Y. K. Chen and F. S. Milos, Navier-Stokes Solutions with Finite Rate Ablation for Planetary Mission Earth Reentries, Journal of Spacecraft and Rockets, vol.42, issue.6, pp.961-970, 2005.
DOI : 10.2514/1.12248

J. Zhong, T. Ozawa, and D. A. Levin, Modeling of Stardust Reentry Ablation Flows in the Near-Continuum Flight Regime, AIAA Journal, vol.46, issue.10, pp.2568-2581, 2008.
DOI : 10.2514/1.36196

R. L. Geisler, The Prediction of Graphite Rocket Nozzle Recession Rates, in the 1981 JANNAF Propulsion Meeting, pp.173-196, 1981.

B. Evans, P. J. Ferrara, J. D. Moore, and E. Boyd, Evaluation of Nozzle Erosion Characteristics Utilizing a Rocket Motor Simulator, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006.
DOI : 10.2514/6.2006-5245

P. Thakre and V. Yang, Chemical Erosion of Carbon-Carbon/Graphite Nozzles in Solid-Propellant Rocket Motors, Journal of Propulsion and Power, vol.24, issue.4, pp.822-833, 2008.
DOI : 10.2514/1.34946

J. H. Koo, D. W. Ho, and O. A. Ezekoye, A review of numerical and experimental characterization of thermal protection materials -Part I. numerical modeling, AIAA Paper, 2006.

G. L. Vignoles, J. Lachaud, Y. Aspa, and J. Goyhénèche, Ablation of carbon-based materials: Multiscale roughness modelling, Composites Science and Technology, vol.69, issue.9, pp.1470-1477, 2009.
DOI : 10.1016/j.compscitech.2008.09.019

URL : https://hal.archives-ouvertes.fr/hal-00410361

R. M. Kendall, R. A. Rindal, and E. P. Bartlett, A multicomponent boundary layer chemically coupled to an ablating surface, AIAA J, vol.5, pp.1063-1071, 1967.

S. T. Keswani and K. K. Kuo, An aerothermochemical model of carbon-carbon composite nozzle recession, 24th Structures, Structural Dynamics and Materials Conference, pp.83-910, 1983.
DOI : 10.2514/6.1983-910

T. Cai and X. Hou, Simple method for numerical simulation of temperature response of the solid rocket nozzle, Journal of Thermophysics and Heat Transfer, vol.4, issue.1, pp.42-46, 1990.
DOI : 10.2514/3.29160

P. Baiocco and P. Bellomi, A coupled thermo-ablative and fluid dynamic analysis for numerical application to solid propellant rockets, 31st Thermophysics Conference, pp.1996-1811, 1996.
DOI : 10.2514/6.1996-1811

R. Acharya and K. K. Kuo, Effect of Chamber Pressure and Propellant Composition on Erosion Rate of Graphite Rocket Nozzle, Journal of Propulsion and Power, vol.23, issue.6, pp.1242-1254, 2007.
DOI : 10.2514/1.24011

D. Bianchi, F. Nasuti, and E. Martelli, Coupled Analysis of Flow and Surface Ablation in Carbon-Carbon Rocket Nozzles, Journal of Spacecraft and Rockets, vol.46, issue.3, pp.492-500, 2009.
DOI : 10.2514/1.40197

J. Kim, P. Moin, and R. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, Journal of Fluid Mechanics, vol.65, issue.-1, pp.133-166, 1987.
DOI : 10.1017/S0022112074001479

M. Teitel and R. A. Antonia, Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations, International Journal of Heat and Mass Transfer, vol.36, issue.6, pp.1701-1706, 1993.
DOI : 10.1016/S0017-9310(05)80080-8

J. P. Monty and M. S. Chong, Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation, Journal of Fluid Mechanics, vol.4, pp.461-474, 2009.
DOI : 10.1007/BF00264405

S. Hoyas and J. Jiménez, Scaling the velocity fluctuations in turbulent channel up to Re? =, Phys. Fluids, vol.18, 2003.

P. G. Huang, G. N. Coleman, and P. Bradshaw, Compressible turbulent channel flows: DNS results and modelling, Journal of Fluid Mechanics, vol.305, issue.-1, pp.185-218, 1995.
DOI : 10.1016/0017-9310(87)90010-X

F. Nicoud, Numerical study of a channel flow with variable properties, Annual Research Briefs Center for Turbulence Research, pp.289-310, 1998.

H. Kawamura, H. Abe, and Y. Matsuo, DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects, International Journal of Heat and Fluid Flow, vol.20, issue.3, pp.196-207, 1999.
DOI : 10.1016/S0142-727X(99)00014-4

Y. Morinishi, S. Tamano, and K. Nakabayashi, Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls, Journal of Fluid Mechanics, vol.502, pp.273-308, 2004.
DOI : 10.1017/S0022112003007705

O. Cabrit and F. Nicoud, Direct simulations for wall modeling of multicomponent reacting compressible turbulent flows, Physics of Fluids, vol.21, issue.5, p.55108, 2009.
DOI : 10.1063/1.3123528

URL : https://hal.archives-ouvertes.fr/hal-00803823

Y. Sumitani and N. Kasagi, Direct numerical simulation of turbulent transport with uniform wall injection and suction, AIAA Journal, vol.33, issue.7, pp.1220-1228, 1995.
DOI : 10.2514/3.12363

S. Hahn, J. Je, and H. Choi, Direct numerical simulation of turbulent channel flow with permeable walls, Journal of Fluid Mechanics, vol.450, pp.259-285, 2002.
DOI : 10.1017/S0022112001006437

A. Velghe, N. T. Nguyen-bui, and P. Chassaing, Direct numerical simulation of reacting turbulent flow on ablatable surface, AIAA Paper, 2007.

V. A. Burakov and S. F. Sandu, Mathematical modeling of the dynamics of slagging and thermochemical destruction of carbon composite thermal protective materials in a high-temperature two-phase flow, Combustion, Explosion, and Shock Waves, vol.167, issue.No. 4, pp.472-481, 1997.
DOI : 10.1007/BF02671841

H. Wirzberger and S. Yaniv, Prediction of Erosion in Solid Rocket Motor by Alumina Particles, AIAA Paper, pp.2005-4496, 2005.

K. Klager, The Interaction of the Efflux of Solid Propellants with Nozzle Materials, Propellants, Explosives, Pyrotechnics, vol.2, issue.3, pp.55-63, 1977.
DOI : 10.1002/prep.19770020304

T. Poinsot and D. , Veynante Theoretical and Numerical Combustion, 2005.

J. Amaya, O. Cabrit, D. Poitou, B. Cuenot, and M. Hafi, Unsteady coupling of Navier???Stokes and radiative heat transfer solvers applied to an anisothermal multicomponent turbulent channel flow, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.111, issue.2, pp.295-301, 2010.
DOI : 10.1016/j.jqsrt.2009.06.014

J. Hirschfelder, F. Curtiss, and R. , Bird Molecular theory of gases and liquids, 1964.

D. A. Cvelbar, Nozzle Recession Study, in the 1981 JANNAF Propulsion Meeting, pp.51-68, 1981.

S. T. Keswani, E. Andiroglu, J. D. Campbell, and K. K. Kuo, Recession behavior of graphitic nozzles in simulated rocket motors, pp.1983-1317, 1983.

A. Ern and V. , Giovangigli Multicomponent transport algorithms, Lecture Notes in Physics, 1994.

A. Ern and V. Giovangigli, Fast and Accurate Multicomponent Transport Property Evaluation, Journal of Computational Physics, vol.120, issue.1, pp.105-116, 1995.
DOI : 10.1006/jcph.1995.1151

R. J. Kee, J. A. Miller, and T. H. Jefferson, Chemkin: A General-Purpose, Problem-independent, Transportable , Fortran Chemical-Kinetics Code Package, pp.80-8003, 1980.

R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics, pp.89-8009, 1989.

A. I. Savvatimskiy, Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963???2003), Carbon, vol.43, issue.6, pp.1115-1142, 1963.
DOI : 10.1016/j.carbon.2004.12.027

V. R. Gowariker, Mechanical and chemical contributions to the erosion rates of graphite throats in rocket motor nozzles., Journal of Spacecraft and Rockets, vol.3, issue.10, pp.1490-1494, 1966.
DOI : 10.2514/3.28682

H. K. Chelliah, A. Makino, I. Kato, N. Araki, and C. K. Law, Modeling of graphite oxidation in a stagnation-point flow field using detailed homogeneous and semiglobal heterogeneous mechanisms with comparisons to experiments, Combustion and Flame, vol.104, issue.4, pp.469-480, 1996.
DOI : 10.1016/0010-2180(95)00151-4

E. C. Golovina, The gasification of carbon by carbon dioxide at high temperatures and pressures, Carbon, vol.18, issue.3, pp.197-201, 1980.
DOI : 10.1016/0008-6223(80)90061-5

P. A. Libby and T. R. Blake, Theoretical study of burning carbon particles, Combustion and Flame, vol.36, pp.139-169, 1979.
DOI : 10.1016/0010-2180(79)90056-7

D. Bradley, G. Dixon-lewis, S. El-din, E. M. Habik, and . Mushi, The oxidation of graphite powder in flame reaction zones, 20th Symp. (Int.) on Combustion The Combustion Institute, pp.931-940, 1984.
DOI : 10.1016/S0082-0784(85)80582-8

S. T. Keswani and K. K. Kuo, Validation of an Aerothermochemical Model for Graphite Nozzle Recession and Heat-Transfer Processes, Combustion Science and Technology, vol.11, issue.3-4, pp.177-192, 1986.
DOI : 10.1016/0010-2180(81)90047-X

J. Jiménez and P. Moin, The minimal flow unit in near-wall turbulence, Journal of Fluid Mechanics, vol.204, issue.-1, pp.213-240, 1991.
DOI : 10.1017/S0022112069000115

R. Moser, J. Kim, and N. Mansour, Direct numerical simulation of turbulent channel flow up to Re??=590, Physics of Fluids, vol.11, issue.4, pp.943-945, 1999.
DOI : 10.1063/1.869966

V. Moureau, G. Lartigue, Y. Sommerer, C. Angelberger, O. Colin et al., Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids, Journal of Computational Physics, vol.202, issue.2, pp.710-736, 2005.
DOI : 10.1016/j.jcp.2004.08.003

S. Mendez and F. Nicoud, Large-eddy simulation of a bi-periodic turbulent flow with effusion, Journal of Fluid Mechanics, vol.117, pp.27-65, 2008.
DOI : 10.1017/S0022112006004034

URL : https://hal.archives-ouvertes.fr/hal-00820464

P. Schmitt, T. Poinsot, B. Schuermans, and K. P. Geigle, Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner, Journal of Fluid Mechanics, vol.570, pp.17-46, 2007.
DOI : 10.1017/S0022112006003156

O. Colin and M. Rudgyard, Development of High-Order Taylor???Galerkin Schemes for LES, Journal of Computational Physics, vol.162, issue.2, pp.338-371, 2000.
DOI : 10.1006/jcph.2000.6538

R. L. Simpson, Characteristics of turbulent boundary layers at low Reynolds numbers with and without transpiration, Journal of Fluid Mechanics, vol.5, issue.04, pp.769-802, 1970.
DOI : 10.1016/0376-0421(62)90014-3