Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations

Abstract : Existence and uniqueness of global in time measure solution for a one dimensional nonlinear aggregation equation is considered. Such a system can be written as a conservation law with a velocity field computed through a selfconsistant interaction potential. Blow up of regular solutions is now well established for such system. In Carrillo et al. (Duke Math J (2011)), a theory of existence and uniqueness based on the geometric approach of gradient flows on Wasserstein space has been developped. We propose in this work to establish the link between this approach and duality solutions. This latter concept of solutions allows in particular to define a flow associated to the velocity field. Then an existence and uniqueness theory for duality solutions is developped in the spirit of James and Vauchelet (NoDEA (2013)). However, since duality solutions are only known in one dimension, we restrict our study to the one dimensional case.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2016, 36 (3), pp.1355-1382
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00803709
Contributeur : Francois James <>
Soumis le : jeudi 4 septembre 2014 - 16:13:20
Dernière modification le : jeudi 21 mars 2019 - 14:48:15
Document(s) archivé(s) le : vendredi 5 décembre 2014 - 10:39:15

Fichiers

GF_dual_corr1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00803709, version 3
  • ARXIV : 1303.5836

Citation

Francois James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2016, 36 (3), pp.1355-1382. 〈hal-00803709v3〉

Partager

Métriques

Consultations de la notice

786

Téléchargements de fichiers

260