
HAL Id: hal-00804876
https://inria.hal.science/hal-00804876

Submitted on 26 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenges of Testing for Critical Interactive Systems
Valéria Lelli

To cite this version:
Valéria Lelli. Challenges of Testing for Critical Interactive Systems. International Conference on
Software Testing, Verification and Validation, Mar 2013, Luxembourg, Luxembourg. �hal-00804876�

https://inria.hal.science/hal-00804876
https://hal.archives-ouvertes.fr

*Co-advised by Benoit Baudry and Arnaud Blouin

Challenges of Testing for Critical Interactive Systems

Valéria Lelli
*

INSA Rennes,

IRISA/INRIA, Triskell. Rennes, France

valeria.lelli_leitao_dantas@inria.fr

Abstract—Interactive systems cover all systems that represent

a bridge to enable the user interaction over an interface. The

advance of technologies such as ubiquitous computing brings

new interaction designs. The new interaction styles have

illustrated the shift from design graphical user interfaces to

design human-computer interactions (HCI). However, several

approaches still focus on testing GUI instead of testing

HCI. The goal of this thesis is to investigate the use of new

concepts to automate the interactive systems testing by

addressing the issues of critical interactive systems.

Keywords-automated testing;test case generation; interactive

systems

I. INTRODUCTION

Over the last decade, the diversification of human-
computer interactions (HCIs) and input devices used in
multiple domains illustrates the shift initiated from designing
graphical user interfaces (GUIs) to designing HCIs.

Novel HCI techniques, models, and architectures are
bringing HCIs as first-class objects (i.e. post-WIMP systems)
in systems where mice, keyboards, and widget-oriented
GUIs (i.e. WIMP systems) are no more adapted. Yet,
interactive system testing approaches focus on testing GUI
rather than on testing HCI. Several challenges become more
complex regarding the post-WIMP interactions, such as the
automatic test cases generation from models and the
automatic execution, etc. This concern also affects
interactive critical systems having more and more advanced
interactive features.

This PhD thesis, conducted in collaboration with energy
industry partners, aims at investigating the use of modern
software development concepts (such as model-driven
engineering) to define new breaking and efficient methods to
automate the interactive systems testing regarding the
constraints of critical systems. More precisely, our research
work aim at investigating the following research hypotheses:

• H1: modeling interactive systems. Which
formalisms to use for modeling interactive systems
having advanced interactive features?

• H2: generating test cases. How to automate the
test cases generation for interactive systems having
advanced interactive features?

• H3: critical systems. How can H1 and H2 be
applied to critical systems?

II. CHALLENGES FOR INTERACTIVE SYSTEMS

Current approaches focus on test case generation for
interactive systems looking at the GUI by manipulating only

widgets, without considering new advanced features (post-
WIMP) and specificities of critical systems. Several
research papers have focused on automating GUI testing by
adopting model-based testing (MBT) [7]. MBT has been
applied to build models from specifications and generate
GUI test cases to test them against the SUT (see Fig. 1).
Thus, to provide a fully automated testing process for
interactive systems several problems have to be faced as
described below.

A. Building models representing HCIs

Models should be built to cover all specifications of the
SUT, user interactions included, to enable an efficient
automated test case generation. The main difficulty is to
choose a suitable representation.

For example, GUI test models can be built by using
capture/playback tools. However, a major limitation of this
approach is that the models are build from the SUT itself.
These test models can be represented by finite state machines
(FSMs) or extended FSM (e.g., Markov chain), graphs, or
formal languages. Several MBT approaches have adopted
FSM to represent behavior models of the SUT. The main
reason behind this adoption is the lack of expressiveness and
abstraction in FSM structure since it can address many
problems that cannot be solved in other languages [5].

Additionally, several approaches focus on using as entry
points of the test process models describing the GUIs. Such
GUI models are then transformed into GUI test model to
ease the test case generation process. Nguyen et al. [1]
propose an approach that builds models into two layers by
separating the presentation from business logical and
mapping these models automatically to generate the test
cases. Some architectures for interactive systems (e.g., Malai
[2]) enable to model these systems in different layers (e.g.,
presentation, HCIs) for several purposes such as
documentation, communication, or code generation. For
domains such as mobile computing where the applications
support different HCIs, adopting this strategy is mandatory.

B. Generating automatically concrete test cases from

models

Adopting an online approach instead of offline to build
models has been used to achieve an effective test case
generation. For example, Mariani et al. [3] propose a method
to generate test cases online from a behavior model that is
built incrementally while interacting with the GUI of the
SUT.

Additionally, building models with a higher level of
abstraction produces models that are not capable of covering
all implementation details since some solutions depend on

Figure 1 – Model-based testing process

the specific decisions from the target platform. To bridge
this gap abstract test cases must be generated from the initial
models [6]. Bowen and Reeves [4] present an approach to
generate abstract tests from a formal model written in the Z
language. However, abstract test cases do not specify
concrete input data such as coordinates of a click. Thus,
concrete test cases are generated (manually or automatically)
from abstract test cases by defining concrete input data.
Concretising automatically abstract test cases is a challenge
for interactive systems since from one abstract test case can
be generated several concrete test cases.

The test case explosion problem becomes more critical
for interactive systems because of the diversification of
HCIs. Modeling all possible HCIs of the SUT can increase
the number of states exponentially in two ways: an
extremely large state space or an infinite state space that is
infeasible to analyse entirely. Thus, the test case generation
for interactive system has to be managed to support the
concrete test cases generation.

C. Testing critical interactive systems

During the development of critical interactive systems,
such as command centers of power plants, the testing
process is a critical step. One challenge is to explore how
the previous challenges also concern and can be applied to
critical interactive systems. Another challenge is the
validation of the conformance against the requirements,
mainly standards (e.g., IEC 61513), of the final system. For
example, in these systems the operator interface contains an
amount of information which is shown in different displays
by using a range of technologies (e.g., LCD, CRT). This
information must to be coherent in all displays to avoid
failures provoked by the operator. On the other hand, to
automate this testing process, a non-intrusive technique
should be adopted to conform the security requirements
dictated by those standards.

As we discussed above, current approaches to automate
test cases generation for interactive systems do not cover
advanced interactive features (i.e. post-WIMP) and critical
issues. Thus, this thesis aims at addressing this problem.

III. EXPECTED CONTRIBUTIONS

Regarding the previously explained challenges, the
possible contributions of the PhD thesis can be:

• Buiding models that can represent new advanced
user interactions;

• From these models, generate automatically
concrete test cases for post-wimp interactions;

• Propose an approach that addresses the issues
related to critical systems domain.

We are using Malai architecture model to generate
abstract test cases automatically for interactive systems at
post-WIMP interactions level. Then, such abstract test cases
must be concretised to be executed and address the issues
for critical interactive systems. Our approach will be
validated with critical interactions for instrumentation and
control.

IV. CONCLUSIONS

This paper presents challenges for interactive systems in
order to propose an approach to automate the test cases
generation. Our intention is to apply our approach in the
critical interactive systems domain by addressing issues
intrinsic of these systems. The effectiveness of our approach
will be evaluated in an industrial project.

REFERENCES

[1] D. H. Nguyen, P. Strooper, and J. G. Suess. 2010. Model-based

testing of multiple GUI variants using the GUI test generator.
In Proc. of the 5th Workshop on AST '10. ACM, NY, USA, 24-30.

[2] A. Blouin and O. Beaudoux. Improving modularity and usability of

interactive systems with Malai. In Proc. of EICS’10, pages 115–124,
2010.

[3] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro. 2012.
AutoBlackTest: Automatic Black-Box Testing of Interactive

Applications. In Proc. of ICST '12, Montreal, Canada, 2012. IEEE
Computer Society, pages 81-90.

[4] J. Bowen and S. Reeves. UI-driven test-first development of

interactive systems. In Proc. of the EICS '11. ACM, NY, USA, pages
165-174, 2011.

[5] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,

J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, Gerald
Lüttgen, A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H.

Zedan. 2009. Using formal specifications to support testing. ACM
Comput. Surv. 41, 2, Article 9 (February 2009), 76 pages.

[6] J. L. Silva, J. C. Campos, and A. C. R. Paiva. Model-based user

interface testing with Spec Explorer and ConcurTaskTrees. Electron.
Notes Theor. Comput. Sci. 208. 77-93, 2008.

[7] A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos. A

survey on model-based testing approaches: a systematic review. In In
Proc. of workshop WEASEL’07 , pages 31–36. ACM, 2007.

