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A Control Reconfiguration Strategy for Post-Sensor
FTC in Induction Motor-Based EV's

Bekheira Tabbache, Nassim Rizoug, Mohamed El Hachemi Benbouzid, Senior Member, IEEE, and
Abdelaziz Kheloui

Abstract—This paper deals with experimental validation of a
reconfiguration strategy for sensor fault-tolerant control (FTC)
in induction-motor-based electric vehicles (EVs). The proposed
active FTC system is illustrated using two control techniques:
indirect field-oriented control (IFOC) in the case of healthy sensors
and speed control with slip regulation (SCSR) in the case of failed
current sensors. The main objective behind the reconfiguration
strategy is to achieve a short and smooth transition when switching
from a controller using a healthy sensor to another sensorless
controller in the case of a sensor failure. The proposed FTC
approach performances are experimentally evaluated on a 7.5-kW
induction motor drive.

Index Terms—Electric vehicle (EV), fault-tolerant control
(FTC), indirect field-oriented control (IFOC), induction motor,
reconfiguration, speed control with slip regulation (SCSR).

NOMENCLATURE
EV Electric vehicle.
FTC Fault-tolerant control.
IFOC Indirect-field oriented control.
SCSR  Speed Control with slip regulation.
a, b, c Three-phase reference frame index.
d, q Synchronous reference frame index.

s, (1) Stator (rotor) index.

Reference quantity.

Voltage (current).

Flux.

Stator (rotor) electric speed.

Motor speed.

Motor torque.

Resistance.

Inductance.

Magnetizing inductance.

Leakage coefficient, 0 = 1 — L2 /L L,.
Rotor time constant, (7, = L, /R,).
Pole-pair number.
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I. INTRODUCTION

ECENTLY, fault-tolerant control (FTC) has begun to

concern a wider range of industrial applications such as
aerospace, automotive, nuclear power, manufacturing, etc. [1]-
[3]. Indeed, a significant amount of research on FTC systems
was carried out for aircraft flight control system designs [4] and
for nuclear power plants [5]. Fault tolerance is no longer limited
to high-end systems but also to railway [6] and automobile
applications [7]. It becomes an important means to increase the
reliability, availability, and continuous operation of electrome-
chanical systems among the automotive ones [9], [10].

In the automotive context, the EV is a key application where
the propulsion control depends on the availability and qual-
ity of sensor measurements. Measurements, however, can be
corrupted or interrupted due to sensor faults. If some sensors
are missing, the controllers cannot provide the correct con-
trol actions for the EV propulsion. Sensor FTC is therefore
compulsory to maintain a minimum level of performance. In
the particular case of the induction motor, as the adopted EV
traction motor, many fault detection and diagnosis schemes
based on vibrations and/or stator current spectrum analysis
have been reported since 1980s [11]. Regarding the induction
motor monitored faults, a number of FTC schemes have been
proposed [9], [10], [12].

In this context, two FTC approaches could be dealt with. In
the first approach, resilient control (also known as accommo-
dation) of the drive system is adopted while retaining the same
basic control strategy [13]. In this case, the controller adapts its
properties to regulate the motor output as desired by the drive
system even under fault conditions. In the second approach,
as described in [10], the control system tolerates the faults by
changing the control algorithm (also known as reconfiguration).

This paper deals with the second approach and proposes a
system that adaptively reorganizes itself in the event of sensor
loss or sensor recovery to sustain the best control performance
given the complement of remaining sensors [7]. In particular,
a specific reconfiguration mechanism is proposed to handle
the smoothness of controller transitions in terms of speed and
torque transients. In FTC, undesirable transients may occur
during the controller reconfiguration process. These transients
can cause damage to the system components. Managing or
reducing these transients during a controller reconfiguration
is still an open issue. Very few results are available in the
literature, although several works have been done [18].

The switching problem has been previously investigated in
simulations in the case of a speed sensor failure [10]. Indeed,

0018-9545/$31.00 © 2012 IEEE
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Fig. 1. Main components of an EV traction drive.

it has been suggested that controller transition could be better
handled with a fuzzy approach. The system control reorga-
nization is managed by a fuzzy decision system that ensures
the transition from the encoder-based controller (sliding mode
control) to the sensorless one (fuzzy control) and back to
the encoder-based controller. However, the achieved transition
dynamic performances were not satisfactory in terms of speed
and torque ripples. In [7], the proposed system was based on
four controllers to ensure the sensor FTC of an EV induction-
motor-based powertrain, for various sensors faults. In this case,
the control transition smoothness depends greatly upon the
rotor flux angular position in the stator reference frame. Smooth
transition is achieved when the phase shift is zero or very close
to zero. Unfortunately, it is very difficult to get this condition.
This will lead to quite important braking torque with probably
mechanical damages.

In [14], improvements have been achieved in terms of speed
and torque transients. In this case, transition smoothness is
achieved using a fuzzy-based approach with a contribution from
both controllers (encoder and sensorless controllers). Unfortu-
nately, practical implementation of such an approach was not
possible.

This paper proposes an FTC approach using two control
techniques: IFOC in the healthy case and SCSR in the case of
failed current sensors. In this context, the reconfiguration mech-
anism philosophy is to ensure short and smooth transients when
switching from a controller using a healthy sensor to another
sensorless controller in case of a sensor failure, by initializing
the controllers inputs/outputs at the switchover instant.

Experiments on a 7.5-kW induction motor drive are car-
ried out to show that the proposed sensor FTC approach is
effective when using this simple and intuitive reconfiguration
mechanism.

II. ELECTRIC VEHICLE ELECTRIC DRIVE ACTIVE
FAULT-TOLERANT CONTROL

For an EV traction drive control (see Fig. 1), fault detection
and fault tolerance are important issues not only for the reli-
ability of the drive system but for the proper operation of the
vehicle following a fault as well. In particular, traction drive
control depends on the availability and the quality of sensor
measurements. Measurements, however, can be corrupted or
interrupted due to sensor failures. If some sensors are missing,
the controllers cannot provide the correct control actions for the

Components Faults

Faults

Actuators H—>

Input

Faults

y Output
4 Sensors
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Reference
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Monitoring | 4 - — Model Information
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Fig. 2. Active FTC scheme.
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EV propulsion. It is therefore compulsory to have a sensor fault
detection and isolation system to improve the reliability of the
electric drive. Thereafter, reconfiguration should be achieved to
allow fault-tolerant operation.

In this context, an active fault-tolerant approach, as shown in
Fig. 2, has been adopted. To achieve this goal, a reorganizing
controller will adopt the best control methodology depending
on the available feedback and operational hardware [10]. This
controller comprises two parts: failure detection and fallback
strategy.

While the first part monitors the status of the sensors, the
second part will engage the appropriate control strategy ac-
cording to the fault severity [7]. Fig. 3 shows the adopted FTC
configuration using two control techniques: IFOC in the healthy
case and SCSR in the case of failed current sensors. It also
highlights the switchover block.

A. IFOC

IFOC aim is to decouple the flux and the torque control. To
achieve this goal, the flux must be oriented on the d-axis in the
d — ¢ frame [16], i.e.,

¢rd = ¢r
{ TS ()
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The induction motor model in the d — ¢ reference frame is
then described by

M doy,
L, dt

Via = RsIsq + oLy%sd + —wsoLsIy,

Vsq = RsIsq +oLs dé;q +wsLMT¢r +wso LIy @)
Trdj;r + ¢r = M1y
Wsl = Wg — Wr = %{;q
The steady-state motor torque can be written as
M
T, = pf¢rlsq~ (3)

Fig. 4 shows an IFOC classical scheme [17].
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Fig. 8. Experimental test bench.

B. SCSR

This technique allows controlling the speed with slip regula-
tion and V/ f control [10]. The close-loop speed control gener-
ates the reference slip wy; through a proportional—integral (PI)
controller and a limiter, as shown in Fig. 5. The slip is added to
the feedback speed signal to generate the frequency command.
By a V/f function generator, which incorporates the low-
frequency stator drop compensation, the frequency command
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Fig. 9. Generated control angles with load torque of a 2.6 N - m. (a) SCSR-generated control angle. (b) FTC control angle (with contribution from the two

controllers).

generates the voltage command. In the low-slip region, the
developed torque can be approximated as
_E ¢3nwsl

T, .
2P7R,

“4)

In (4), the slip is proportional to the developed torque at
constant flux. The scheme can be considered as an open-loop
torque control within the speed control loop. In this loop, no
feedback current signal is used.

C. Fault Detection of Current Sensors
To detect current sensor faults, the following equation
is used:

(&)

lsum = Tas T+ lbs T les-

In the IFOC particular case, two current sensors are generally
used. The third current is deduced from i4,,, = 0. However,
for FTC purposes and for detecting current sensor failures, an
additional sensor is needed.

The fault detection may be performed using a simple thresh-
old test, i.e.,

If (isum > #tn) Then (faulty current sensors)

Else (healthy sensors)

where 4}, is the current threshold.

It should be pointed out that other faults (in the power
inverter or in the motor) may result in is,, being greater
than the predefined threshold. As this paper deals with sensor
failures, further investigations are therefore needed to handle
misinterpretation risks in the case of multiple failures.

Additional logic and information (redundancy) can be also
used to isolate the failed sensor using observers [18], [19].

D. Reconfiguration Strategy

The FTC main components are the induction motor con-
trollers and the reconfiguration mechanism (transition strategy).
To insure a smooth transition between the controllers, the rotor

Currents (A)

46 48 5 52 54 56 58
Time (sec)

Fig. 10. Induction-motor stator currents with load torque of 2.6 N - m.

flux angular position 6, will be used. In the stator reference
frame, it is given by [7]

0, = /wsdt (6)
where
MI*
we_tkoC = Tk +w @
— K2 *
ws_scsr = (K1 + £2) (Wi — wr) + wr.

The reconfiguration mechanism performances will be eval-
uated in the case of a current sensor failure. In this context,
the proposed FTC approach could be summarized by the
following.

1) Before sensor failures, the two controllers are used. The
IFOC is used as the primary controller, and the SCSR is
kept in a standby mode. In this case, the two controllers
are generating different stator electric speeds ws.

2) If a sensor fails (current), the SCSR becomes the primary
controller, and the IFOC is shifted to the standby mode.
As the two controllers are generating different stator
electric speeds (ws), if an adequate transition strategy
is not used, an important braking torque with probable
mechanical damages will occur. This braking torque is
a direct consequence of the phase shift between control
voltages [10].
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Fig. 12. Generated control angles with load torque of 5.4 N - m. (a) SCSR-generated control angle. (b) FTC control angle (with contribution from the two

controllers).

3) The proposed transition technique from IFOC to SCSR
consists of forcing the synchronization between the two
control voltages by compensating for their phase differ-
ence at the instant of controller switchover (see Fig. 6).
This is achieved by initializing the second technique PI
controller. In this case, a short and smooth transition
should be achieved in contrary to [13], where transition of
controllers were authorized when the phase shift between
the controllers is zero or very close to zero. The achieved
results show that forcing the synchronization of both
controllers is a promising solution.

The controller transition principle is shown in Fig. 7.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS
A. Test Bench

The test bench used to validate the proposed active FTC
approach is illustrated in Fig. 8. It is made up of a 7.5-kW
induction motor drive whose ratings are given in the Appendix.

The experimental test-bench main components are a
Semikron inverter, an optical encoder attached to the motor
shaft, Hall effect current sensors, and a dSPACE 1103 devel-
opment board, which is interfaced to a standard PC. The load
torque is generated by a dc machine coupled to the induction
motor shaft.

N
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M!l'
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i e

25 3 3.5 4 45 5
Time (sec)

H

G ‘4

‘?

Currents (A)
o

G

Fig. 13. Induction motor stator currents with load torque of 5.4 N - m.

The continuous-time algorithm is implemented in the
dSPACE board through Matlab—Simulink.

B. Experimental Results

To experimentally test the proposed reconfiguration mech-
anism and, therefore, evaluate the controller transition perfor-
mances, the following tests have been carried out.

1) For a 2.6-N - m load torque, a sensor failure has been
introduced at 4.5 s.

2) For a 5.4-N-m load torque, a sensor failure has been
introduced at 3.3 s.



970 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 3, MARCH 2013

~
o

Speed (rad/sec)
S 8 &5 &8 3

=
o
T
!

)
il
o E
Gk
N
o
o
~
<)
©
>

Time (sec)

(a)

Time (sec)

(b)

Fig. 14. Dynamics performances using the proposed reconfiguration mechanism with load torque of 5.4 N -m load torque. (a) Induction motor speed.
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The obtained experimental results are summarized in
Figs. 9—14. It should be mentioned that the provided induction
motor torque do not take into account a measurement gain
of 1.5.

Figs. 9 and 12 explicitly show the transition mechanism.
Figs. 9(a) and 12(a) show how the SCSR technique control an-
gle is compensated at the current-sensor failure time occurrence
to obtain the same control angle as of the IFOC technique.
Figs. 9(b) and 12(b) show thereafter the control angle (called
FTC control angle) generated by the proposed control transition
strategy to achieve a short and smooth transition, respectively,
with load torque of 2.6 and 5.4 N - m.

Figs. 10 and 13 show the induction motor stator currents,
respectively, with load torque of 2.6 and 5.4 N - m. In healthy
condition, IFOC-based control is achieved for the induction
motor. The proposed controller transition strategy (FTC control
angle) allows limiting the stator current and switching to an
SCSR-based control to avoid excessive stator overcurrents. Us-
ing the FTC control angle, short current transients are observed,
which obviously increase with the load torque. The response
times depend on the used controllers (PI coefficients).

The dynamic performances are shown in Figs. 11 and 14.
These results show that, after the fault occurrence, the induction
motor speed and torque swing instantaneously and thereafter
quickly reach their respective set point values. In terms of
speed, Figs. 11(a) and 14(a) show that smooth transitions are
achieved. In terms of torque, Figs. 11(b) and 14(b) show small
ripples of the motor torque in comparison with the results
obtained in [10] (regarding the assigned set point values, the
torque transients are quite smooth). In particular, the proposed
control transition strategy allows avoiding torque negative val-
ues with the risks of mechanical damages on the motor shaft.
Again, it should be noted that speed and torque ripples, and
response times greatly depend on the PI coefficients of the used
controllers.

The given obtained results obviously show short and smooth
transients in terms of speed and torque. They experimentally
prove the effectiveness of the proposed active FTC approach.

Moreover, it should be pointed out that the proposed
reconfiguration mechanism (transition strategy) has brought
improved transition performances over previously investigated

TABLE 1
RATED DATA OF THE TESTED INDUCTION MOTOR

75kW,p=1
Ry=0.68Q, R, =039 Q, L=02225H, L,=02268 H, M=022 H
J=0.01 kg.m?, kr=0.001 Nms

approaches. Indeed, in [10], abrupt speed and torque transients
are obtained (with negative values). Moreover, in terms of
associated inverter power rating, this one should be selected
to tolerate the transient currents (in terms of amplitude and
occurrence-time). Without the proposed control transition
strategy, the inverter rated power should be higher, therefore,
increasing its cost.

IV. CONCLUSION

This paper has dealt with the experimental validation of a re-
configuration mechanism (transition strategy) for sensor FTC in
induction-motor-based EVs. The proposed active FTC system
has been illustrated using two well-known control techniques:
IFOC, in the case of healthy sensors, and the SCSR, in the case
of failed current sensors. The reconfiguration strategy, whose
main objective is to ensure short and smooth transients when
switching from a controller using a healthy sensor to another
sensorless controller in case of a sensor failure consisted of
forcing synchronization between the controller voltages by
compensating for their phase difference at the switchover
instant.

Experimental tests on a 7.5-kW induction motor drive show
short and smooth transients in terms of speed and torque. They
prove the effectiveness of the proposed active FTC approach. In
particular, the experimentally validated reconfiguration strategy
should be effective when used in an induction-motor-based
EV. Indeed, an EV, which is subjected to a time-varying speed
reference (driving cycle), will be able to sustain sensor failure
and recovery with short and smooth transients when using the
proposed active FTC.

APPENDIX

See Table I.
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