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Survey on Social Community
Detection

Michel Plantié and Michel Crampes

Abstract

Community detection is a growing field of interest in the area of Social
Network applications. Many community detection methods and surveys have
been introduced in recent years, with each such method being classified ac-
cording to its algorithm type. This chapter presents an original survey on
this topic, featuring a new approach based on both semantics and type of
output. Semantics opens up new perspectives and allows interpreting high-
order social relations. A special focus is also given to community evaluation
since this step becomes important in social data mining.

1 Introduction

As social networks gain prominence, the first obvious question that comes to
a researcher’s mind in observing these networks is: how to extract meaning-
ful knowledge from these data? In seeking a response, the network structure
proves to be of utmost importance. Identifying high-order structures within
networks yields insights into their functional organization, which in turn con-
tributes more knowledge while offering many possible actions, including mar-
keting plans, recommendations and user interface adaptations. Community
detection may become a more complicated task given that social networks
can be structured on many different levels, yet communities reduce the com-
plexity of a network’s original graph in a substantial way, thus revealing its
macro-structure and uncovering more semantic knowledge. A growing num-
ber of community detection methods have recently been published. The goal
here is to assess the state-of-the-art in this area, by focusing on the qualities
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and shortcomings of each method. A number of partial surveys have been
conducted over the past few years; though this body of work has exposed
different approaches in the field, such efforts are often limited to specific
network structures. This chapter is intended to present three analytical ap-
proaches to community detection that encompass most of the main methods
and techniques. The first approach, which is also the most widespread, con-
siders the social network as a graph and then analyzes its structure with
graph properties and algorithms built around the graph structure. The sec-
ond approach associates the social network with a hypergraph and analyzes
its structure through hypergraph properties and algorithms based on hyper-
graph structures, as exemplified in [54]. The third and final approach uses the
properties of concept lattices in order to analyze the social network structure
in association with hypergraph properties and algorithms based on Galois
lattices and hypergraph structures, e.g. [55, 60]. As opposed to graphs, both
hypergraphs and Galois lattices have been poorly analyzed in surveys on
community detection strategies. These structures offer very efficient tools for
managing communities and this discussion will demonstrate how researchers
have applied them. The chapter will be organized as follows. To ensure a
good understanding of all elements being addressed in this survey, Section 2
will give all necessary definitions, section 3 will then deliver a state-of-the-art
from previous surveys on the community detection topic. The next section
will classify each community detection method according to a graph type of
classification, and lastly Section 5 will lend insight into all possible evalu-
ations of community detection algorithms, as this area of investigation has
only been sparsely studied in previous surveys.

2 Definitions: Social Network Community detection and
other Definitions

2.1 Unipartite and Bipartite graphs

A graph is a representation of a set of objects called vertices, some of which
are connected by links. Object connections are depicted by links, also called
edges. Such a mathematical structure may be referred to as a unipartite
graph. A good example of this type of graph is the well-known Zakary Karate
club [77] (shown figure 1).

A special case of this graph is known as the bipartite graph, i.e. whose
vertices can be divided into two disjoint sets A and B such that the edges
only connect one vertex in A to one in B, in considering that A and B are
independent sets. Vertices of A are not connected to any other vertices within
A, and the same applies for B. For example, let A be a set of individuals and
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B a set of photos showing these same individuals. Bipartite graphs may take
the form of graphs, hypergraphs or Galois lattices.

Fig. 1 Depiction of the Zachary Karate Club graph example (with a different display for
better visibility)

2.2 Hypergraph

A hypergraph [4] H is a pair (V, E) where V = v1, v2, ..., vn is a non-empty
(usually limited) set and E = E1, E2, ..., Em is a family of not empty subsets
of V. The elements of V are the vertices of H. The elements of E are the edges
(also called hyperedges) of H. A set of social communities can be viewed as
a hypergraph whose vertices are the individuals and whose hyperedges are
the communities. Most researchers in the field of community detection seek
to partition individuals into communities, i.e. non-intersecting hyperedges.
Some authors have attempted to find overlapping communities, i.e. connected
hypergraphs. A bipartite graph can be displayed as a hypergraph with indi-
viduals at the vertices and properties at the hyperedges. Alternatively, the
properties can be considered as vertices and the individuals as hyperedges.
An example of a simple hypergraph is shown in Figure 2.
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Fig. 2 example of a Hypergraph (a colored version of example in [4] page 2)

2.3 Galois lattice

Freeman [19] was the first to use Galois lattices in order to represent net-
work data. The underlying assumption is that individuals sharing the same
subset of properties define a community. The approach adopted consists of
the following: objects, attributes and the set of relations between objects and
attributes form a “context”, in accordance with Formal Concept Analysis
[20]. This set of relations can then be represented by a binary bi-adjacency
matrix, whereby objects o are the columns, attributes a are the rows and a
“1” is placed at the cell corresponding to a pair (o;,a;) if o, possesses a;.
A maximum subset of objects that contain a subset of attributes is defined
as a “concept”, i.e. a group of objects for which the addition or removal of
an attribute changes its constitution. All objects of a concept then form the
“extent” and all attributes of a concept give rise to the “intent”. A partial
order is applied to concepts and serves to establish a hierarchy. According to
the definition of Galois hierarchies, an object can appear in all the concepts
where it can share the same set of attributes with other objects belonging
to other concepts. Figure 3 illustrates a simple example of a Galois lattice in
which several individuals are sharing several photos.

({F1, P2, P3,P4.P5, FE}. { 1)

({P1, P2, B3, PS, P6}, {Peter}) ((P1, P3, P4}, {Maria})

({F2, P3Y, {Jeremy, Peter}) ({P1, P3}, {Maria, Peter})  ({P3, P4}, {Maria, Willev})

i

(1P3}, {Jeremy, Maria, Peter, Willey} 1

Fig. 3 example of a Galois lattice (with photos Pi and individuals)
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2.4 The concept of modularity

Modularity has been introduced to measure the quality of community algo-
rithms. Newman [48] proceeded with the initial introduction, in providing
the following formula:

Q=>(eii —a?) (1)
where

e ¢;;: number of edges having one end in group i and the other end in group

j-
° q; = Zj e;j: number of edges having one end in group i.

This quantity ¢ measures the fraction of edges in the network that connect
vertices of the same type (i.e. “intra-community” edges) minus the expected
value of the same quantity in a network with the same community divisions
yet with random connections between vertices.

Modularity measures the capacity of a given graph partition to yield the
densest groups. This formula has mainly been used by researchers in order
to measure the ability of a community detection algorithm to obtain a satis-
factory partition of a given graph. Moreover, the formula may be adapted to
weighted graphs (i.e. graphs whose edges display different weights or lengths),
like in [5].

3 State-of-the- art assessment: existing surveys

This section will address the body of existing surveys on community detec-
tion. Most surveys primarily focus on the graph structure aspect of communi-
ties. Seven of the main existing surveys have in fact been recently conducted.
Since the concept of community may differ, this existing body of surveys
defines communities before classifying the methods employed according to
various classification systems. This study will start by determining which
definitions are provided for these different community detection methods be-
fore presenting a state-of-the-art on existing surveys.

3.1 Community definitions

Defining a community is quite a challenging task. Definitions vary from au-
thor to author and from algorithm to algorithm. The most commonly used
definition is that of Yang [75]: “a community as a group of network nodes,
within which the links connecting nodes are dense but between which they
are sparse”. This definition is applicable for graphs and could be extended to
bipartite graphs.
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Fortunato [18] identifies three levels to define a community: local defini-
tions, global definitions, and definition based on vertex similarity. In the local
definition group, a definition of communities consists of: “parts of the graph
with few ties to the rest of the system”. In this partition, communities are
studied from their inner structure independently of the remaining part of the
graph. In the global definition group, a global criterion associated with the
graph is used to compute communities. This global criterion is dependent on
the algorithm implemented to locate communities. Either a clustering crite-
rion or a distance-based criterion may be introduced; more often, the criterion
commonly used shows that the graph contains a community structure differ-
ent from that of a random graph. In the vertex similarity-based community
definition group, communities are considered as groups of vertices similar to
one another.

Fortunato [18] further defines communities, in also calling them clusters
or modules, as “groups of vertices that probably share common properties
and/or play similar roles within the graph”. His assigned definition depends
on the algorithm employed, resulting in the identification of at least eight
different definitions:

e Clique: subgroups whose members are all “friends” (i.e. connected with
an edge) to each other [37],

e n-clique with two variants : maximal sub-graphs such that the distance
of each pair from its vertices is not greater than n [36],

e k-plex: maximal subgraph in which each vertex is adjacent to all other
vertices of the subgraph except at most k of them [65],

e LS-set (weak community) : subgraph such that the internal degree is
greater than the external degrees[35],

e lambda set: subgraph where each pair of vertices has a greater edge con-
nectivity than any pair formed by one vertex of the subgraph and one
outside the subgraph [6],

e communities based on either a fitness measure or a quality measure,

e communities determined by means of modularity-based algorithms,

e clusters: communities derived using well-known clustering methods [64].

Porter [57] recalls the origins of community study in the fields of sociol-
ogy and anthropology. He defines communities as: “cohesive groups of nodes
that are connected more densely to each other than to the nodes in other
communities”. The difference in methods highlighted in his survey relies on a
definition of the expression “more densely”, which is identified with five types
of algorithms, namely: clustering techniques [64], quality function algorithms
[31], centrality based community detection algorithms [48] and other similar
ones, clique percolation algorithms [15] and lastly modularity optimization
algorithms [46].

N. Gulbahce and S. Lehmann [26] define a community as “a densely con-
nected subset of nodes that is only sparsely linked to the remaining network”.
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Papadopoulos [54]ultimately defines communities as: “groups of vertices
that are more densely connected to each other than to the rest of the net-
work”.

It can be seen that all definitions are quite similar yet may still differ in
their associated formal mathematical definition. Communities may also be
considered from a different perspective. The initial approach partitions the
underlying graph, i.e. by dividing the existing graph or network structure into
distinct communities using the optimal algorithms. The second approach then
detects overlapping communities and seeks the best community arrangement.

In [61] Roth defines a new type of community: “epistemic communities”,
which are “knowledge communities or groups of agents sharing common
knowledge concerns”, for instance a group of researchers investigating a sin-
gle precise topic. This new type of community concept requires new kinds of
structures to proceed with their description. Roth has opted to use Galois
lattices.

3.2 State-of-the-art in community detection surveys

Most surveys classify research papers and methods according to the type of
community detection algorithm.

The first of these seven main surveys by S. Fortunato [18] is exhaustive
with respect to many community detection methods and has been based on a
graphic representation. This survey provides an effective overview of the field
and describes the methodological foundations of community detection, adopt-
ing a statistical physics perspective and specifically focusing on techniques
designed by statistical physicists. His discussion also includes critical issues
like: the significance of clustering, the procedure by which methods should
be tested and compared to one another, and applications to real networks.
Methods are classified into eight families, i.e.:

e traditional methods based on clustering like k-means [39] and others ap-
plications [31],

divisive algorithms mainly based on hierarchical clustering [52],
modularity-based algorithms [48, 8, 12] and other similar algorithms,
spectral algorithms [58],

dynamic algorithms [73, 13] and other similar algorithms,

statistical inference-based methods [2],

multi-resolution methods [56],

and lastly methods to find overlapping communities [53, 15] and other
miscellaneous methods.

The second survey, conducted by Porter[57] only includes graph partitioning
approaches and offers insight into graphical techniques through citing the first
survey. An extensive set of techniques is highlighted, as are some of the most
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important unresolved issues remaining. Application examples are also given
on some of the largest social networks in addition to grouping community
detection into five main techniques:

centrality based techniques built around the Newman algorithm [48],
local methods around the k-Clique percolation method [53],
modularity optimization methods around the Newman algorithm[46],
spectral partitioning methods around Simon’s algorithm [58]
and lastly physics-based methods inspired by Potts law [73].

The third survey by B. Yang [75] is quite exhaustive relative to all techniques
relying on graphical representation and produces a good overview of the
field through classifying all techniques in a tree structure, according to three
categories:

e optimization based algorithms [31, 46, 25],
e heuristic algorithms [21, 69],
e similarity based algorithms and hybrid methods [56].

The fourth one from N. Gulbahce and S. Lehmann [26] is a partial survey
analyzing hierarchical type community detection methods and provides a
number of leads for future community detection approaches.

The fifth survey by Pons [56] incorporates several community detection
methods and classifies them into five different families:

e (lassical approaches including classical graph partitioning, e.g. spectral
bisection from [58], Kernighan & Lin[31], clustering [28] and hierarchical
clustering like [72].

e Separative approaches attempting to split a graph into several communi-
ties by deleting the edges connecting distinct communities. In this group,
Pons places the well-known Girvan-Newman algorithm[48], and other
variant approaches.

e agglomerative approaches quite similar to their hierarchical counterparts
and include a method based on optimized modularity by Newman[46]
and others algorithms.

e Random walk type algorithms[27] and others based on the mean time
required to reach a vertex [79].

e Lastly, a broad group of miscellaneous approaches.

The Pons survey has only examined graph partitioning approaches.
The sixth survey by Papadopoulos [54] classifies community detection tech-
niques in five methodological categories:

cohesive subgraph discovery [53],

vertex clustering [56],

community quality optimization [48, 11],
divisive [48]

and model-based methods [23].
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The seventh and last survey was undertaken by Danon [14] and primarily
focuses on the performance of each type of algorithm.

Among these seven surveys, only one offers leads on overlapping com-
munities, while none make use of hypergraph structures. Another domain
overlooked by these surveys is Galois lattice structures. As will be described
below, Galois lattices are more complex structures than regular graphs, yet
they provide more semantics to network structures.

4 Social Network Community detection Methods

4.1 Approach classification

All community detection methods will be classified in a grid divided into six
categories based on the types of input data and output data; it will then be
shown how each author can be placed in this grid.

In order to detect communities, the initial input data were considered
in network form (whether a social network or biological network, etc.) and
represented by different mathematical structures relative to graph structures,
which may be of three distinct types:

e unipartite graph: this is a normal graph whose vertices are individuals
and whose edges are links connecting the individuals (these links may be
of various types: friend, family, club, sport, university, etc.);

e a bipartite graph: this type of graph may be generated whenever indi-
viduals share tags (i.e. terms assigned by users), web pages or links. The
first set contains individuals, and the second is a set of tags, web links or
documents, etc.;

e a multipartite graph: very similar to bipartite graphs, this graph however
is composed of several disjoint sets. In this survey, this type of graph has
not been directly taken into account since it may be reduced to a bipartite
graph, as shown in [44] and elsewhere.

The output data of a community detection method consists mainly of a set
of node groups representing communities. The following merit consideration:

e Graph partition, where each node is associated with just one group of
nodes and where no overlap exists between groups. Partitions are the
primary result of most community detection algorithms.

e Hypergraph with overlapping communities.

e Concept graphs or Galois lattices where nodes share several common
properties.

The following table (1) explains which type of input and output data each
method is capable of accepting.

Most existing surveys included in our state-of-the-art evaluation describe
community detection methods that may be classified within the “A1” cell of



10 Michel Plantié and Michel Crampes

Table 1 Methods according to representations

|% || 1 Graph ” 2 Bipartite Graph / HyperGraph |
|A: Partition” input: unipartite graph (see 2.1) || input: bipartite graph (see 2.1) |
| || output: partition || output : partition |
B: Hyper input: unipartite graph (see 2.1) || input data: bipartite graph (see 2.1)
Graph output: overlapping communities|| output: overlapping communities
(see 2.2) represented by a hyper-graph |[|represented by a hypergraph (see2.2)
C: Galois no method eligible input: bipartite graph (see 2.1)
Hierarchy except [40] output: Galois lattice of communities
(see 2.3) with partial results (see 2.3)

table 1. Table 2 below summarizes the major methods according to the above
classification.

Table 2 Papers classified according to their Community detection Methods

g;?—m ” 1: graph ”2: bipartite graph/hypergraph|
| || (78, 71,70, 7,47, 76] || |
|A: Partition || s[8, 57, 75, 26, 54]: || [66, 42, 61, 59, 67] |
| |[20, 64, 48, 56, 37, 3, 12, 21]|| |
| || 133, 74, 49, 51, 47, 6, 5, 46] || |
|B: hypergraph || s[18, 57]:/50, 16, 1, 33, 55].|| [44, 9, 34, 41] |
(overlapping communities) [17], S[54]: [25, 53, 15] S[54]:/34]

C: Galois Hierarchy [40]: partial results (29, 68, 62, 19]

Table Legend :

Letter S preceding a publication number indicates that this paper is a survey.

The expression: S[2]:[1], indicates that the survey referenced in paper number 2 cites and
comments on the community detection method described by paper number 1, and
moreover paper number 1 can be classified according to the table cell where it has been
placed.

4.2 From graphs to partitions (cell A1)

Most community detection algorithms lie in this class of methods. The input
data is a normal graph (i.e. a set of vertices representing individuals, who are
connected by edges), and the output is a list of node groups representing the
communities on the initial graph. Each individual belongs to one and only one
community. All surveys mentioned in Section 3 describe these algorithms in
full detail; the following algorithm classification has been adopted: top-down
(separate) methods in S[18],[56]; bottom-up (agglomerative) and/or cluster-
ing methods in S[18, 54, 75, 57],[56]; optimization-based algorithms [75] and
heuristic algorithms [75]. The three most popular algorithms will be discussed
hereafter, i.e. the Girvan-Newman algorithm [21] based on intermediate cen-
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trality, the Newman algorithm [46, 48] based on modularity and the Louvain
Algorithm [5].

4.2.1 Girvan and Newman Algorithm

According to survey [18] this algorithm belongs to the category of divisive
algorithms. Its underlying principle calls for removing the edges that connect
different communities. In the algorithm described in [48], several measures
of edge centrality are computed, in particular the so-called intermediate cen-
trality, whereby edges are selected by estimating the level of edge importance
based on these measures. As an illustration, intermediate centrality is de-
fined as the number of shortest paths using the edge under analysis. The
steps involved are as follows:

1. Compute centrality for all edges,

2. Remove edges with with the greatest centrality (when ties exist with
other edges, one edge is to be chosen at random),

3. Recalculate centralities on the remaining graph,

4. Tterate beginning at step 2.

This work has exerted great influence on research and, consequently, edge
centrality has been a key field of study for many scientists, resulting in the
proposal of several measures [69].

4.2.2 Modularity-based algorithm

This algorithm introduced by Girvan and Newman [48] and then improved in
[12] is based on modularity (see Section 2.4). The “glutton” type algorithm
maximizes modularity by merging communities at each step in order to get
the greatest value increase. Only those communities sharing one or more
edges are allowed to merge at each strep. This method is performed in linear
time; however, the community quality is less than that of other more costly
methods.

4.2.3 Louvain Algorithm

The main benefit of the Louvain algorithm [5] lies in its capacity to operate
very quickly on extremely large weighted graphs. This property however does
not guarantee an optimal graph partition; an adapted modularity formula,
derived from the initial formula presented in Section 2.4, is used for weighted
graphs. Initially, all vertices are placed in different communities. At first, all
vertices are taken into consideration. For each node 7, the algorithm computes
the gain in weighted modularity when placing ¢ in the community of its
neighbor node j and then chooses the community offering maximal gain. At
the end of this first loop, the algorithm yields the first partitioning scheme
before repeating the same step while already considering formed communities
as new nodes. The algorithm stops once additional increases in modularity
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are no longer possible. This method has been used to process very large social
networks extracted from phone companies, for example, with over 2.6 million
customers (see [5] for more details). Its processing time is very short.

4.3 From graphs to overlapping communities,
hypergraphs (B1)

TThis class of methods remains atypical, yet a number of authors have at-
tempted its implementation. The input data is a normal graph, while the out-
put is a list of node groups representing the communities of the initial graph;
these communities may indeed overlap. The result could be represented as
a hypergraph. The survey [57] mentions several methods without providing
any description along with two surveys [18, 54] that describe methods found
in this class. The most famous of such methods is ”Clique percolation”; this
algorithm devised by Palla et al. [15] speculates that the internal edges of
a community are likely to form cliques due to their high density. On the
other hand, it is unlikely that intercommunity edges form cliques. Palla et
al. use the term k-clique in reference to a complete graph with k vertices.
Two k-cliques are adjacent if they share k-1 vertices. The union of adjacent
k-cliques constitutes s a k-clique chain. Two k-cliques are connected if they
form part of a k-clique chain. Moreover, a k-clique community is the largest
connected subgraph obtained by uniting a k-clique with all k-cliques con-
nected to it. Several authors have proposed improvements to this method
given that the computing time may increase exponentially with the number
of nodes or edges in the graph. This method has been determined to provide
good results.

Other authors have found alternative ways to extract overlapping commu-
nities, such as [22, 23, 17]. As an example, [23] enhanced the Girvan-Newman
algorithm (see above) in its ability to detect overlapping communities.

4.4 From bipartite graphs to partitions (A2)

In this class, the inputs are bipartite graphs, representing for example indi-
viduals sharing common properties (photos, tags, etc.). The output contains
a list of communities from the initial graph. Each node belongs to just one
community. No surveys directly describe this particular case; however, [67]],
which is based on work performed by Murata [43], adapted a new modu-
larity measure for bipartite graphs in order to build separate communities.
Another effort in [59] uses cluster-type local density to extract communities
from bipartite graphs modeled as hypergraphs..



Survey on Social Community Detection 13

4.5 From bipartite graphs to overlapping communities,
hypergraphs (B2)

In this class, inputs are bipartite graphs, while outputs are either hypergraphs
or lists of node groups representing communities that may or may not overlap.
One survey [54] describes this case, in citing [34]. By defining “Epistemic
communities” in [61] Roth depicts a partial example of this class and then
takes it one step further with Galois hierarchies (see below).

4.6 From bipartite graphs to Galois hierarchies (C2)

This class extends another a step by attempting to extract communities while
preserving knowledge shared in each community. No survey has described this
type of method. The inputs are bipartite graphs, and the outputs a Galois
hierarchy that reveals communities semantically defined with their common
properties or shared knowledge. Communities are non-empty lattice extents,
and the result is a hypergraph whose hyperedges are labeled by lattice intents
(i.e. shared knowledge).

However, a Galois hierarchy, which is roughly computed from the hyper-
graph input (as in the case of Freeman [19]), is not a satisfactory scheme since
a significant number of groups may be obtained. Under ideal conditions, re-
duction methods should be introduced, which at one level cause the loss of
some semantic precision, yet on another level add precision, i.e. cohesion and
reliability inside the extracted communities. Only very few authors have ac-
tually addressed this difficulty. Roth [61] found the epistemic communities
described above before proposing to retain communities of significant size (ex-
tent) and semantics (intent), though with weak justification and validation
for the proposed heuristics. The authors in [63] then proposed well-known
Galois lattice reduction methods based on the so-called iceberg method as
well as the stability method.

The iceberg method from [29] identifies concepts with frequent intents
above a set threshold. The authors however point out that some important
concepts may be overlooked with this method. Stability methods, as used in
[29, 32], rely on concept stability. The fewer the number of extent subsets
present in child concepts, the greater the concept stability. In [7] it is argued
that combining both the iceberg and stability methods yields good results
for extracting pertinent communities based on concepts. Two thresholds still
need to be set however, as the algorithms computation time may be expo-
nential in the number of objects and attributes (NP complete) and lastly the
result presented in the form of a Galois lattice is not easily comprehensible.
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4.7 Discussions

In this section, all the major community detection methods have been classi-
fied and described. The majority of methods examined lie in cell A1 of Table
2, thus producing a partition scheme of communities, which is a configura-
tion not so well adapted to social networks since individuals may belong to
several interest groups. The methods in cell B1 of Table 2 allow extracted
communities to overlap. This hypergraph model is better adapted to repre-
senting social communities. The methods in cell A2 address the case where
individuals are represented with their property knowledge (bipartite graph)
yet still provide a partition community scheme. The approaches in cell B2 are
more realistic when it comes to representing property sharing communities,
although they do require some abstraction. Lastly, the methods in cell C2 are
the most accurate, because they extract communities using their precise se-
mantics. Nonetheless, they fall short of giving simple and practical results. It
is easy to conclude the lack of perfect methods, as each one presents its pros
and cons depending on what the experimenters are seeking. Many methods
have been proposed to extract partitioned communities from simple graphs,
and this availability of methods is certainly due to the ease of describing this
type of problem and drawing a partition in comparison with hypergraphs or
Galois lattices.

5 Evaluation methods for community detection

Validation is a key issue: How is it possible to verify that the communities
identified are actually the appropriate ones? How is it possible to compare re-
sults between two distinct algorithms and declare one better than the other?
Several methods may be proposed. One simple sentence from a survey [57]
reminds us of the great difficulty involved in evaluating community detec-
tion methods: “Now that we have all these ways of detecting communities,
what do we do with them?” No evaluation methods are actually given. In his
survey, Fortunato [18] provides an effective analysis of evaluation methods
in proposing three steps: benchmarks, evaluation measures, and comparative
evaluation results. Papadopoulos’ survey [54] merges evaluation with various
community definitions; like other surveys available, it does not pay great at-
tention to evaluation, except for presenting applications on well-known cases
and extensive practical social networks. Most validation methods have been
designed for the methods in cell A1 of Tables 1 and 2. As a matter of fact, most
detection methods may be compared to ”clustering” algorithms as regards
evaluation. It is well known that clustering yields results that are difficult to
evaluate. This same situation is encountered in the area of community de-
tection. Some standard evaluation methods do however emerge. This section
will start by presenting several measures of potential use in evaluating the
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results of community detection methods. Afterwards, evaluation benchmarks
will be introduced before reviewing a number of evaluation methods.

5.1 Community extraction results’ measures.

5.1.1 Referent graph versus Expert panel

One type of evaluation is based on expert validation. Two validation modes
may be considered. Either the result is presented to an expert or a panel of
experts, who visually decide whether or not each community is valid. Alter-
natively, referent community allocation schemes, which are perhaps manually
designed by an expert or else a users’ panel, are available; according to such
a scheme, an expert uses the measures described below in order to decide
whether or not the computed result is adequate with a given confidence crite-
rion. This method relies on expertise and may vary depending on the assigned
expert; it may also depend on the actual viewpoint adopted. Each commu-
nity can be positively evaluated provided a justifying angle of interpretation
can be found. As such, the tasks of expert work and reliability are rendered
quite difficult. Some types of referent graphs however do not introduce any
doubt, e.g. a graph showing civil relations between individuals in a wedding.
The Karate Club example in [77] is famous because it was known that at
one time the club divided into two subgroups and moreover any partitioning
method would show this result.

5.1.2 F-Measure based on recall and precision measures

Gregory [22] adapted the measures of recall and precision formulas:

e recall: the fraction of vertex pairs belonging to the same community
within the referent benchmark graph that are also members of the same
community in the resulting partition;

e precision: the fraction of vertex pairs that are members of the same com-
munity in the resulting partition while also belonging to the same com-
munity in the referent benchmark graph.

The F-measure is used in this context, i.e. the harmonic average of recall and
precision. The F-measure provides a useful balanced vision of the community
detection algorithm. The dual recall and precision measures may also be
introduced, in applying these formulas on the edges instead of the vertices.
These kinds of measures are very practical yet remain difficult to adapt
if the community number in the resulting partition scheme is not the same
as that in the referent benchmark graph. Certain adapted measures may be
implemented for added flexibility on resulting communities.
Girvan-Newman [21] proposed a similar measure: the fraction of correctly
assigned community vertices, divided by the total size of the graph.
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5.1.3 Automatic graph and community generation

As will be seen in greater detail in the following subsections, a number of au-
thors have generated automatic graphs and graph community schemes using
several methods. They then compared their community detection algorithms
to the communities actually generated. Some generation methods produce
random communities, in which case the goal consists of proving that their
algorithms are better than randomness. Other generation methods offer a
community scheme according to a previously defined goal (e.g. generate 5
communities), with the authors then attempting to obtain a similar result
with their algorithm. This method will be discussed in more precise terms
below.

5.1.4 quality measure

A community detection scheme may be considered effective or ineffective by
using a so-called quality function. This specific measure provides a means for
comparing quality across several community detection schemes.

One of these quality measures, "Modularity”, which was introduced by
Newman [48] and has already been mentioned in Section 2.4, is very famous
and widely used. Modularity expresses the fact that a community has a high
density ratio as compared to the same graph without any community struc-
ture. This high-density criterion is considered to offer good community detec-
tion quality. Some authors have combined a local quality measure (based on
modularity) along with the potential of community communication in order
to produce an overall quality ratio (see for example [11]).

Several authors cited in the Fortunato survey [18] (in his Section C2) note
that a community detection method yielding strong modularity results is not
always the best choice, in arguing that low modularity values could provide
greater stability in communities.

5.1.5 Discussion and more global measures
Some measures may prove to be contradictory, as indicated in [30]. Moreover,

most measures focus on the mathematical properties of a graph. In a social
network however, an individual may have different intentions regarding group
membership. Real communities may not be optimal with respect to collective
modularity. In the real world, communities are determined by their history,
which in turn is driven by individual personalities and contingent events. The
social optimum at present is not easily able to manage and explain everything.
Other methods are needed to take into account these dynamic and human
dimensions.

5.2 Standard Benchmarks, random generated graphs

Considered by many researchers as references, several popular real networks
are often used as benchmarks. Some of these are cited along with their vertex
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number v and edge number e: Zachary Karate Club [77](v=34, e=78); a so-
cial network of dolphins living in Doubtful Sound (New Zealand) [38] (v=62,
e=159); college football team games [21] (v=115, e=613); University e-mail
network [24] (v=1133, e=5451); and scientific co-authorship in condensed
matter physics [45] (v=27519, e=116181). For some of these, a final commu-
nity list for their graphs exists, while for others only the graph structure is
present. Girvan-Newman [21] designed a random computer-generated graph
and community partition scheme with 4 groups and 32 vertices in each group.
This set-up has since become a standard benchmark. A new enhanced version
of this graph has been designed by Brandes [8]. These standard graphs and
benchmarks can then be used to compare community results with a particular
community detection algorithm by applying the previously defined measures.

5.3 Community detection method evaluation

From an evaluation standpoint, community detection is a complex prob-
lem. Each method evaluation turns out to be different, and comparing each
method’s performance proves to be a real challenge. By using the set of mea-
sures presented in Section 5.1, a performance evaluation is derived for a given
algorithm. A good solution consists of obtaining results from several meth-
ods and maintaining the community detection schemes generated by several
methods. This option guarantees good stability of the community detection
scheme. Testing a method against the Girvan-Newman benchmark entails
calculating the similarity between partitions determined by the method and
the natural partition of the graph within the four equal-sized groups. Re-
garding the two popular real networks with a known community structure,
i.e. the social networks of Zachary’s Karate Club and bottlenose dolphins,
the question raised is whether the actual separation into two social groups
could have been predicted from the graph topology. Zachary’s Karate Club
is by far the most widely investigated system. Several algorithms are in fact
able to identify the two classes, notwithstanding a few intermediate vertices,
which could potentially be misclassified. For example, the so-called Louvain
Algorithm finds 5 karate club communities instead of 2. This process how-
ever does not guarantee the performance on real networks. Other dimensions,
such as semantics and pragmatics, need to be considered as we have argued
above. Community detection methods that keep knowledge embedded in the
original network, i.e. based on Galois hierarchies or hypergraphs, may lead
to more accurate results. This evaluation process enhancement has yet to be
introduced. Some of the authors from the C2 and C3 cells in Table 2 have ad-
dressed this difficult issue, though semantics and pragmatics considerations
must still be developed in community detection evaluation methods.

6 Conclusion

The study of networked communities is, in some respects, now quite old,
with its origins traced back to sociology, computer science, statistics and
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other disciplines. Nevertheless, the expanding field of social networks has
focused greater attention on this topic. The present survey has provided a
state-of-the-art on existing methods with a new angle: classifying algorithms
according to their input and output data schemes. Graphs, hypergraphs and
Galois lattices are proven to be useful in representing the growing complexity
of community detection methods. This development has allowed demonstrat-
ing how to share knowledge and information among social network users.
Further research is still required in this field given the organizing power and
commercial interest inherent in knowledge. More methods should be devel-
oped and their associated software tools are expected to follow.
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