
HAL Id: hal-00803702
https://hal.science/hal-00803702

Submitted on 22 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CrowdSC: Building Smart Cities with Large Scale
Citizen Participation

Karim Benouaret, Raman Valliyur-Ramalingam, François Charoy

To cite this version:
Karim Benouaret, Raman Valliyur-Ramalingam, François Charoy. CrowdSC: Building Smart Cities
with Large Scale Citizen Participation. 2013. �hal-00803702�

https://hal.science/hal-00803702
https://hal.archives-ouvertes.fr

CrowdSC: Building Smart Cities with Large Scale
Citizen Participation

Karim Benouaret1, Raman Valliyur-Ramalingam2 and François Charoy2

1Inria Nancy – Grand Est, Villers-lès-Nancy, France
2LORIA/Inria/Université de Lorraine, Villers-lès-Nancy, France

Abstract – An elegant way to make cities smarter
would be to design a platform where every citizen
is given an opportunity to be effectively connected
to the governing bodies in their location and to con-
tribute to the general well being. In this paper, we
present CrowdSC, an effective crowdsourcing frame-
work designed for smarter cities. We show that it is
possible to combine data collection, data selection
and data assessment crowdsourcing activities in a
crowdsourcing process to achieve sophisticated goals
in a predefined context. We propose different strate-
gies for managing this process. We also present an
experimental study that evaluate outcomes of the
process depending on these execution strategies.

1 Introduction

Nowadays, cities face complex challenges to meet
objectives regarding urban development. As a con-
sequence, pressure is growing for cities government
bodies to leverage every available opportunity to
become greener, smarter and to promote a better
quality of life for their citizens. One of the opportuni-
ties is to foster citizen participation to allow them to
contribute to the enhancement of their environment.
This participation may occur as part of a crowd-
sourcing activity inside the delimited area of the city.
What could be could be considered as infeasible in
the past can be achieved at very affordable price
today. More and more urban people are equipped
with smartphones that provides advanced capabili-
ties to connect to the internet, take picture and track
their location[1]. It is now a well addressed idea to
ask them to contribute in a given context the facil-
ities of their device together with their intelligence

to achieve large scale coordinated endeavour. It is
realistic to try to benefit from citizens’ knowledge,
experience and collaboration to get an overview of
the city infrastructure and utilities by crowdsourcing
the result to questions such as : “What roads need
a repair in Paris ?”, or “What places are slovenly in
Nancy ?”.

Two main reasons motivate the need of citizens’
participation in these and many other scenarios.
First, in this kind of scenarios, information provided
by humans (citizens) may be more accurate than that
provided by sensors and computers. Second, it can
be done on a lower budget since citizen participation
is not directly rewarded.

Most of the work on crowdsourcing that can be
found in the literature consider executing one single
task at a time. Services, such as Amazon Mechanical
Turk [2], are used to solve tasks that require human
intelligence [3]. They are mostly used for atomic
tasks; e.g., tagging images, evaluating products, etc.
Here, we want to consider more complex queries
that combine different kind of activities that can
be decomposed in a series of small human tasks
under the control of a process execution and that are
context-aware.

As an example we imagine that the mayor of Nancy
(A middle sized city from the North-East of France)
wants to get a view on the state of the roads to sched-
ule repairs. He may ask for citizens’ contribution
to help him to achieve that goal. For instance, he
may ask the following query: “What roads need a
repair in Nancy?”. This query seems simple if you
ask experts to do it with a precise specification. It
is more tricky when you want ordinary citizen to
help you. First the mayor must be specific. If hun-
dreds of roads are reported as damaged, does all

Page 1 of 7

the roads really need a repair? How to find those
that need a repair urgently ? Since smartphones are
equipped with cameras the query can be changed to:
“Find photos of roads that need a repair in Nancy,
along with an assessment {not damaged, damaged,
very damaged}”. This query can be answered in a
straightforward way, i.e., each participant send one
or more photos of damaged roads along with their
priority. With this procedure, we might receive a
lot of photos with different priority assessment for
the same locations (i.e., roads): some citizens make
mistakes; some lie so that the roads in their vicin-
ity will be repaired. We propose to overcome this
problem with a more sophisticated decomposition of
the process: (i) ask some citizens to provide photos
of roads that need a repair. We refer to this step as
data collection (ii) ask some other participants to
select the most representative photo for each loca-
tion. This step is referred to as data selection; and
(iii) ask some citizens to assess the priority of each
selected photo. We refer to this step as data assess-
ment. Unfortunately, designing and managing this
process execution would be very painful or costly for
the mayor services and most probably not easy to re-
peat. He has to decompose his query into small tasks
and post them to citizens. Then, he needs to decide
how and when to move from one step to another, i.e.,
from data collection to data selection, or from data
selection to data assessment. This is why we propose
to design a crowdsourcing framework, that can be
used in the context of smart cities to leverage citizen
participation. It would (i) automatically decompose
queries into simple tasks executable by humans; (ii)
collect, aggregate and cleanse the data and answers
provided by humans, and return the results to the
user. This process could even be mixed with some
automatic tasks depending on the expected outcome.

In this paper, we assume that the combination of
data collection, selection and assessment can sup-
port a lot of scenarios. Based on this process, we
propose an effective crowdsourcing framework called
CrowdSC, which is designed for smart cities, and cope
with the above mentioned challenges. The framework
implements different strategies to manage the pro-
cess. An experimental evaluation is conducted to
evaluate the quality of the different strategies.

2 Related Work

Crowdsourcing tasks by citizens is a powerful means
for making cities smarter. Hereafter, we provide an
overview of some salient related work.

Location-based crowdsourcing: In [4], the au-
thors propose a prototype for location-based mobile
crowdsourcing consisting of a Web and a mobile
client. Similarly, in [5], the authors design a frame-
work for crowdsourcing location-based queries on
top of Twitter. Kazemi and Shahabi propose in [6]
new techniques for assigning the maximum number
of tasks to a workers. Unfortunately, these frame-
works cannot support complex queries. Given a query
photo, taken from a location l, and a set of photos
of l retrieved by a search engine, Yan et al. propose
in [7] a system that ask humans to vote with “yes”
or “no” for each retrieved photo. The authors then
propose some techniques to find the most represen-
tative photo of l. This process may be useful from
smart cities vision, but, can not support collecting
and handling masses of data.

Optimising the quality of the results:
Parameswaran et al. propose in [8] different strate-
gies for filtering data with humans, using the “yes”
or “no” filters. In [9], the authors propose different
algorithms for finding the maximum, i.e., the best,
item within a set of items. Given a quality threshold
t, Liu et al. define in [10] the minimum number of
humans to ask in order to achieve t. However, these
works assume that the probability that each human
provides the right answer is available, but in our case
this information is not known.

3 Crowdsourcing Process Model

The first challenge is to transform our general crowd-
sourcing query into an executable process that ag-
gregate different kinds of crowdsourcing activities.
Here we consider a simplified form of query that
can help to achieve contextualized goal that we have
described. We will first define the input model of
CrowdSC. Then we explain how to extract the tasks
from the input and propose an output model.

3.1 Input Model

The input of CrowdSC is a query Q = <
O,C,L,A, Ts, Te, S >, where O describes the set of
objects the user is looking for, C describes the con-
text of O that citizens have to consider in answering
Q, L stands for the location, i.e., the city, A com-
prises the domain of the assessments that can be
attributed to O in the context of C, Ts and Te are
respectively the start and end time of the query ex-
ecution, and S is a parameter to select a strategy
(we present different strategies in Section 4, namely,

Page 2 of 7

Buffer, Deadline and FIFO). The query of our ex-
ample would be represented as <roads, need repair,
Nancy, {not damaged, damaged, very damaged},
03/01/2013 – 8:00, 03/21/2013 – 20:00, deadline>.

3.2 Tasks Model

Given a query Q:< O,C,L,A, Ts, Te, S >, we can
define the data collection, data selection and data
assessment tasks as follows:

• Data collection task: we use photos as a means
to retrieve the set of objects O and define a data
collection task DCT as a triple < O,C,L >. It
asks citizens to take photos of O within context
C, in location L. In our example, it asks citizens
to take photos of road that need to be repaired
in Nancy;

• Data selection task: as a lot of photos of the
same object (e.g., the same road) are expected,
we define a data selection task DST as a triple
< P,C, l >, where P is a set of photos of ob-
jects in the same location l (we mean here by
location the address, not the city like Nancy).
A data selection task asks participants to vote
“yes” for photos that represent location l within
context C, and “no” for the others. The photo
with the maximum number of “yes” votes is
selected as the most representative photo of a
location l within context C. For example, for
P = {p1, p2, . . . , p10}, a data selection task can
be: “vote for each photo in P that represents l
within C”;

• Data assessment task: once getting the most
representative photos for a location, we need to
assess this photo. To this end, we define a data
assessment task DAT as a triple < p,C,A >,
where p is a photo. An assessment task asks
citizens to assess the photo p within context
C, with assessment A. The result is the most
attributed assessment. For example, if p3 ∈ P
was selected, a data assessment task would be
“assess p3 with {not damaged, damaged, very
damaged} within C.

3.3 Output Model

The output of CrowdSC, which comprises the result
of the query Q, is a set of photos of O along with
their locations and assessments. One can then invoke
a map-based result visualisation service. Figure 1
shows a screenshot of the output model of CrowdSC.

Figure 1: Output Model of CrowdSC

4 Query Processing Strategies

The second important challenge in building CrowdSC
is managing and executing the different tasks, and
detecting citizen errors or misbehaviour. The natural
option to handle the errors is to distribute each task
to k participants and to aggregate the answers [11, 8].
CrowdSC follows this direction for data selection and
data assessment tasks since we assume that we will
always find participants to provide answers. However,
a data collection task is more critical since (1) it
requires citizens to be on-site to take photos; and (2)
it has an influence on the data selection and data
assessment tasks. Of course, we can wait for k photos
in each location l, but, this may take a very long time.
In some scenarios, k photos may not be sufficient to
get the right results. The number of photo that we
need for eacu location may depends on the scenario
as well as the duration of the query, i.e., Ts and
Te. Given a query Q:< O,C,L,A, Ts, Te, S >, we
present in the following three strategies to handle
with these issues.

4.1 Buffer Strategy

The main idea of the buffer strategy is to wait for k
photos of O from each location l (l ∈ L) to continue
the processing. When k photos are collected for a
given location l, we distribute the selection task re-
garding l and wait for k answers from citizens. The
photo, say p, with the maximum number of “yes”
votes is selected as the most representative photo of
O for location l in the context C (if there is more
than one photo with the highest score, we select ran-
domly one among them). Then, we ask participants

Page 3 of 7

to assess the selected photo p (assessment are given
in A), and wait for k answers. The more assigned
assessment is considered as the appropriate assess-
ment for the photo p. The process proceeds in the
same manner for each location until Te.

4.2 Deadline Strategy

The buffer strategy starts data selection only when
it gets k photos for a given location l. Thus, if
citizens do not provide k photos of l at Te, we lose
some results. This situation is expected in practice
since some locations are more visited than others.
Thus, we propose the deadline strategy. The idea
is to collect photos of O starting from Ts until a
deadline d, then to built buckets of photos for each
location l (l ∈ L) – each bucket regroups photos of
the same location. The next steps are similar to the
buffer strategy. That is, we distribute the selection
task for each bucket and wait for k answers. Once
having the most representative photo, say p, for a
given location in the contact C, we distribute the
assessment task regarding p, and wait for k answers
to get the assessment of p. The process proceeds in
the same manner for each bucket until Te.

4.3 FIFO Strategy

To move from the data collection phase to the data
selection phase for a given location l, the buffer and
deadline strategies wait for k photos of l or for the
deadline d, respectively. It might be interesting to
consider an execution that would generate results
more instantly and where the result size would in-
crease gradually. We propose the FIFO strategy,
which proceeds as follows. When we receive a photo,
say p, of O in a given location l, we immediately
ask citizens to vote with “yes” or “no” to see if that
photo really represents l in the context C, and wait
for k answers. If the majority of votes are “yes”,
we select p as a representative photo for location
l; otherwise, we wait for another photo of O for l,
and repeat the same procedure. Once having the
representative photo of O for location l, the FIFO
strategy follows the similar strategy as the buffer and
deadline strategies, i.e., we distribute the assessment
task regarding the selected photo, and wait for k an-
swers to get its assessment. This strategy proceeds
in the same manner for each location until Te.

5 System Architecture

CrowdSC is implemented using Bonita[12], an open-
source BPM suite. Figure 2 describes the general
architecture of CrowdSC. The main components of
CrowdSC are the Process Generator, the Process
Engine, the Task Manager and the Result Visualizer.
The Storage Engine is external, and is accessed by
our system at query time.

Figure 2: CrowdSC Architecture

The Process Generator receives the query from the
user and transform it into a processing plan, i.e., it
generates the data collection, data selection and data
assessment process along with other service calls if
needed.

The Process Engine takes the processing plan from
the Process Generator and generates a sets of tasks
for the citizens to perform and aggregates the an-
swers; Roughly speaking, the role of the Process
Engine is to execute the process according to the
strategy (buffer, deadline or FIFO) chosen by the
user.

The Task Manager receives progressively the tasks
from the Process Engine and communicates with
the crowd via a crowd platform to post tasks and
retrieve the answers, then send them to the Process
Engine. We assume that the citizen have installed an
App on their phone that is able to communicate with
the task manager. How we can get the citizens to
install and use the app is out of our scope but we can
imagine that Smart Cities may provide a dedicated
app that provide access to the city services as it is
common today.

Page 4 of 7

The role of the Result Visualizer is to receive the
results from the Process Engine and return them to
the user as a map.

6 Experimental Evaluation

The last challenge with our system is to be able to
evaluate the quality of the results. Since we have
not yet used it in a large scale setting, we propose
to evaluate the respective qualities of the proposed
strategies, i.e., buffer, deadline and FIFO, focusing
on: (i) the number of results returned; (ii) the quality
of the results; for which, we use the F-measure, i.e.,
2 precision.recall
precision+recall ; and (iii) the progressivity, i.e., how

the results accumulate over time.

Due to the limited availability of large real datasets,
we use the Gowalla dataset [13]. It contains a set
of users along with their check-in time and location
on Gowalla, a location-based social networking web-
site where users share their locations by checking-in.
For our experiments, we assume that each user is a
participant citizen. To generate the ground truth
document, we make one random assignment of three
possibilities for each location. We use a period of 5
days, and divide the data into three parts so that
we have data collectors, data selectors and data as-
sessors. We consider each check-in time in a given
location as a response from that location for the cur-
rent processing query. To be more realistic, for each
collected data (photo), we introduce a parameter in
[0.5, 1] that controls whether the data selectors and
data assessors provide a correct answer or not. That
is, we assume that citizens have a high probability
to provide correct answers.

For the deadline strategy, the deadline is set to the
half of the duration of the process, i.e., d = Te−Ts

2 .
For all strategies, the default values for the duration
of the process, i.e., Te − Ts and the k value are 3
days and 7, respectively.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5

N
u

m
b

e
r

o
f

R
e

s
u

lt
s

Duration (day)

buffer
deadline

FIFO

Figure 3: Number of Results vs Duration (k = 7)

Number of results: we measured the number
of results, varying the duration of the process from
1 day to 5 day. The results of this experiment are
presented in Figure 3. As expected, when the dura-
tion increases, the number of results increases since
more citizens can participate. The number of results
returned by Buffer is much less than that returned
by Deadline and FIFO. Buffer needs to wait for k
photos for each location, and some location are not
popular. FIFO returns more results than Deadline
since this later starts the data selection and assess-
ment after the deadline, while the former, can do it
whenever there is a photo received.

 0

 50

 100

 150

 200

 250

 3 5 7 9 11

N
u

m
b

e
r

o
f

R
e

s
u

lt
s

k

buffer

deadline

FIFO

Figure 4: Number of Results vs k (Duration = 3 days)

We also measured the number of results, varying
k from 3 up to 11. Figure 4 shows the results of
this experiments. FIFO returns more result than
the other strategies and remains unaffected since
it does not wait for k photos or the deadline to
starts the data selection step. Also, deadline remains
unaffected for k ≤ 7, and for k > 7, the number
of results returned decreases as the remaining time
after the deadline d is insufficient to select and assess
the data. Moreover, the number of results returned
by the buffer decreases significantly with the increase
of k since it require k photos for each location since
they have more time for collecting data.

 0.65

 0.7

 0.75

 0.8

 0.85

 1 2 3 4 5

F
-m

e
a

s
u

re

Duration (day)

buffer
deadline

FIFO

Figure 5: Quality vs Duration (k = 7)

Page 5 of 7

Quality: Figure 5 shows the quality of the re-
sults varying the duration. As can be seen, FIFO
has the lowest quality, and it is not affected by the
duration.In almost all cases, the first photo of each
location is selected; Since it is probably not the best
photo of that location it affects the assessment step.
The quality of Deadline and Buffer increases with
the duration. Note that deadline is better since it
collects the maximum number of photos until the
deadline d, and can move to data selection and assess-
ment without having k photos for a location, while
buffer, misses some location because some photos are
missing to reach the threshold.

Figure 6 depicts the quality of the results varying k.
From this experiment, we can see that the quality of
all strategies increases with the increase of k. This is
because, when using more citizens, the probability to
get a correct answer increases. Similarly to the last
experiment, Deadline is better than Buffer, which in
turn is better than FIFO for the same reasons.

 0.65

 0.7

 0.75

 0.8

 0.85

 3 5 7 9 11

F
-m

e
a

s
u

re

k

buffer

deadline

FIFO

Figure 6: Quality vs k (Duration = 3 days)

Progressivity: As shown in Figure 7, FIFO and
Buffer return some results the first day and progres-
sively return the remaining ones. However, FIFO is
around 3 times better since buffer have to wait for k
photos for each location. Moreover, the first results
of Deadline can only appear after the deadline d, i.e.,
after 1.5 days, then increases significantly.

7 Conclusion

We have presented a crowdsourcing framework for
smart cities called CrowdSC, which aims at mak-
ing cities smarter by leveraging citizen participation.
We have provided different strategies based on the
process of data collection, data selection and data as-
sessment to answer users’ complex queries. Through
our experimental evaluation, we can see that each
strategy has its own merits, therefore, the choice of
the strategies depends on the user needs. Hence,

 0

 50

 100

 150

 200

 250

 1 1.5 2 2.5 3

N
u

m
b

e
r

o
f

R
e

s
u

lt
s

Time (day)

buffer
deadline

FIFO

Figure 7: Progressivity (Duration = 3 days, k = 7)

the proposed strategies are complementary. For in-
stance, if high accuracy is required, the Deadline
strategy appears to be better but in a crisis situation
where results are required urgently to take actions,
the FIFO strategy is very well suited. Still, we have
shown using a simulation that it is possible to com-
bine different kind of crowdsourcing activities in a
process to achieve potentially complex result within
a specified context. More requires to be done on the
side of the actual execution with our process engine
and with actual citizens.

References

[1] Hans Schaffers, Nicos Komninos, Marc Pallot,
Brigitte Trousse, Michael Nilsson, and Alvaro
Oliveira. Smart cities and the future internet:
Towards cooperation frameworks for open in-
novation. In Future Internet Assembly, pages
431–446, 2011.

[2] https://www.mturk.com/mturk/welcome.

[3] Jeff Howe. The Rise of Crowdsourcing. (accessed
July 20, 2010), June 2006.

[4] Florian Alt, Alireza Sahami Shirazi, Al-
brecht Schmidt, Urs Kramer, and Zahid
Nawaz. Location-based crowdsourcing: ex-
tending crowdsourcing to the real world. In
NordiCHI, pages 13–22, 2010.

[5] Muhammed Fatih Bulut, Yavuz Selim Yilmaz,
and Murat Demirbas. Crowdsourcing location-
based queries. In PerCom Workshops, pages
513–518, 2011.

[6] Leyla Kazemi and Cyrus Shahabi. Geocrowd:
enabling query answering with spatial crowd-
sourcing. In SIGSPATIAL/GIS, pages 189–198,
2012.

Page 6 of 7

https://www.mturk.com/mturk/welcome

[7] Tingxin Yan, Vikas Kumar, and Deepak Gane-
san. Crowdsearch: exploiting crowds for accu-
rate real-time image search on mobile phones.
In MobiSys, pages 77–90, 2010.

[8] Aditya G. Parameswaran, Hector Garcia-
Molina, Hyunjung Park, Neoklis Polyzotis,
Aditya Ramesh, and Jennifer Widom. Crowd-
screen: algorithms for filtering data with hu-
mans. In SIGMOD Conference, pages 361–372,
2012.

[9] Petros Venetis, Hector Garcia-Molina, Kerui
Huang, and Neoklis Polyzotis. Max algorithms
in crowdsourcing environments. In WWW,
pages 989–998, 2012.

[10] Xuan Liu, Meiyu Lu, Beng Chin Ooi, Yanyan
Shen, Sai Wu, and Meihui Zhang. Cdas: A
crowdsourcing data analytics system. PVLDB,
5(10):1040–1051, 2012.

[11] Michael J. Franklin, Donald Kossmann, Tim
Kraska, Sukriti Ramesh, and Reynold Xin.
Crowddb: answering queries with crowdsourc-
ing. In SIGMOD Conference, pages 61–72, 2011.

[12] http://fr.bonitasoft.com/.

[13] http://snap.stanford.edu/data/

loc-gowalla.html.

Page 7 of 7

http://fr.bonitasoft.com/
http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/loc-gowalla.html

	Introduction
	Related Work
	Crowdsourcing Process Model
	Input Model
	Tasks Model
	Output Model

	Query Processing Strategies
	Buffer Strategy
	Deadline Strategy
	FIFO Strategy

	System Architecture
	Experimental Evaluation
	Conclusion

