Fast Collaborative Graph Exploration

Dariusz Dereniowski 1 Yann Disser 2 Adrian Kosowski 3, 4 Dominik Pajak 3, 4 Przemyslaw Uznanski 3, 4
3 CEPAGE - Algorithmics for computationally intensive applications over wide scale distributed platforms
Université Sciences et Technologies - Bordeaux 1, Inria Bordeaux - Sud-Ouest, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : We study the following scenario of online graph exploration. A team of $k$ agents is initially located at a distinguished vertex $r$ of an undirected graph. At every time step, each agent can traverse an edge of the graph. All vertices have unique identifiers, and upon entering a vertex, an agent obtains the list of identifiers of all its neighbors. We ask how many time steps are required to complete exploration, i.e., to make sure that every vertex has been visited by some agent. We consider two communication models: one in which all agents have global knowledge of the state of the exploration, and one in which agents may only exchange information when simultaneously located at the same vertex. As our main result, we provide the first strategy which performs exploration of a graph with $n$ vertices at a distance of at most $D$ from $r$ in time $O(D)$, using a team of agents of polynomial size $k = D n^{1+ \epsilon} < n^{2+\epsilon}$, for any $\epsilon > 0$. Our strategy works in the local communication model, without knowledge of global parameters such as $n$ or $D$. We also obtain almost-tight bounds on the asymptotic relation between exploration time and team size, for large $k$. For any constant $c>1$, we show that in the global communication model, a team of $k = D n^c$ agents can always complete exploration in $D(1+ \frac{1}{c-1} +o(1))$ time steps, whereas at least $D(1+ \frac{1}{c} -o(1))$ steps are sometimes required. In the local communication model, $D(1+ \frac{2}{c-1} +o(1))$ steps always suffice to complete exploration, and at least $D(1+ \frac{2}{c} -o(1))$ steps are sometimes required. This shows a clear separation between the global and local communication models.
Type de document :
Communication dans un congrès
ICALP - 40th International Colloquium on Automata, Languages and Programming, 2013, Riga, Latvia. Springer, 7966, pp.520-532, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-39212-2_46〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00802308
Contributeur : Adrian Kosowski <>
Soumis le : mardi 19 mars 2013 - 15:22:26
Dernière modification le : vendredi 11 septembre 2015 - 01:07:11
Document(s) archivé(s) le : dimanche 2 avril 2017 - 14:46:54

Fichier

collectiveExploration.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Dariusz Dereniowski, Yann Disser, Adrian Kosowski, Dominik Pajak, Przemyslaw Uznanski. Fast Collaborative Graph Exploration. ICALP - 40th International Colloquium on Automata, Languages and Programming, 2013, Riga, Latvia. Springer, 7966, pp.520-532, 2013, Lecture Notes in Computer Science. 〈10.1007/978-3-642-39212-2_46〉. 〈hal-00802308〉

Partager

Métriques

Consultations de
la notice

735

Téléchargements du document

301