D. Bennequin, M. J. Gander, and L. Halpern, A homographic best approximation problem with application to optimized Schwarz waveform relaxation, Mathematics of Computation, vol.78, issue.265, pp.185-223, 2009.
DOI : 10.1090/S0025-5718-08-02145-5

URL : https://hal.archives-ouvertes.fr/hal-00111643

E. Blayo, L. Debreu, and F. Lemarié, Toward an optimized global-in-time Schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients
URL : https://hal.archives-ouvertes.fr/hal-00661978

E. Blayo, L. Halpern, and C. Japhet, Optimized Schwarz Waveform Relaxation Algorithms with Nonconforming Time Discretization for Coupling Convection-diffusion Problems with Discontinuous Coefficients, Lect. Notes Comput. Sci. Eng, vol.55, pp.267-274, 2007.
DOI : 10.1007/978-3-540-34469-8_31

URL : https://hal.archives-ouvertes.fr/inria-00187555

D. Boffi and L. Gastaldi, Analysis of Finite Element Approximation of Evolution Problems in Mixed Form, SIAM Journal on Numerical Analysis, vol.42, issue.4, pp.1502-1526, 2004.
DOI : 10.1137/S0036142903431821

F. Brezzi and M. Fortin, Mixed and hybrid finite elements methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for mixed finite elements, Mathematics of Computation, vol.64, issue.211, pp.989-1015, 1995.
DOI : 10.1090/S0025-5718-1995-1297465-9

J. Douglas, J. , P. J. Paes-leme, J. E. Roberts, and J. P. Wang, A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods, Numerische Mathematik, vol.35, issue.1, pp.65-95, 1993.
DOI : 10.1007/BF01385742

L. C. Evans, Partial differential equations, 1998.

L. Gander, M. J. Halpern, and F. Nataf, Optimal convergence for overlapping and nonoverlapping Schwarz waveform relaxation, 11th International Conference on Domain Decomposition Methods, pp.27-36, 1999.

M. J. Gander and L. Halpern, Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems, SIAM Journal on Numerical Analysis, vol.45, issue.2, pp.666-697, 2007.
DOI : 10.1137/050642137

M. J. Gander, L. Halpern, and M. Kern, A Schwarz Waveform Relaxation Method for Advection???Diffusion???Reaction Problems with Discontinuous Coefficients and Non-matching Grids, Lect. Notes Comput. Sci. Eng, vol.55, pp.283-290, 2007.
DOI : 10.1007/978-3-540-34469-8_33

URL : https://hal.archives-ouvertes.fr/hal-01111940

M. J. Gander, L. Halpern, and F. Nataf, Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation, SIAM Journal on Numerical Analysis, vol.41, issue.5, pp.41-1643, 2003.
DOI : 10.1137/S003614290139559X

M. J. Gander, C. Japhet, Y. Maday, and F. Nataf, A New Cement to Glue Nonconforming Grids with Robin Interface Conditions: The Finite Element Case, Lect. Notes Comput. Sci. Eng, vol.40, pp.259-266, 2005.
DOI : 10.1007/3-540-26825-1_24

URL : https://hal.archives-ouvertes.fr/hal-00112937

F. Haeberlein, Time space domain decomposition methods for reactive transport -Application to CO 2 geological storage, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00634507

L. Halpern and C. Japhet, Discontinuous Galerkin and Nonconforming in Time Optimized Schwarz Waveform Relaxation for Heterogeneous Problems, Lecture Notes in Computational Science and Engineering, vol.60, pp.211-219, 2008.
DOI : 10.1007/978-3-540-75199-1_23

L. Halpern, C. Japhet, and P. Omnes, Nonconforming in time domain decomposition method for porous media applications, Proceedings of the 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, 2010.

L. Halpern, C. Japhet, and J. Szeftel, Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation, in Domain decomposition methods in science and engineering XIX Optimized Schwarz waveform relaxation and discontinuous Galerkin time stepping for heterogeneous problems, Lect. Notes Comput. Sci. Eng. SIAM J. Numer. Anal, vol.7818, pp.133-140, 2011.

T. T. Hoang, J. Jaffré, C. Japhet, M. Kern, and J. E. Roberts, Space???Time Domain Decomposition for Mixed Formulations of Diffusion Equations, Proceedings of the 21st International Conference on Domain Decomposition Methods
DOI : 10.1007/978-3-319-05789-7_26

URL : https://hal.archives-ouvertes.fr/hal-00923353

C. Japhet and P. Omnes, Optimized Schwarz Waveform Relaxation for Porous Media Applications, Proceedings of the 20th International Conference on Domain Decomposition Methods, 2013.
DOI : 10.1007/978-3-642-35275-1_69

F. Kwok, Neumann???Neumann Waveform Relaxation for the Time-Dependent Heat Equation, Proceedings of the 21st International Conference on Domain Decomposition Methods
DOI : 10.1007/978-3-319-05789-7_15

P. , L. Tallec, Y. H. De-roeck, and M. Vidrascu, Domain decomposition methods for large linearly elliptic three-dimensional problems, J. Comput. Appl. Math, vol.34, pp.93-117, 1991.
URL : https://hal.archives-ouvertes.fr/inria-00075376

J. Li, T. Arbogast, and Y. Huang, Mixed methods using standard conforming finite elements, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.680-692, 2009.
DOI : 10.1016/j.cma.2008.10.002

J. Mandel, Balancing domain decomposition, Communications in Numerical Methods in Engineering, vol.13, issue.3, pp.233-241, 1993.
DOI : 10.1002/cnm.1640090307

J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients, Mathematics of Computation, vol.65, issue.216, pp.1387-1401, 1996.
DOI : 10.1090/S0025-5718-96-00757-0

V. Martin, An optimized Schwarz waveform relaxation method for the unsteady convection diffusion equation in two dimensions, Applied Numerical Mathematics, vol.52, issue.4, pp.401-428, 2005.
DOI : 10.1016/j.apnum.2004.08.022

W. Martinson and P. Barton, A Differentiation Index for Partial Differential-Algebraic Equations, SIAM Journal on Scientific Computing, vol.21, issue.6, pp.2295-2315, 2000.
DOI : 10.1137/S1064827598332229

T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Lecture Notes in Computational Science and Engineering, vol.61, 2008.
DOI : 10.1007/978-3-540-77209-5

A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, 1999.

J. E. Roberts and J. Thomas, Mixed and hybrid methods, in Handbook of numerical analysis, Handb. Numer. Anal, vol.II, pp.523-639, 1991.

R. E. Showalter, Nonlinear Degenerate Evolution Equations in Mixed Formulation, SIAM Journal on Mathematical Analysis, vol.42, issue.5, pp.2114-2131, 2010.
DOI : 10.1137/100789427

U. Stefanelli and A. Visintin, Some nonlinear evolution problems in mixed form, Boll. Unione Mat. Ital, vol.2, issue.9, pp.303-320, 2009.

V. Thomée, Galerkin finite element methods for parabolic problems, 1997.
DOI : 10.1007/978-3-662-03359-3

A. Toselli and O. Widlund, Domain decomposition methods?algorithms and theory, 2005.
DOI : 10.1007/b137868