths λ and λs do not depend on
the penetration velocity V0 and are mainly governed by the
cylinder diameter d with a possible weak effect of the grain
size dg on λ when the cylinder diameter is not much larger
than the grain size.
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FIG. 5. Variations of the characteristic length λ and λs of mean
velocity profile with (a), (d) the velocity V0 (for d = 20 mm and
dg = 1 mm), (b), (e) the cylinder diameter d (for V0 = 5 mm s−1

and dg = 1 mm) and (c), (f) the grain size dg (for V0 = 5 mm s−1

and d = 40 mm). The symbols are experimental data and the solid
lines correspond to (a) λ = 7 mm, (b) λ = 3 mm + 0.2d , (c) λ =
10 mm + 1.5dg , (d) λs = 9 mm, (e) λs = 0.4d , and (f) λs = 18 mm.

B. Velocity fluctuations

During each penetration run, we observe that the velocity
field is stationary with a well defined time average value and
some erratic time fluctuations. In the preceding section we
focused on the time average velocity field v(r,θ ), and we
now present the time fluctuations whose amplitude can be
quantified by the granular temperature defined as T (r,θ ) =
〈[v(r,θ,t) − v(r,θ )]2〉t . A typical temperature field T (r,θ )
around the cylinder is shown in Fig. 6 in gray scale with black
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FIG. 6. Temperature field T (x,z) around a cylinder of diameter
d = 20 mm penetrating with the velocity V0 = 10 mm s−1 in a
packing of grains of diameter dg = 1 mm.
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V0 = 0.4 mm s−1, (•) V0 = 2 mm s−1, (�) V0 = 10 mm s−1 and (�)
V0 = 50 mm s−1. Guidelines for the eyes with (—) the slope value
λT = 3.7 mm and (- - -) the plateau value T0 and radial extension
δT0 = 4 mm close to the cylinder surface at r = d/2.

for the lowest value and white for the highest value. A zone
of high temperature can be seen very near the cylinder with
a radial extension of a few millimeters around the cylinder
surface. The precise radial dependence of the temperature
extracted along the θ = 0 streamwise direction in front of
the cylinder is plotted in Fig. 7 for different cylinder velocities
V0. One can see in this semilogarithmic plot that all these
different profiles have the same shape with about a plateau
value denoted T0 in a zone of extension δT0 close to the cylinder
(0 < r − d/2 < δT0 ) followed by an exponential decrease
T ∼ exp(−r/λT ) with the characteristic length λT at larger
r (r − d/2 > δT0 ). The different curves at different velocities
V0 show that T0 increases with V0 whereas neither δT0 nor λT

varies significantly as the decreasing parts of T (r) are about
parallel: δT0 � 4 mm and λT � 3.7 mm.

The variations of T0 and λT with the velocity V0, the
cylinder diameter d, and the grain diameter dg are shown in
Fig. 8. The log-log plot of T0 with V0 in Fig. 8(a) exhibits
a clear data increase with a slope 2 leading to the natural
scaling T0 ∼ V 2

0 . Figures 8(b) and 8(c) show that the typical
temperature T0 decreases with increasing cylinder size d and
increases with the grain size dg . The T0 dependence on dg is
linear and the T0 dependence on d may be hyperbolic such that
T0 may finally scale as V 2

0 (dg/d), which will be supported by
the plot of Fig. 13(a), as we shall see in the discussion (Sec. V).
Concerning the characteristic length λT of the exponential
temperature decrease away from the cylinder, Fig. 8(d) shows
that λT does not depend on V0 with the nearly constant value
λT = (3.7 ± 0.5) mm. One can see in Fig. 8(e) that λT does
not depend significantly on the cylinder diameter d with a
value around λT � 4 mm corresponding thus to a few grain
diameters. This is corroborated by Fig. 8(f), where λT appears
to increase linearly with the grain diameter dg if one ignores
the singular point at the smallest grain size dg = 0.5 mm. The
dependence of the radial width of the temperature plateau δT0

on V0, d, and dg is not shown independently, but Fig. 9 displays
a clear correlation of δT0 with the characteristic length λ of
mean velocity variations. This means thus that δT0 does not

012201-5



SEGUIN, BERTHO, MARTINEZ, CRASSOUS, AND GONDRET PHYSICAL REVIEW E 87, 012201 (2013)

10-2

10-1

100

101

102

T 0
   

(m
m

2  
s-

2 )

(a)

T 0
   

(m
m

2  
s-

2 )

(b)

(c)

T 0
   

(m
m

2  
s-

2 )

dg   (mm)

2.5

2.0

1.5

1.0

0.5

0

5

4

3

2

1

0
43210 5

V0   (mm s-1) 
0.1 1 10 100

d   (mm) 
50403020100

λ T
   

(m
m

)

(d)

8

6

4

2

0

V0   (mm s-1) 
0.1 1 10 100

λ T
   

(m
m

)

d   (mm) 

(e)

8

6

4

2

0
50403020100

(f)

λ T
   

(m
m

)

dg   (mm)

8

6

4

2

0
543210

FIG. 8. Temperature plateau T0 and characteristic length λT of
radial temperature variation as a function of (a), (d) the velocity V0

(for d = 20 mm and dg = 1 mm), (b), (e) the cylinder diameter d

(for V0 = 5 mm s−1 and dg = 1 mm) and (c), (f) the grain size dg

(for V0 = 5 mm s−1 and d = 40 mm). The symbols are experimental
data and the solid lines correspond to (a) T0 = 0.05V 2

0 , (b) T0 ∝
d−1, (c) T0 ∝ dg , (d) λT = 3.7 mm, (e) λT = 3.5 mm + 0.03d , and
(f) λT = 3.3 mm +1.1dg .

depend on V0 and is mainly governed by the cylinder diameter
d with only a weak effect of the grain size dg in contrast with
the λT size dependence discussed above.

IV. FORCE ON THE CYLINDER

The force on an object in relative motion with a granular
material has been extensively studied these last few years by
many authors in a lot of geometries. The drag force is observed

λ  (mm) 

δ T
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m

)

15
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151050

FIG. 9. Radial extension δT0 of the temperature plateau as a
function of the characteristic length λ of the mean velocity profile
(same symbols as in Fig. 8).

to vary linearly with the surface area of the object and increases
with the depth z, F ∼ zα , with possible nonlinear effects (α �=
1) depending on the direction of motion and geometry [14,15,
22,29–31]. For a vertical rod in a horizontal granular flow, α

is significantly larger than 1 (α � 2 [14,32]), which is linked
to the linear increase of the immersed surface with z. For
objects whose immersed area does not vary with the depth,
the exponent α is closer to 1. For the vertical penetration of
spheres, cubes, and horizontal rods, α � 1.2 was found [30].
For the vertical penetration of spheres and also of cylinders
and cones with aspect ratio 1 and vertical axis, Ref. [31] found
that α � 1, with a α value depending on the geometry: α � 1
for these cylinders, α � 1.3 for spheres, and α � 1.8 for these
cones. This supralinear depth dependence of the force (α �
1) is observed at small depth but is followed by a sublinear
dependence (α � 1) at large depth attributed to the counter
force generated by the filled-in grains on the top of the object
[31]. For a horizontal plate penetrating a granular medium,
Ref. [29] found a linear increase of the force with depth (α � 1)
at small depth, followed by a saturation at larger depth (α � 0)
attributed to the Janssen screening wall effect, and finished by
an exponential increase very close to the bottom wall.

We present here force measurements associated with the
velocity profiles presented above and corresponding to our
geometry of a horizontal penetrating cylinder in vertical
displacement in the granular packing. A typical force variation
as a function of the penetration depth zb is shown in Fig. 10(a),
where zb is the position of the cylinder bottom, with thus
F = 0 when zb = 0. Figure 10(a) shows that F increases with
zb whereas the grain velocity profile around the cylinder has
been shown to be stationary in Sec. III A. The F (zb) variation
is about linear, and if one considers a hydrostatic equivalent
“pressure” p = ρgz that varies linearly with depth in the
granular material, this would lead to the Archimedean force
FA = ρgπbd2/4 equal to about 0.2 N for the case of Fig. 10(a),
which is thus negligible when compared to the measured drag
force.

We do not observe any drastic change in the rate of increase
of F with zb, which may be due to the fact that we do not
explore very large depth values nor depth values close to the
bottom wall. The mean slope of F (zb) can be extracted and
is displayed in Fig. 10 for different (b) penetration velocities
V0, (c) cylinder diameters d, and (d) grain diameters dg . One
can see that the drag force is approximately independent of V0

and proportional to the cylinder diameter d. The F variation
with the grain diameter dg is more complex: When F seems
to be about constant for large grain diameters (dg � 1 mm), it
seems to increase with decreasing dg for small grain diameters
(dg � 1 mm) as already mentioned by [14,22].

V. DISCUSSION

The velocity field and the drag force around a moving cylin-
der in granular matter show important differences compared to
the case of a Newtonian fluid. As a matter of fact, the drag force
in granular matter is independent of velocity in the explored
range of velocities but increases with depth. This differs from
Newtonian fluids for which the hydrodynamic drag increases
with velocity but is independent of depth, as long as fluid
viscosity is independent of pressure so that pressure only
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FIG. 10. (a) Drag force F on the cylinder as a function of its
penetration depth zb for V0 = 10 mm s−1, d = 20 mm, and dg =
1 mm. Depth force variation 〈F/zb〉, with 〈·〉 standing for an average
of zb in the range d/2 � zb � H − d , as a function of (b) the velocity
V0 (for d = 20 mm and dg = 1 mm), (c) the cylinder diameter d

(for V0 = 5 mm s−1 and dg = 1 mm), and (d) the grain size dg (for
V0 = 5 mm s−1 and d = 40 mm). Symbols are experimental data
and the solid lines correspond to the best fits of the data with (b)
〈F/zb〉 � 0.29 N mm−1 and (c) 〈F/zb〉/d � 0.012 N mm−2.

leads to a constant Archimedean buoyancy term. Concerning
the velocity field, the perturbation created by the cylinder
in granular matter appears localized near the cylinder with
an exponential radial decrease {B(r) ∼ r[1 − exp(−r/λ)]},
which differs significantly from the Newtonian case in either
the inviscid case for which the perturbation relaxes with
a power law of the distance [B(r) = r(1 − d2/4r2)] or the
viscous case for which the perturbation relaxes slowly at
large distance from the cylinder [B(r) � r ln(d/2r)/ ln(Re)
for Re 	 1 and r 
 d]. The present granular case is closer to
yield stress fluids where a strong localization is also observed
[33,34]. All our λ measurements at different velocities and
cylinder and grain diameters collapse in Fig. 11(a) when made
dimensionless with the grain size dg leading to a linear increase
of λ/dg with the size ratio d/dg , with a small but nonzero
value 2.3 ± 0.5 for vanishing d/dg and slope 0.24 ± 0.03.
This means that the characteristic length λ of mean velocity
radial variation is mainly governed by the cylinder diameter
d as long as the size ratio d/dg is greater than about 10,
which is always the case here in contrast to small intruder size
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FIG. 11. Dimensionless characteristic lengths of the velocity
profiles, (a) λ/dg and (b) λs/dg , as a function of the size ratio d/dg .
(—) Best fit of the data (same symbols as in Fig. 5) with equations
(a) λ = 2.3dg + 0.24d and (b) λs = 0.44d .
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Fit of equation T0 = 1.5V 2
0 dg/d through the data (same symbols as

in Fig. 8).

situations studied, e.g., in Ref. [23]. In contrast, Fig. 11(b)
shows undoubtedly that the “slipping length” λs depends only
on the cylinder diameter d with the scaling λs = (0.44 ± 0.4)d
very close to d/2.

As the typical granular temperature T0 of the granular flow
around the cylinder is connected with the relative velocity V0,
there is clearly a strong coupling between the mean velocity
profile and the temperature profile. In that sense, the present
situation resembles the case of the motion of a hot cylinder
or sphere in a fluid of temperature-dependent viscosity. This
last situation has already been studied as it corresponds to the
geophysical situation of the ascending motion of hot diapirs
[35,36]. In this last case, the flow is also strongly localized
close to the hot sphere where the viscosity is much lower than
far away, as heat diffuses into a fluid layer near the object, thus
lowering the fluid viscosity. Indeed, stress continuity causes
regions of low viscosity to be regions of large strain rates,
producing a temperature-induced shear band. In this last case,
heat is produced outside the flowing material by the hot sphere.
In the present granular case, the “heat” production is due to
the flow itself, and the scaling of the temperature plateau T0

appears very close to T0 = (1.5 ± 0.5)V 2
0 dg/d in the log-log

plot of Fig. 12 where all the data for different V0, d, and dg

collapse along a slope 1. We have seen in the preceding section
(Fig. 9) that the radial extension δT0 of the temperature plateau
close to the cylinder is linked to the characteristic length λ

of the radial variations of the mean velocity. The plot of all
data of δT0/dg at different V0, d, and dg as a function of d/dg

in Fig. 13(a) exhibits a small but nonzero value 1.4 ± 0.2 for
vanishing d/dg and a slope 0.12 ± 0.02 corresponding roughly
to δT0 ∼ λ/2. As λ, δT0 is mainly governed by the cylinder
diameter d as long as the size ratio d/dg is larger than about
10. All these findings mean that the granular heat is created by
the shear flow V0/λ ∼ V0/d close to the cylinder in a region of
radial extension ∼ λ (more precisely δT0 ∼ λ/2). This shear
flow leads to velocity fluctuations V0dg/λ ∼ V0dg/d at the
grain scale that in turn produce the granular temperature
(V0dg/d)2. The observed scaling for the temperature plateau
T0 ∼ V 2

0 dg/d should come from an equilibrium between the
corresponding “heat” production by the high shear close to the
cylinder and the granular dissipation away from the cylinder.
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The characteristic length λT of the exponential decrease of
the temperature observed far away from the cylinder is mainly
governed by the grain size dg: all the data of λT /dg at different
V0, d, and dg plotted in Fig. 13(b) as a function of the size
ratio d/dg only show a slight increase with d/dg of slope
0.07 ± 0.07 from the value 2 ± 1 at vanishing d/dg = 0.

The flow localization, observed in our case in the vicinity
of the cylinder, is indeed reported in various physical systems.
It is a common feature of matter with granularity as recently
reviewed by [37]. Such shear bands are currently observed
for flow of granular materials, foams, or emulsions. In such
systems, the thicknesses of the shear bands are usually of few
grains or bubbles. Despite the generality of such observations,
there is still no clear unifying framework for such shear bands
[37]. In the case of yield stress fluids, the shear-band width
may be large compared to the microscopic sizes [38], and
shear localization is observed in Newtonian fluid flow close to
walls at temperatures larger than the temperature of the fluid
far away [35,36].

Note that in a cylindric Couette device, Refs. [39,40] have
reported a velocity profile for the sheared dry grains inde-
pendent of the cylinder angular velocity and also independent
of the “pressure” imposed by a possible external upward or
downward air flow. This has to be related to our case in
which the velocity profile around the moving cylinder does
not depend on the depth and thus on the effective “pressure.”
References [39,40] also reported a small zone of constant
granular temperature T0 ∼ V 2

0 and extension δT0 � 2.8dg close
to the rotating cylinder followed by an exponential decrease
at larger distance with a characteristic length λT � 4.7dg . The
temperature profile we find in the present study for the flow
around a cylinder is similar, with a similar scaling of λT

but different scalings for T0 and δT0 that should come from
geometric consideration.

In Ref. [27], a model was briefly presented for the granular
flow around the cylinder based on continuous conservation
equations for mass, momentum, and granular temperature.
The phenomenological equations relating normal and shear
stresses, density, and temperature are given by the kinetic
theory of granular gases [41] in the dense limit. In this
approach, the granular material may be viewed as a fluid
whose viscosity decreases, at a given pressure, with the
granular temperature. From a thermal point of view, the heat is
produced by shearing the fluid, then diffuses into the material,
and is dissipated during particles collisions. It follows from

F 
/ ρ
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b 
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d / dg

20

15

10

5

0
10 20 30 40 50 60 70 80 90100

FIG. 14. Normalized drag force F/(ρgzbπdb) on the cylinder as
a function of the size ratio d/dg . Same symbols as in Fig. 10.

such an approach that a sheared zone increases the granular
temperature, which fluidizes the material, increasing the ability
to flow. The numerical simulation of mechanical and heat
equations shows indeed the presence of such a fluidified
zone near the obstacle [27]. The constitutive equation relating
the viscosity to the temperature and the pressure leads to a
velocity-independent drag force in the creeping flow regime,
as observed experimentally.

Considering now our observations for the resulting drag
force on the cylinder, one can infer an effective friction
coefficient μ = F/(ρgzbπdb) based on a hypothetical ef-
fective hydrostatic pressure ρgz at the depth z inside the
granular material. All the data from different V0, d, and dg

collapse when plotted as a function of the size ratio d/dg in
Fig. 14, meaning that no other finite-size effect (such as with
the container sizes H , L, or b) is observed in the present
experiment. The effective friction coefficient appears to be
greater than 5 with a plateau value of about 7 ± 2 at low
enough d/dg (d/dg � 50) and a possible increase for larger
d/dg values (d/dg � 50). This unusual value of the friction
coefficient, which is about 20 times higher than the usual
values of friction coefficients in dense granular flows [42], has
already been mentioned in Ref. [3] for the depth-dependent
term of the drag force extracted from impact experiments. This
means that the “pressure” is undoubtedly far from hydrostatic
in the present situation even if the force variation with depth
is almost linear.

VI. CONCLUSIONS

In this paper, we have studied both velocity profile and
force measurements for the granular flow around a horizontal
cylinder in the vertical penetration case. While the force
increases with the depth, the velocity profile is shown to be
stationary during the penetration with a well-defined average
and some erratic fluctuations. The granular flow being close
to bidimensional and incompressible, the stream function
has been extracted from the velocity measurements. The
flow perturbation is strongly localized close to the cylinder,
exhibiting an exponential radial decrease away from the
cylinder with a characteristic length λ that scales mainly with
the cylinder diameter d for large enough cylinder to grain size
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ratio d/dg: λ � 2dg + d/4 ≈ d/4 for d/dg � 10. The velocity
fluctuations quantified by the so-called granular temperature
T show also a strong localization near the penetrating cylinder,
with a plateau value T0 in a narrow crown of extension
δT0 around the cylinder followed by an exponential radial
decrease with a small characteristic length λT . The scaling of
T0 appears to be simply T0 ∼ V 2

0 dg/d coming from a balance
between the “granular heat” production by the shear flow V0/λ

(∼V0/d for d/dg � 10) over the distance δT0 ∼ λ/2 (∼ d/8
for d/dg � 10) and the granular dissipation far away (r > δT0 ).
This granular dissipation which is at the grain scale leads to a
characteristic length scaling λT for the temperature decrease
of a few grain diameters: λT ∼ 3dg .

In conclusion, the granular flow around a moving cylinder
is very different from the flow of a Newtonian fluid either
in a viscous or inertial regime: For the Newtonian fluid
case, whatever the regime is, the drag force increases with
the velocity and does not depend on the depth, whereas the
contrary is observed for the granular case for which the drag
force does not depend on the velocity but increases with

the depth. In an upcoming paper, we will detail a possible
hydrodynamic modeling of this nonclassical fluid behavior
based on kinetic theory adapted for dense dissipative granular
systems as briefly presented in Ref. [27]. The shear localization
characterized in the present experiment is certainly important
to understand the influence of a close wall on the motion
of objects in some practical situations such as the dynamics
of impacting spheres [28,43]. In addition, other experiments
have to be performed to understand the very different drag
force experienced by an object when moving down or up
in penetration or withdrawal situations, as already observed
by [16,30].
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