Frobenius structure for rank one $p-$adic differential equations

Abstract : According to a criterion of B. Chiarellotto and G. Christol [Compositio Math. 100 (1996), no. 1, 77-99; MR1377409 (97b:14021)], a solvable rank one p-adic differential operator d/dx−g, with g=∑ni=1a−ixi, has a Frobenius structure if and only if a−1 is p-integral. Using natural estimates on tensor products, the author here generalizes this criterion to all g's in the Robba ring. As a corollary, he extends to the case p=2 the qualitative part of Matsuda's theorem [S. Matsuda, Duke Math. J. 77 (1995), no. 3, 607-625; MR1324636 (97a:14019)], according to which the Dwork-Robba twisted Artin-Hasse exponentials have Frobenius structures.
Type de document :
Communication dans un congrès
American Mathematical Society. Eighth international conference on p-adic functional analysis, July 5-9 2004, Université Blaise Pascal, Clermont-Ferrand, France, Jul 2004, France. American Mathematical Society, 384 (384), pp.247-258, 2005, Contemporary Mathematics. 〈10.1090/conm/384/0713〉
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00804859
Contributeur : Andrea Pulita <>
Soumis le : mardi 26 mars 2013 - 23:44:26
Dernière modification le : vendredi 1 juin 2018 - 15:56:03
Document(s) archivé(s) le : jeudi 27 juin 2013 - 04:02:42

Fichier

2004-Clermont-Ferrand.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Andrea Pulita. Frobenius structure for rank one $p-$adic differential equations. American Mathematical Society. Eighth international conference on p-adic functional analysis, July 5-9 2004, Université Blaise Pascal, Clermont-Ferrand, France, Jul 2004, France. American Mathematical Society, 384 (384), pp.247-258, 2005, Contemporary Mathematics. 〈10.1090/conm/384/0713〉. 〈hal-00804859〉

Partager

Métriques

Consultations de la notice

215

Téléchargements de fichiers

85