A NEW LOWER BOUND FOR HERMITE'S CONSTANT FOR SYMPLECTIC LATTICES

Bjoern Muetzel 1, *
* Auteur correspondant
1 GTA
I3M - Institut de Mathématiques et de Modélisation de Montpellier
Abstract : In this paper we give an improved lower bound on Hermite's constant δ2g for symplectic lattices in even dimensions (g = 2n) by applying a mean-value argument from the geometry of numbers to a subset of symmetric lattices. We obtain only a slight improvement. However, we believe that the method applied has further potential. Furthermore, in this paper we present new families of highly symmetric (symplectic) lattices, which occur in dimensions of powers of two. The lattices in dimension 2n are constructed with the help of a multiplicative matrix group isomorphic to (ℤ2n, +). We furthermore show the connection of these lattices with the circulant matrices and the Barnes-Wall lattices.
Type de document :
Article dans une revue
International Journal of Number Theory, World Scientific Publishing, 2012, 8 (4), pp.1067-1080. 〈10.1142/S1793042112500637〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00803373
Contributeur : Bjoern Muetzel <>
Soumis le : jeudi 21 mars 2013 - 17:23:22
Dernière modification le : jeudi 11 janvier 2018 - 06:26:32

Identifiants

Citation

Bjoern Muetzel. A NEW LOWER BOUND FOR HERMITE'S CONSTANT FOR SYMPLECTIC LATTICES. International Journal of Number Theory, World Scientific Publishing, 2012, 8 (4), pp.1067-1080. 〈10.1142/S1793042112500637〉. 〈hal-00803373〉

Partager

Métriques

Consultations de la notice

95