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Frobenius structure for rank one p−adic differential
equations.

Andrea Pulita

Abstract. We generalize to all rank one p−adic differential equations over

R the theorem 2.3.1 of [Ch-Ch] which provides the existence of a Frobenius

structure of order h for soluble rank one operators of the form d
dx

+ g(x),

g(x) ∈ x−2K[x−1]. It follows a generalization of a theorem of Matsuda which

asserts that the Robba’s exponential exp(
∑m

i=0 πm−ix
pi/pi) has a Frobenius

structure. Namely our theorem works in the case p = 2.
In the appendix we describe the variation of the radius of convergence of a

differential module by pull-back by a Kummer ramification.
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1. Notations

Let K be a complete field with respect to an ultra-metric absolute value | · |.
Let OK = {x ∈ K | |x| ≤ 1} be the ring of integers of K, and let D(0, 1−) = {x ∈
K | |x| < 1} be its maximal ideal. Let k be its residue field which will be supposed
to be a perfect field of characteristic p > 0. Let K be an algebraic closure of K.

Let E (resp. Eρ) be the completion of K(x) for the Gauss norm (resp. the
norm |.|ρ defined by |

∑
i aix

i|ρ := supi |ai|ρi).
Let E be the Amice’s ring. The elements of E are bounded series f =

∑
i∈Z aix

i,
ai ∈ K, |ai| → 0 for i → −∞, for which there exists a constant M(f) ∈ R such
that |ai| ≤M(f) for all i ∈ Z. The topology of E is defined by the Gauss norm and
E is a complete ring. We have a canonical isometric embedding K(x) ⊂ E ⊂ E .

Let I ⊆ R≥0 be an interval. Let C(I) := {x ∈ K | |x| ∈ I}. Let A(I)
be the ring of analytic functions over C(I), the elements of A(I) are power series
f =

∑
i∈Z aix

i, ai ∈ K, such that limi→±∞ |ai|ρi = 0, for all ρ ∈ I. A(I) is
complete for the topology defined by the family of absolute values {|.|ρ}ρ∈I , where

|f |ρ := sup
i∈Z
|ai|ρi.
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2 ANDREA PULITA

Let R be the Robba’s Ring. The elements f of R are germs of convergent
analytic functions at the edge of D(0, 1−), namely

(1.0.1) R = ∪0<ε<1A(]1− ε, 1[).

In other words R is the inductive limit of the sequence A(r1, 1) ⊂ A(r2, 1), 0 <
r1 < r2 < 1 and it is equipped with the limit topology.

All the rings Eρ, E , A(I), R are differential rings with respect to the continue

derivation d
dx .

1.1. Berkovich spaces and p−adic differential equations. Let M (A(I))
be the analytic space (in the sense of Berkovich [Ber] 1.2) attached to the affinöıd
algebra A(I) ([Ber] 2.1.1). The Berkovich’s point defined by the norm |.|ρ can be
(and will be) identified with the Dwork’s generic point tρ of radius ρ ([Ch-Ro],
9.1.2). Following this identification let M be the differential module defined by
d
dx +G(x), G(x) ∈Mn(A(I)), then the radius of convergence of M at the point |.|ρ
is defined as

(1.1.1) Ray(M, |.|ρ) := inf

(
lim inf

s

(
|Gs(x)|ρ
|s!|

)−1/s

, ρ

)
where Gs ∈Mn(A(I)) is defined by the recursion formula

(1.1.2) Gs+1 =
d

dx
(Gs) +Gs ·G , G1 := G.

The function ρ 7→ Ray(M, |.|ρ) is continuous and there exists a partition I = ∪j∈ZIj ,
sup Ij = inf Ij+1, such that Ray(M, |.|ρ) = αjρ

βj , for all ρ ∈ Ij .
For simplicity we will write Ray(M,ρ) instead of Ray(M, |.|ρ).
1.1.1. More generally let |.|t ∈ M (A(I)) be a bounded multiplicative semi-

norm ([Ber] 1.2). We define the radius of the generic disk of center |.|t as

(1.1.3) ρ(|.|t) := inf(|x− a|t | a ∈ K)

and we put

(1.1.4) Ray(M, |.|t) := inf

(
lim inf

s

(
|Gs(x)|t
|s!|

)−1/s

, ρ(|.|t)

)
.

Remark 1.1. Observe that the function ρ : M (A(I))→ [0, sup I], |.|t 7→ ρ(|.|t)
is semi-continuous in the sense that the set ρ−1([0, r[) is open in M (A(I)) 1, but
ρ is not continuous. Indeed for all a ∈ K such that |a| ∈ I we define |.|a as the
semi-norm given by f 7→ |f(a)|. It is clear that ρ(|.|a) = 0. Now let I := [0, 1] and
let |.|1 be the semi-norm attached to the unit disk |f |1 := sup|a|≤1,a∈K(|f(a)|).2Let

K = K. We choose a sequence {an}n, an ∈ K, such that āi 6= āj ∈ k, ∀i 6= j, then
we have limn |.|an = |.|1 in M (A(I)), but ρ(|.|1) = 1. This results from the fact
that every function f ∈ A(I) has only a finite number of zeros in C([0, 1]).

However let γ : I → M (A(I)) be a continue section of ρ. Then the function
r 7→ Ray(M,γ(r)) is a continuous function ([Ch-Dw]).

1Observe that the open set ρ−1([0, r]) is not an affinöıd in the sense of [Ber] 2.2.1.
2This norm is the Gauss norm.
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Definition 1.2 ([Astx]). A differential module M over E (resp. over E) is
called soluble if Ray(M, 1) = 1. A differential module M over A(I) is called soluble
at ρ ∈ I if Ray(M,ρ) = ρ. A differential module M over R is called soluble if

(1.1.5) lim
ρ→1−

Ray(M,ρ) = 1.

1.1.2. The radius of convergence at |.|c,r ∈ M (A(I)) of a differential module
M can be viewed as the smallest radius of convergence of the solutions of M at
some “incarnation” tc,r of |.|c,r (cf. 5.1.1). Observe that a function of A(I) has no
poles and no zeros in the generic disk DΩ(tc,r, r

−). Hence all points of DΩ(tc,r, r
−)

are non singular for all differential modules.

1.2. Frobenius structure. Let A be one of the rings Eρ, E , A(I) or R and
let Ap be one of the rings Eρp , E , A(Ip) or R rispectively. Let σ : K → K be
an automorphism of K such that |aσ − ap| < 1, for all a ∈ OK . For all functions
f(x) =

∑
i aix

i ∈ Ap we set fσ(x) :=
∑
i a
σ
i x

i ∈ A. We define a Frobenius map
ϕ : Ap → A by

ϕ(f(x)) := fσ(xp).

This morphism defines an functor, called ϕ∗ (cf. [Astx]), from the category of
Ap−differential modules into the category of A−differential modules. Let M be
the Ap−differential module, defined by d

dx +G(x), G(x) ∈Mn(Ap). The Frobenius

functor sends M into the module ϕ∗(M) defined by d
dx + pxp−1Gσ(xp). In the

appendix (cf. Corollary 5.7) we show that

Ray(ϕ∗(M), |.|c,r) = min
(
Ray(M, |.|cp,r′)1/p, |p|−1 sup(|c|, r)1−pRay(M, |.|cp,r′)

)
where r′ = max(rp, |p||c|p−1r) (cf. equation 5.2.3).

Definition 1.3 (Frobenius structure). Let A be one of the rings E, E or R.
Let M be the differential module defined by d

dx + G(x), G(x) ∈ Mn(A) over A.
We will say that M has a Frobenius structure of order h over A if there exists an
A−isomorphism M

∼→ ϕ∗h(M), where ϕ∗h(M) is the differential module defined by
d
dx + phxp

h−1Gσ
h

(xp
h

). In other words there exists an invertible matrix H(x) ∈
GLn(A) such that

phxp
h−1Gσ

h

(xp
h

) = H(x)G(x)H−1(x) +H(x)′H−1(x).

Theorem 1.4 ([Ro] 5.3). Let L := d
dx + g(x), g(x) ∈ K(x) be a soluble differ-

ential operator. By the Mittag-Leffler decomposition we may write g(x) = g+(x) +∑
−n≤i≤−1 aix

i, ai ∈ K, where g+(x) ∈ K(x) has no poles in D(0, 1−). Then L is

isomorphic over the ring A([0, 1])[1/x] to the operator d
dx +

∑
−n≤i≤−1 aix

i.

Theorem 1.5 ([Ch-Ch] 2.3.1). Let k be perfect. Let L = d
dx +

∑
−n≤i≤−1 aix

i,
ai ∈ K, be a soluble first order differential operator such that a−1 ∈ Z(p). Then L
has a Frobenius structure over R. In other words there exist some h > 0 and an
invertible function f(x) ∈ R× for which the following equality holds

f(x)′

f(x)
= (

∑
−n≤i≤−1

aix
i)− (phxp

h−1
∑

−n≤i≤−1

aσ
h

i xip
h

)
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2. Robba’s exponentials

In this section z = x−1. Let {ξm}m≥0 be a sequence of (primitive) pm+1−roots

of 1 such that ξp
j

m = ξm−j , j ≥ 0 and such that ξ0 is a non trivial p−th root of 1.
Let πm := ξm − 1.

Theorem 2.1. For all m ≥ 0 the function

(2.0.1) Em(z) := exp(πmz + πm−1
zp

p
+ · · ·+ π0

zp
m

pm
) ∈ K[[z]]

has radius of convergence equal to 1.

Proof: Let E(z) = exp(z + zp

p + zp
2

p2 + · · · ) be the Artin-Hasse exponential.

If (λ0, λ1, . . .) ∈ W (OK), then by a straightforward computation ([Bou] exercice
58-b) one shows that∏

i≥0

E(λiz
pi) = exp(φ0z + φ1

zp

p
+ φ2

zp
2

p2
· · · )

where φk = λp
k

0 + pλp
k−1

1 + · · ·+ pkλk are the phantom components of (λ0, λ1, . . .).
Since |λi| ≤ 1, hence this infinite product defines a bounded analytic function on
D(0, 1−). If (λ0, λ1, . . .) = (ξm, 0, . . .) − (1, 0, . . .), then φi = πm−i. The fact that
the radius of convergence of Em(z) is exactly 1 will be a consequence of the fact
that the operator

d

dx
+ Em(z−1)′/Em(z−1) =

d

dx
− (πmz

−2 + πm−1z
−p−1 + · · ·+ π0z

−pm−1)

is soluble3 and its radius of convergence, for ρ close to 0, is ρp
m+1 (cf. Corollary

3.1). Then, by the log−concavity property of the radius of convergence, we have
that this operator has radius of covegence equal to ρp

m+1, for all ρ < 1. �

Remark 2.2. Observe that for |z| < 1 close to 1, we have |πmz+· · ·+π0
zp

m

pm | >
|π0|. On the other hand, the analytic function exp(y) converges for |y| < |π0|, so

the convergent composition of πmz + · · · + π0
zp

m

pm and exp(y) does not exist. The

precedent theorem asserts that the formal composition, after resommation, has
radius of convergence equal to 1.

Remark 2.3. Observe that in the formal case (cf. [Man]) a logarithmic de-
rivative of a formal Laurent series has always an x−adic valuation ≥ −1. But in
the p−adic case the Robba-Matsuda’s exponentials give an example of logaritmic
derivatives of negative x−adic valuation. Then the definitions of p−adic irregularity
and formal (x−adic) irregularity must be different (cf. [Ro]).

Theorem 2.4 ([Ma]). Let p 6= 2. Then the exponential Eσm(zp)/Em(z) is
overconvergent. In other words, if p is different from 2, the differential operator

d

dx
+ E′m(x−1)/Em(x−1) =

d

dx
− (πmx

−2 + πm−1x
−p−1 + · · ·+ π0x

−pm−1)

has a Frobenius structure of order 1.

3The solubility of this operator is due to the fact that the convergent function Em(z−1) is a
solution of this operator at infinity and Em(z−1) converges in the set {x ∈ K | |x| > 1}.
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3. Formal slopes and p−adic slopes

Lemma 3.1 (Young, cf.[Astx]). Let L :=
∑r
s=0 gs(x)( d

dx )s be a differential
operator such that gr(x) = 1, gs ∈ Eρ, s = 0, . . . , r − 1. Let ρ ∈ I, then R(M,ρ) <
|π0|ρ if and only if |gs|ρ > ρs−r for some s < r, and in this case we have:

R(M, |.|ρ) = |π0| min
0≤s<r

(|gs|−1/r−s
ρ )

Let M be a soluble p−adic differential module over R. Then there exist 0 <
ε < 1 and a rational number β ≥ 0 such that Ray(M,ρ) = ρβ+1 for all ρ ∈]1− ε, 1[
(cf. [Astx]). If M is defined in some basis by the operator d

dx + G(x), with
G(x) ∈Mn(A([0, 1[)[1/x]), then it is easy to show that there exist 0 < δ < 1 and a
rational number α ≥ 0 such that Ray(M,ρ) = ρα+1 for ρ ∈]0, δ[. By log−concavity
we have α ≥ β.

Definition 3.2. The number β is called the p−adic slope of M . We set
pt(M) := β. If M is defined by the operator d

dx +G(x), G(x) ∈ A([0, 1[)[1/x] we set
ptF (M) := α and we will call ptF (M) the formal slope. We have pt(M) ≤ ptF (M).

Remark 3.3. The precedent definition is justified by the fact that if M is
defined by a linear differential operator L :=

∑r
s=0 gs(x)( d

dx )s, gr(x) = 1, such that
gs(x) ∈ A([0, 1[)[1/x] ⊂ R, then ptF (M) is the usual formal slope defined by

(3.0.2) ptF (L) = max

(
0,max

s
(
s− r − v(gs)

r − s
)

)
where v(gs) is the x−adic valuation of gs(x). The formal slope is the largest slope
of the Formal Newton polygon of L.4 This follows from lemma 3.1 and some
continuity and convexity arguments. Indeed, as M is soluble, observe that, for ρ
close to 0, by continuity and log−concavity we have only two cases: Ray(M,ρ) = ρ
or Ray(M,ρ) < |π0|ρ.

Lemma 3.4. Let L = d
dx +

∑
i≥−d aix

i, a−d 6= 0, d ≥ 1 be a soluble rank

one differential operator with
∑
i≥−d aix

i ∈ R. Then we have that Ray(L, ρ) =

|π0||a−d|−1ρd.

4. Frobenius structure over R

4.1. Reduction to a K[x, x−1]−lattice. Let L := d
dx+g(x), g(x) =

∑
i aix

i ∈
R, be a rank one soluble differential operator. In this section we show that L is
isomorphic over R to the operator L̃ = d

dx +
∑
−d≤i≤−1 aix

i for a suitable d ≥ 1

(cf. Theorem 4.7). Moreover, if K = K, then d can be choosed equal to pt(L) + 1.

Lemma 4.1. The operator L := d
dx + g(x), g(x) =

∑
i aix

i ∈ R is isomorphic

over R to the operator L̃ := d
dx +

∑
−d≤i≤∞ aix

i for a suitable d ≥ 1.

Proof: Let d ≥ 1 be an integer such that sup(| aii+1 |ρ
i+1) < |π0|, for all

i < −d. Such an integer exists because g(x) ∈ R. Then the series f(x) :=
exp(−

∑
i<−d

ai
i+1x

i+1) lies in R and then L is isomorphic over R to the opera-

tor L̃ = d
dx + g(x) + f(x)′/f(x). �

4We recall that the formal Newton polygon is the convex hull of the set formed by the points

of the form (s, v(as)−s) and the two additional points (−∞, 0), (0,+∞). In particular we observe
that in our case the last point is (r,−r).
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Lemma 4.2. Let L := d
dx + g(x), g(x) =

∑
−d≤i≤∞ aix

i, d ≥ 2 be a soluble

differential operator over R. Then |a−d| ≤ |π0|.

Proof: Let gs(x) = gs−1(x)′ + gs(x)g(x) be as in the equation 1.1.2. An
explicit computation shows that gs(x) = as−dx

−sd + {terms of degree ≥ −sd+ 1}.
So the equation 1.1.1 shows that Ray(L, ρ) ≤ |π0|ρd

|a−d| . The solubility implies 1 ≤
|π0|/|a−d|.�

Lemma 4.3 ([Ch-Ro] 11.2.4). Let L = d
dx + a−1x

−1 be a differential equation.
Then L is soluble if and only if a−1 ∈ Zp.

Lemma 4.4 ([Ch-Ro] 18.4.4). Let L = d
dx + a−1x

−1 be a differential equation.
Then L has a Frobenius structure if and only if a−1 ∈ Z(p).

Lemma 4.5. Let L = d
dx + a−1x

−1. Let

α(a−1) := lim sup
n

(|a−1(a−1 − 1)(a−1 − 2) · · · (a−1 − n+ 1)| 1n ).

Then for all ρ > 0 we have Ray(L, ρ) = |π0|
α(a−1) · ρ.

Proof: A computation shows that gn(x) = αn(a−1)x−n, where αn(a−1) :=
a−1(a−1 − 1) · · · (a−1 − n+ 1). So Ray(L, ρ) = lim infn(|αn(a−1)|−1/n)|π0|ρ. �

Lemma 4.6. Let L = d
dx+g(x), g(x) =

∑
i≥−1 aix

i ∈ R be a soluble differential

equation. Then a−1 ∈ Zp. Moreover there exists an analytic function f(x) ∈
A([0, 1[) such that f ′(x)/f(x) =

∑
i≥0 aix

i. In other words L is isomorphic to
d
dx + a−1x

−1.

Proof: We proceed by absurd. L is the tensor product of L1 := d
dx +

a−1x
−1 and L2 := d

dx +
∑
i≥0 aix

i. As L2 has a convergent solution in 0, we

have Ray(L2, ρ) = ρ, for ρ sufficiently close to 0. On the other hand, by the lemma

4.5 we have Ray(L1, ρ) = |π0|
α(a−1) · ρ for all ρ > 0. The radius of the tensor product

of two operators with different radius is the minimum of the radius.5 So, if L1 is
not soluble, then Ray(L1, 1) = Ray(L2, 1) = R < 1. Then Ray(L1, ρ) = R for all
ρ > 0. But in this case, by convexity, Ray(L2, ρ) > R for ρ < 1. Then if ρ < 1 we
would get Ray(L, ρ) = min(Ray(L1, ρ), Ray(L2, ρ)) = R. Since L is soluble, hence
by continuity of Ray(L, ρ) we get a contraddiction.

We have shown that Ray(L1, ρ) = Ray(L2, ρ) = Ray(L, ρ) = 1, for all 0 < ρ ≤
1. Now by transfert theorem ([Ch-Ro] 9.3.2) there exists a convergent solution
f(x) of L2 in the disk D(0, 1−). In particular f ∈ R and f ′(x)/f(x) =

∑
i≥0 aix

i.�

Theorem 4.7. Let L := d
dx + g(x), g(x) =

∑
i aix

i ∈ R be a rank one soluble
differential operator. Then a−1 ∈ Zp and there exists a d ≥ max(1, pt(M)+1) such

that L is isomorphic, over R, to d
dx +

∑
−d1≤i≤−1 aix

i, for all d1 ≥ d. Moreover

5Observe that this fact depends on the definition given in the equation 1.1.1. For example

(x− 1)(x− 1)−1 = 1, so in this case the radius of 1 is not equal to the minimum of the other two

radius. This depends on the definition of “radius”. In general let L1 = d
dx

+ g(x), L2 = d
dx

+ f(x)

be two differential operators. Suppose that g, f ∈ A(I). Let si(x) be a power series solution of Li

at a ∈ C(I). Let r = inf(|a− b|, b ∈ K − CK(I)). Then for all ρ ≤ r we have the equality

min(Ray(s1 · s2), ρ) = min(min(Ray(s1), ρ) , min(Ray(s2), ρ)).
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for all −pt(M) − 1 ≤ i ≤ −2, there exist bi ∈ K such that L is isomorphic, over
RK , to d

dx +
∑
−pt(M)−1≤i≤−2 bix

i + a−1x
−1, and |b−pt(M)−1| = |π0|.

Proof: By the lemma 4.1 we can suppose that L = d
dx +

∑
−d≤i≤∞ aix

i,
with d ≥ 1. By the lemma 4.6 we can suppose that d ≥ 2. The theorem will be
proved applying the lemma 4.6. To apply this lemma we need that the operator
d
dx +

∑
i≥−1 aix

i is soluble. The solubility is invariant by extension of the field of

constants and then we can actually suppose that K = K.
Let d− 1 = n · pm, (n, p) = 1 and let ( a−d

n·π0
)1/pm be a pm−th root of a−d

n·π0
. Let

us introduce the following analytic function:

fd(x) := Em

(( a−d
n · π0

)1/pm
x−n

)
= exp(πm(

a−d
n · π0

)1/pmx−n + · · ·+ a−d
x−(d−1)

d− 1
).

By the lemma 4.2 we have |a−d| ≤ |π0|. Then, as |n| = 1, fd is an analytic
function in C(]1,∞[). The logarithmic derivative f ′d/fd = −a−dx−d + · · · + (−n) ·
πm( a−d

n·π0
)1/pmx−n−1 defines a differential operator

Ld :=
d

dx
+ f ′d/fd

which is soluble because its solution at infinity is fd(x).
We proceed now by induction on d ≥ 2. If |a−d| < |π0|, then fd is an element

of R and then the operator d
dx + g(x) is isomorphic to d

dx + g(x) + f ′d/fd. Now the
x−adic valuation of the function g(x) + f ′d/fd is strictly larger than −d.

Otherwise, if |a−d| = |π0|, then the operator Ld is soluble and not trivial by
the transfert theorem at infinity ([Ch-Ro] 9.3.2).6 So the tensor product operator
L⊗ Ld, defined by d

dx + g(x) + f ′d/fd, is still soluble, and g(x) + f ′d/fd is of degree
≥ −d+1 and we can proceed by induction on d. Observe that f ′d/fd is a polynomial

in x−2K[x−1]. Iterating, we get that there exist functions fd, · · · , f2 ∈ AK(]1,∞[)
which are analytic in C(]1,∞[) and are such that

g(x) = f ′d/fd + · · ·+ f ′2/f2 + (
∑
i≥−1

aix
i).

Then d
dx +

∑
i≥−1 aix

i is soluble. Observe that, as in the proof of lemma 4.6, if

|a−d| = |π0| we have Ray(L, ρ) = miniRay(Li, ρ) = Ray(Ld, ρ), then

Ray(L, ρ) = Ray(
d

dx
+ f ′d/fd, ρ) = |π0||a−d|−1ρd = ρd, ∀ 0 < ρ < 1.

And in this case d = pt(M) + 1. Moreover if d > pt(M) + 1, then it must be
|a−d| < |π0| and then fd ∈ RK . Iterating this process we can show that, over K,
we can obtain d = max(1, pt(M) + 1).�

Remark 4.8. Observe that in the proof of the precedent lemma we show that,
over K, L is isomorphic to the operator

(4.1.1)
d

dx
+ f ′d/fd + · · ·+ f ′2/f2 + a−1x

−1.

In other words L is the tensor product of the operators Ld := d
dx +f ′d/fd, . . . , L2 :=

d
dx + f ′2/f2, and L−1 := d

dx + a−1x
−1, where fi(x) are functions obtained from a

6Indeed if the operator Ld is trivial over R then Ray(Ld, ρ) = ρ for all ρ > 1− ε, ∃ ε and by
the transfert theorem the solution at infinity converges in the disk {|x| > 1− ε}.
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Robba’s exponential by a substitution of the variable. Moreover Li is trivial or
Ray(Li, ρ) = ρi for all ρ < 1. Over K we can choose d = pt(M) + 1. This is a kind
of canonical form for rank one soluble differential equation over RK .

4.2. Frobenius structure over R.

Theorem 4.9. Let k be a perfect field of characteristic p > 0. Let L = d
dx+g(x),

g(x) =
∑
i aix

i ∈ R be a soluble differential equation. Then L has a Frobenius
structure if and only if a−1 ∈ Z(p).

Proof: The operator L is isomorphic to the operator d
dx +

∑
−d≤i≤−1 aix

i. We
can now apply the theorem of Christol-Chiarellotto 1.5. �

Corollary 4.10. The Robba-Matsuda operator d
dx +

E′m(x−1)
Em(x−1) (cf. equation

2.0.1) has a Frobenius structure for all m ≥ 0.

Proof: We must show that the formal series Eσ
h

m (x−p
h

)/Em(x−1) defines a
function of R for some h ≥ 1. Since the convergence does not change by extension
of the field of constants, hence we can suppose K = K. We can actually apply the
theorem 4.9. �

Remark 4.11. The corollary 4.10 works for all p > 0. On the other hand, the
proof of Matsuda (cf. Theorem 2.4) is a very strong computation and is stronger
than our result because it shows that, if p 6= 2, the operator d

dx+Em(x−1)′/Em(x−1)
has a Frobenius structure of order 1.

5. Appendix: Variation of Radius of convergence by ramifications.

In this section we precise some known (but not pubblished) facts about the
variation of the radius of convergence of the pull-back of a module by a covering
of the form x 7→ xn. We study the ramification φ∗n : f(x) 7→ f(xn) instead of ϕ,
because the application f(x) 7→ fσ(x) (cf. 1.2) defines an auto-equivalence of the
category of differential modules which preserves the radius of convergence.

5.1. Scalar extension. Let I be a (non empty) interval. Let L/K be an
extension of valued fields. Let AL(I) denote the ring of analytic functions over I,
with coefficients in L. Then we have the following diagram

M (AK(I)) M (AL(I))
ψL

oooo

CK(I)

∪

⊆ CL(I)

∪

where the vertical inclusions are the canonical inclusions a 7→ |.|a (cf. remark 1.1)
and the map ψL is the functorial morphism of analytic spaces corresponding to
the inclusion AK(I) ⊆ AL(I). This diagram is commutative in the sense that the
inclusion CK(I) ⊆ CL(I) is a section of the map ψL.

5.1.1. By [Ch-Ro] 9.1 there exists a field Ω such that ψΩ(CΩ(I)) = M (AK(I)).
In this sense all points |.|t of M (AK(I)) have an “incarnation” in a true point of
CΩ(I). If t ∈ CΩ(I) is an incarnation of the seminorm |.|t ∈ M (AK(I)) (i.e.
ψΩ(t) = |.|t) we will say that DΩ(t, ρ(|.|t)−) is a generic disk for |.|t (cf. 1.1.1).
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5.2. Ramifications and image of a point of Berkovich. Let φ∗n : A(In)→
A(I) be the morphism

∑
i aix

i 7→
∑
i aix

ni. Let φn : M (A(I)) → M (A(In)) be
the corresponding morphism of analytic spaces. In this section we compute the
image of a point of M (A(I)) by the ramification φn.

5.2.1. By a result of Berkovich ([Ber] 1.4.4) we know that every point of
M (A(I)) is a limit of points of the form |.|c,r, c ∈ K

|f(x)|c,r := sup
x∈D(c,r−)

|f(x)|

In other words if |.|t is a point of M (A(I)), then |.|t is the seminorm attached to
some disk, or |.|t is the seminorm attached to a totally ordered7 sequence of disks.
If K is spherically complete then all points are of the form |.|c,r and, since K is
contained in some spherically complete and algebraically closed field K ′, hence we
can suppose that all points of M (A(I)) and M (A(In)) are of the form |.|c,r for a
suitable c ∈ K ′. For simplicity we will suppose that K = K ′.

Remark 5.1. Let tc,r be an incarnation of |.|c,r. It is clear that ρ(|.|c,r) = r
(cf. 1.1), and that |tc,r|Ω = max(|c|, r).

5.2.2. Rational fractions are dense in A(I), hence to compute the seminorm
|.|c′,r′ := φn(|.|c,r) it is enough to know the value |x− a|c′,r′ for all a ∈ K. On the
other hand φn(|.|c,r) = |.|c,r ◦φ∗n, then |x− a|c′,r′ = |φ∗n(x− a)|c,r = |xn− a|c,r. We
write xn− a = [(x− c) + c]n− a = [

∑n
i=1

(
n
i

)
cn−i(x− c)i] + (cn− a). Then we have

that

(5.2.1) |xn − a|c,r = sup
1≤i≤n

(|
(
n
i

)
||c|n−iri, |cn − a|)

On the other hand |x− a|c′,r′ = sup(r′, |c′ − a|). Therefore c′ = cn and

(5.2.2) r′ = sup
1≤i≤n

(|
(
n
i

)
||c|n−iri) = |c|n sup

1≤i≤n
(|
(
n
i

)
|(r/|c|)i).

We can compute r′ in some particular case:

(5.2.3) r′ =

{
min(rp, |p||c|p−1r) if n = p
min(rn, |c|n−1r) if (n, p) = 1.

This process can be applied to compute the image of |.|c,r under the action of
an arbitrary polynomial map instead of φn. To recover the value of r′ it is sufficient
to look at the Taylor’s development of this polinomial at c.

Corollary 5.2 (Deformation of the Generic Disk). Let DΩ(tc,r, r
−) be a

generic disk for |.|c,r (cf. 5.1.1). Then tnc,r is an incarnation of |.|cn,r′ := φn(|.|c,r)
and φn(DΩ(tc,r, r

−)) ⊆ DΩ(tnc,r, r
′−). More precisely let y ∈ DΩ(tc,r, r

−). If
(n, p) = 1, then

(5.2.4) |yn − tnc,r| = |tc,r|n−1 · |y − tc,r|.

If n = p, then

(5.2.5) |yp − tpc,r| ≤ max(|tc,r|p−1|p||y − tc,r|, |y − tc,r|p)

and the equality holds if |tc,r|p−1|p||y − tc,r| 6= |y − tc,r|p.

7Ordered by inclusion.
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Proof: In all cases we have that |y−tc,r| < |tc,r| (cf. 5.1). If (n, p) = 1 we have
|yn−tnc,r| = |(y−tc,r+tc,r)

n−tc,r| = |tc,r|n|
∑n
i=1

(
n
i

)
((y−tc,r)/tc,r)i|. Observe that

|
(
n
1

)
| = 1. If n = p, observe that |

(
p
i

)
| = |p| for all i = 1, . . . , p − 1, then the same

computation gives that |yn− tnc,r| ≤ |tc,r|p−1|y− tc,r| · sup(|p|, |(y− tc,r)/tc,r|p−1).�

5.3. Variation of the radius of convergence by ramification. Let M be
an A(Ip)−differential module. In this section we compute the radius of convergence
at |.|c,r of the pull-back A(Ip)−differential module φ∗n(M). Observe that the radius
of ϕ∗(M) and φ∗p(M) are equal (cf. 5).

5.3.1. Frobenius: Let s(x) =
∑∞
i=0 ai(x−tpc,r) be a convergent analytic function

at tpc,r. Let R = lim infi |ai|−1/i be the radius of convergence of s(x) at tpc,r. Let

φ∗p(s)(y) := s(yp) =
∑
i ai(y

p − tpc,r)i be its pull-back and R′ the radius of φ∗p(s)(y)
at tc,r. By composition we have (cf. corollary 5.2)

(5.3.1) R′ ≥ min(|p|−1|tc,r|1−pR,R1/p)

Lemma 5.3. Let xl ∈ R be a sequence. Then for all m ∈ Z we have:

lim inf
l

(xl) = min
0≤ε≤m−1

(
lim inf
l∈ε+mZ

(xl)
)
≤ lim inf

l∈mZ
(xl).

Lemma 5.4. Let i, n, l ∈ N, i, n ≥ 1, i ≤ l ≤ n · i. Let

B(i, l, n) :=
∑

j1+···+ji=l
1≤jk≤n

(
n

j1

)
· · ·
(
n

ji

)
.

Then B(i, i, n) = ni and B(i, in, n) = 1.

Lemma 5.5. Let m ∈ N, m ≥ 1. Let {cl}l be a sequence in some ultrametric
ring. Let R := lim inf l |cl|−1/l. If R > 0, then we have

(5.3.2) lim inf
l∈mZ

|c l
m
|− 1

l = R
1
m

Proof: This equation is equivalent to the equation lim inf l |cl|−
1

ml = R
1
m . �

Theorem 5.6. We have R′ = min(R|p|−1|tc,r|1−p, R1/p).

Proof: We write yp − tpc,r = (y − tc,r + tc,r)
p − tpc,r. We have s(yp) =

∑
i ai ·

(
∑p
j=1

(
p
j

)
tp−jc,r y

j)i. After a resommation we get

s(yp) =

∞∑
l=0

[ l∑
i=d l

p e

ai ·B(i, l, p) · tip−lc,r

]
(y − tc,r)l

where dl/pe := min(i ∈ N | i ≥ l/p). Since the term
∑l
i=d l

p e
ai · B(i, l, p) · tip−lc,r

is a polynomial in tc,r with coefficients in K, hence its valuation is given by
supi=d l

p e,...,l
(
|ai| · |B(i, l, p)| · |tc,r|ip−l

)
. We have then

R′ = lim inf
l

(
sup

i=d l
p e,...,l

(
|ai| · |B(i, l, p)| · |tc,r|ip−l

))−1/l
.

Appliyng the lemma 5.3 we have

(5.3.3) R′ ≤ lim inf
l∈pZ

(
sup

l/p≤i≤l
(|ai| · |B(i, l, p)| · |tc,r|ip−l)

)−1/l
.
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By the lemma 5.4 we have B(l/p, l, p) = 1 and B(l, l, p) = pl and then clearly
supl/p≤i≤l

(
|ai| · |B(i, l, p)| · |tc,r|ip−l

)
≥ sup(|al/p|, |al| · |p|l · |tc,r|l(p−1)). This fact

and the lemma 5.5 show that

R′ ≤ lim inf
l∈pZ

(
sup(|al/p|, |al| · |p|l · |tc,r|l(p−1))

)− 1
l

= inf(R1/p, R|p|−1|tc,r|1−p). �

Recalling that |tc,r| = sup(|c|, r) (cf. remark 5.1), we can state the following

Corollary 5.7. Let A be one of the rings Eρ, A(I), E or R. Let Ap be the
ring Epρ , A(Ip), E or R.respectively. Let M be a differential module over Ap, let
φ∗p(M) be its pull-back over A by the morphism f(x)→ f(xp) : Ap → A. Then we
have

Ray(φ∗p(M), |.|c,r) = min
(
Ray(M, |.|cp,r′)1/p, |p|−1 sup(|c|, r)1−pRay(M, |.|cp,r′)

)
where r′ = max(rp, |p||c|p−1r) (cf. equation 5.2.3).

5.3.2. Ramification prime to p. Let (n, p) = 1. Following the same method of
the precedent discussion we get that R′ = |tc,r|1−nR, and the following

Theorem 5.8. Let A be one of the rings Eρ, A(I), E or R. Let An be one of
the rings Enρ , A(In), E or R. Let M be a differential module over An, let φ∗n(M)
be its pull-back over A. Then we have

Ray(φ∗n(M), |.|c,r) = sup(|c|, r)1−nRay(M, |.|cn,r′)
where r′ = max(rn, |c|n−1r) (cf. equation 5.2.3).
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