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In this paper, non-normal interactions in a thermoacoustic system are studied, using

a low-order expansion of the state variables in terms of eigenmodes. The thermoa-

coustic eigenmodes are determined as solutions of the Helmholtz equation or the

linearized Euler equations, respectively, in the presence of a time-lagged heat source.

Subsequently, non-normal effects are evaluated in a post-processing analysis based on

the computed eigenmodes. In the case where the eigenmode analysis is based on the

linearized Euler Equations, effects of a non-zero mean flow velocity can be taken into

account. The energy associated with the eigenmodes may then contain contributions

of convected entropy and vorticity modes as well as the acoustic field. The notion of

transient growth of perturbation energy is thus extended from an expression based

on the classical acoustic energy density to a form based on a generalized disturbance

energy.

The expansion in terms of eigenmodes is computationally efficient, making the ap-

proach potentially applicable to complex, 3D configurations including non-trivial

boundary conditions and spatio-temporal distributions of heat release fluctuations.

In the present paper, the method is applied to a 1D configuration that consists of a

duct including a 1D heat source, followed by a choked isentropic nozzle. It is shown

that for such a case it is essential to include the contribution of entropy perturbations

in the calculation of the optimal initial perturbation and the maximum transient en-

ergy growth. Subsequently, the impact of increasing mean flow Mach number and

increasing strength of flame/acoustic interaction on non normal effects is assessed in

a parameter study.

a)wieczorek@cerfacs.fr
b)franck.nicoud@univ-montp2.fr
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I. INTRODUCTION

Over the last decades, thermoacoustic instabilities have been the subject of intense re-

search activity with the aim to better understand and predict them at the design level, thus

avoiding problems in late development or during commissioning. Unless the pertinent gov-

erning equations are solved in the time domain (e.g. when Large Eddy Simulation is used),

linear stability analysis often relies on a modal approach, where eigenmodes/eigenfrequencies

of the thermoacoustic system are sought for. A system is considered linearly stable, if and

only if all its modes decay exponentially. However, the eigenmodes are in general not or-

thogonal, because of boundary conditions and/or coupling between acoustic perturbations

and heat release1,2. Thus the associated eigenfrequencies provide information only about

the long-term evolution of the modes. Due to non-normality, linear modes may interact and

transient energy growth can be observed even for stable systems. This effect was demon-

strated by Balasubramanian & Sujith2 who transferred ideas initially developed for shear

flow instabilities3–6 to the thermoacoustic context.

The maximum energy growth that can appear depends only on the thermoacoustic system of

interest. Calling U the state vector (typically the components of U are the fields of acoustic

density, pressure and velocity), the relevant equations for describing the time evolution of

the perturbations read formally:
∂U
∂t

+A (U) = 0, (1)

where A is a differential operator, which is linear when linear thermoacoustics is considered.

Eq. (1) is nothing but a set of partial differential equations, which can be reduced to a

set of ordinary differential equations when an appropriate discretization method is used.

The thermoacoustic system of interest is then represented by a first order dynamical system

which reads:
du

dt
+ Au = 0, (2)

where u is the discretized counterpart of U . If Eq. (2) is obtained from Eq. (1) using a modal

expansion (”Galerkin”) technique, i.e. by expanding the fluctuating quantities in a series of

orthogonal basis functions7, the vector u contains the weights of those basis functions. On

the other hand, if a finite difference/finite volume technique is used, u contains the nodal

values of the state vector U . Of course, the square matrix A depends on the discretization

technique, both in its size and structure. Typically, a modal expansion produces a dense
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matrix of small size, as the expansion requires usually only few basis functions8, whereas a

finite volume approach produces a large, but sparse matrix9.

In any case, some of the characteristics of the thermoacoustic system can be studied

by analyzing the matrix A instead of the differential operator A. Notably, the maximum

transient energy growth at time t,

G(t) = maxinitial states
E(t)

E(t = 0)
, (3)

where E is a suitably defined measure of perturbation energy (see below), is related to

the largest singular value of the exponential matrix exp(−At)5. This property was used in

several recent studies in order to quantify the non-normal effects in simple thermoacoustic

systems such as the Rijke tube2 or a laminar diffusion flame10. This allowed assessing the

maximum transient growth Gmax = max [G(t)], the maximum value being taken over all the

possible values of t. Unfortunately, we believe that this approach based on a Singular Value

Decomposition (SVD) of the matrix A is not very suitable for complex systems for two main

reasons:

1. time delay: In practical cases, the flame response to upstream acoustic perturbations

is time lagged, the time delay τ being potentially related to several fluid mechanics

and/or chemical processes relevant to the flame unsteadiness. In thermo-acoustic

simulations based on linearized equations, this time lag behaviour has to be included

explicitly in the system of equations via a model for the heat source. As a consequence,

the system cannot be described by Eq. (1), but an expression of the form

∂U
∂t

+A (U(t)) + B (U(t− τ)) = 0, (4)

or generalizations involving several time lags, must be used instead. Unfortunately,

generalizing the SVD approach described above to Eq. (4) is not straightforward and

may involve additional simplifications like assuming the time delay τ to be small

compared to the first mode’s period8.

2. boundary conditions: if the Galerkin method is used to convert Eq. (1) into Eq. (2),

the knowledge of an orthogonal set of basis functions, which meet the actual bound-

ary conditions of the thermoacoustic problem, is required. Because they convey useful

information about the configuration, the acoustic eigenmodes are suitable for this
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purpose7. Unfortunately, they are not orthogonal as soon as the boundary condi-

tions correspond to a finite, complex-valued impedance1, a situation which is not rare.

If a finite difference/finite volume type of approach is used instead, the size of the

discretized problem, Eq. (2), is large (typical finite volume grids contain 105 − 106

elements) so that performing a SVD in order to assess G(t) may be CPU demanding.

Thus, maximizing G(t) over all the values of time t to obtain Gmax might not be

affordable in practice.

Recently, Selimefendigil et al.11 proposed a method to handle delayed systems and overcome

the first issue mentioned. In their view, Eq. (4) is recast into an equivalent non-delayed

problem for which the pseudospectra can be computed. The concept of pseudospectra (first

mentioned by Landau12) was introduced by Trefethen13 in order to quantify the sensitivity

of eigenvalues to uncertainties/ perturbations in the data or discretization. The property

exploited by Selimefendigil et al.11 is that the geometry of pseudospectra can be used to

obtain a lower bound of Gmax (Kreiss theorem). Still, computing pseudospectra becomes

very CPU demanding as the size of the problem increases, so that this approach does not

address the second issue mentioned. Besides, as far as the authors know, analyzing the

pseudospectra can only give information about the maximum transient growth and not

about the shape of the optimal perturbation.

The first objective of this paper is to present a strategy, which is potentially suitable

for assessing non-normal effects in 3D complex configurations with moderate computational

effort. It is based on an expansion in terms of the first few thermoacoustic eigenmodes of the

system of interest. Indeed, even if non-normality is present and eigenmodes only provide

information about the long term evolution, they convey relevant information about the

system. For example, their individual stability dictates the overall stability of the system

if non-linear effects are not considered. Numerical strategies have been proposed in the

past in order to compute such modes by solving an Helmholtz type of equation with a

forcing term representing the flame1,14,15. The view considered in this paper was initially

proposed by Schmid & Henningson5 for investigating classical fluid mechanics configurations.

It consists in looking for the optimal perturbation (the one which generates the largest

transient growth) in the linear space spanned by the thermoacoustics modes. In other

words, assessing the non-normality effect amounts to a post-processing of the results of the

classical modal characterization of the configuration. As we will demonstrate, this can be
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done at negligible additional cost. Of course, since only a finite number of eigenmodes are

considered, all possible initial conditions cannot be generated by combining these modes,

thus only a lower bound on Gmax can be obtained. However, since the eigenmodes convey

a lot of information regarding the system of interest, it is expected that keeping only a few

of them is sufficient to obtain a reasonable assessment of the maximum transient growth.

The same idea justifies the Galerkin methods where often only a few (of order 10 say)

basis functions are necessary to reach good accuracy. However, contrary to the Galerkin

method, the orthogonality of the modes is not required in the present approach, so that the

method is also suitable for complex 3D configurations with finite, complex-valued boundary

impedance.

Practically all of the previous studies dealing with non-normal effects in thermoacoustic

systems relied on the zero Mach number mean flow assumption although the effect of the

approximation M ' 0 is not well understood16 and the neglected convective terms may

introduce additional non-normality17. An exception is the study of solid rocket motor in-

stability by Mariappan & Sujith18, where mean flow terms are included in the system of

acoustic equations. In the case of a time-lagged heat source (generalized ”n-τ model”), only

a moderate non-normal effect has been reported in the literature2, with maximum transient

energy growth up to Gmax ≈ 7. The second objective of this paper is then to investigate if

larger values of Gmax can be observed when mean flow effects are not neglected. In this case,

the evolution of the perturbations are described by the Linearized Euler Equations (LEE)

instead of a simple Helmholtz equation for the acoustic pressure. Also, the state vector

contains one more component (the density or entropy, say) on top of the acoustic pressure

and velocity fields. Thus this situation is quite different from what has been considered so

far and the analysis presented also serves as an illustration of the flexibility of the method

and its ability to handle complex situations.

The method is introduced in section II A, giving details on the heat source model and

the boundary conditions. Sections II B and II C then present discussion of a generic 3D

thermoacoustic system treated under the zero Mach number assumption. In this case, the

state vector contains only the acoustic pressure and velocity fields and non-trivial boundary

conditions (finite, complex-valued impedance) can be considered. The formalism is then

extended in section II D to the case where the perturbations are obtained from the LEE,

and the state vector contains one more component. The method is applied to the simple
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case of a heat source placed in a straight duct. Note however that this situation is more

complex than several previous studies since a) a time delayed n-τ type of model is used for

describing the acoustic-flame coupling and b) complex boundary conditions are applied at

the boundaries of the duct. The corresponding results are discussed in section III, where the

maximum transient growth related to two types of energies is considered, i.e. the classical

acoustic energy and the energy of the fluctuations.

II. FORMALISM

A. The thermoacoustic model

The phenomenon of thermoacoustic instability results from a coupling between combus-

tion processes and the acoustic eigenmodes of the configuration19. Assuming vanishing Mach

number for the mean flow, this coupling can be modeled in the linear regime by the following

wave equation :

1

γ(x)p0

∂2p′(x, t)

∂t2
+∇ · 1

ρ0(x)
∇p′(x, t) =

γ(x)− 1

γ(x)p0

∂q′(x, t)

∂t
, (5)

where p′(x, t) stands for the acoustic pressure at position x and time t; γ(x) and ρ0(x)

are the time averaged isentropic coefficient and density of the fluid; p0 is the homogeneous

background pressure.

Eq. (5) states that heat release fluctuations q′(x, t) may influence the acoustics in the domain.

It is common practice to model the feedback effect, viz. the influence of acoustic fluctuations

on combustion, via an n − τ type of model20–22. This model assumes that the heat release

fluctuations are proportional to the time-lagged velocity fluctuations at a reference point

located upstream of the flame:

q′(~x, t) =
qtot
ubulk

Hq(x) u′(xref , t− τ(x)) · nref , (6)

where Hq(x) is the amplitude of the flame response and can be related to the parameter

n of n − τ -models9, τ(x) is the time delay and nref is a unit vector. Assuming time-

harmonic perturbations of pulsation ω, one may write p′(x, t) = <
(
p̂(x)e−iωt

)
and q′(~x, t) =

<
(
q̂(x)e−iωt

)
. The acoustic field can then be expressed in terms of eigenmodes that are

solution of a Helmholtz equation written for the complex amplitude of pressure p̂:

γ(x)p0∇ ·
(

1

ρ0(x)
∇p̂(x)

)
+ ω2p̂(x) =

qtot
iωρrefubulk

Hq(x) eiωτ(x) ∇p̂(xref ) · nref (7)
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As the problem has been written in frequency domain, the reflection of low frequency waves

at the boundaries can be handled easily with a complex-valued impedance at the boundary,

denoted Z(ω), Z ∈ C. The appropriate boundary condition to impose to p̂ takes the following

form:

∇p̂(x) · nBC − i
ω

c0(x)Z(ω)
p̂(x) = 0, (8)

where nBC is a unit vector normal to the boundary and c0(x) is the speed of sound. Solv-

ing the eigenproblem given by Eq. (7) and Eq. (8) allows to determine the thermoacoustic

pressure eigenmodes p̂(x), and their corresponding eigenfrequencies ω. The velocity eigen-

modes û(x) can then be deduced using the linearised Euler equation written in the frequency

domain for time harmonic fluctuations:

iωρ0 û(x) = ∇p̂(x). (9)

B. Non-orthogonality of the eigenfunction

Non-normality arises from the fact that the thermoacoustic eigenmodes are not orthog-

onal. Thus, it is important to specify how orthogonality is defined or, equivalently, what

is the appropriate inner product. The formalism used throughout this paper is therefore

stated in the following.

An acoustic perturbation is defined as a vector composed of pressure and velocity fluctua-

tions p′ and u′ that are assumed to be harmonic in time. This allows to write:

v′(x, t) =

 p′(x, t)
u′(x, t)

 =

 <(p̂(x)e−iωt)

<(û(x)e−iωt)

 = <(v̂(x)e−iωt) (10)

where the vector v̂(x) contains the complex amplitudes of pressure and velocity fluctuations,

the latter being composed of three components û(x) = (ûx(x), ûy(x), ûz(x)) and ω = ωr+iωi

is a complex frequency.

The following considerations are set in the complex space, i.e. the return to a real-valued

vector is dropped. The solutions of the thermoacoustic system are considered in the form
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of complex-valued vectors

v(x, t) = v̂(x)e−iωt = v̂(x)e−iωrteωit with v̂(x) =

 p̂(x)

û(x)

 =


p̂(x)

ûx(x)

ûy(x)

ûz(x)

 (11)

a complex eigenvector.

Considering v1(x, t) and v2(x, t) two complex vectors that are solution of Eqs. (7), (8) and (9),

a weighted inner product can be defined as follows:〈
v1(x, t)

∣∣∣v2(x, t)
〉
W

=

∫
V

(
v1(x, t)H Wv2(x, t)

)
dV (12)

with v1(x, t)H = v̂(x)Heiωrteωit the conjugate transpose (”Hermitian transpose”) of v1(x, t),

V the volume of the domain that is considered and W a weight matrix.

If W is the identity matrix I, the inner product defined in Eq. (12) applied to an eigenvector

v̂(x) yields simply its L2-norm:〈
v̂(x)

∣∣∣v̂(x)
〉
I

=

∫
V

v̂H(x)Iv̂(x)dV = ||v̂(x)||22

By defining the matrix W in an appropriate way, the product of Eq. (12) can be linked

to an equivalent of the acoustic energy associated to the mode v(x) = v̂(x)e−iωt. For an

eigenvector v̂(x) as defined in Eq. (11), a weight matrix

Wac =


1

2γp0(x)
u0x
2c20

u0y
2c20

u0z
2c20

u0x
2c20

ρ0(x)
2

0 0

u0y
2c20

0 ρ0(x)
2

0

u0z
2c20

0 0 ρ0(x)
2

 (13)

allows to define an equivalent acoustic energy of the form:

Eac(t) =
〈
v(x, t)

∣∣∣v(x, t)
〉
Wac

=

∫
V

(
v̂(x)Heiωrteωit Wacv̂(x)e−iωrteωit

)
dV

= e2ωit

∫
V

(
1

2γp0(x)
|p̂(x)|2 +

ρ0(x)

2
|û(x)|2 +

|p̂(x)|
c0(x)2

|u0(x) · û(x)|
)
dV,

(14)

where | . . . | denotes the absolute value of a complex number. The term Eac(t) is a real-

valued energy that is defined based on complex quantities. It shares the same coefficients
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as the classical acoustic energy. Still, it differs from the latter in the sense that the classical

acoustic energy is based on the real parts of the complex signals and will hence be noted

Eac,<(t) in the following:

Eac,<(t) =

∫
V

(
1

2γp0(x)
p′(x, t)2 +

ρ0(x)

2
u′(x, t)2 +

p′(x, t)

c0(x, t)2
u0(x) · u′(x, t)

)
dV (15)

Please note that the energy terms of Eq. (14) and (15) do not follow the same temporal

evolution. The term of Eq. (14) is defined in a way as to describe the energy of a linear

combination of several modes with possibly incommensurate frequencies, which would pro-

hibit time averaging over one period of oscillation.

This difference becomes clearer if one considers the two energy terms defined for orthogonal

modes, i.e. of the form Eac(t) =
〈∑m

j=1 vj(x, t)
∣∣∣∑m

j=1 vj(x, t)
〉
Wac

. For a characteristic time

scale of amplification θ that is much larger than the period of the eigenmodes Tj (i.e. for

modes with an imaginary frequency much smaller than the real frequency ωi << ωr), one

may link the energy terms in the following way:

Eac(θ) =
m∑
j=1

1

Tj

∫ Tj

0

Eac,<(θ, t)dt (16)

In particular, one may consider the case of a domain with a reactive impedance boundary

condition, where the eigenmodes are marginally stable. This boundary condition allows an

instantaneous flux of acoustic energy across the border of the domain, which means that

Eac,<(t) will vary. The time-integrated flux over one period of oscillation is zero, though, and

the variation in Eac,<(t) is not to be attributed to non-orthogonality. As shown by Eq. (16),

the equivalent acoustic energy Eac(t) does not reflect that effect and remains constant.

Complete equivalence between the terms of Eq. (14) and (15) may thus be established by

time averaging. However, in the present case the short term transient behaviour is to be

evaluated. Therefore, it does not make sense to introduce a time average.

The orthogonality of the eigenmodes can now be discussed using the inner product intro-

duced in Eq. (12) together with the weight matrix of Eq. (13). The projection of v̂1(x) onto

v̂2(x) can be expressed analytically and leads (after some algebra) to the following equation

(see Appendix A for a short derivation):

〈
v̂1

∣∣∣v̂2

〉
Wac

=
1

2

1

ω1 − ω∗2

[ ∫
S

1

ρ0

(
p̂1
∇p̂∗2
ω∗2
− p̂∗2
∇p̂1

ω1

)
·ndS+i

∫
V

γ − 1

γp0

(
p̂1q̂
∗
2 + p̂∗2q̂1

)
dV
]
, (17)
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where S and V denote the surface and the volume of the domain, respectively, and ∗ stands

for complex conjugates. (The dependency of the complex variables on x is omitted for clar-

ity, and the mean flow speed is neglected.)

The expression of Eq. (17) is an extension of the result by Nicoud et al.1, who were consid-

ering only pressure fluctuations in their analysis of the eigenmodes’ orthogonality, instead

of the complete mode structure composed of pressure and velocity terms. Eq. (17) shows

that two eigenmodes v̂1 and v̂2 are orthogonal when a) boundary impedances are trivial ,

i.e. they correspond to pressure or velocity nodes with p̂ = 0 or ∇p̂ = 0 respectively; and

b) no heat release fluctuations occur (q̂ = 0). However the conditions for orthogonality will

most probably never be met in an actual experimental setup, so that non-normality should

be considered as the rule for practical thermoacoustic systems.

As a consequence, even if all the eigenmodes are found stable (ωi < 0), there is a possibility

for the equivalent acoustic energy of Eq. (14) to exhibit transient growth before it eventually

vanishes as predicted by linear modal analysis. The amplitude of the acoustic fluctuations

may become significant during this transient phase and the linear assumption is possibly not

valid anymore. In particular, it has been shown23 that gain and phase of the flame transfer

function may depend significantly on the amplitude of the velocity fluctuations. This is

the reason why non-normality is sometimes related to complex effects such as non-linear

triggering2.

The focus of the present study is however limited to the assessment of non-normality effects

in complex configurations and non-linearity is not considered.

C. The maximum possible amplification

For complex time-dependant signals of pressure and velocity q(x, t), a maximum possible

amplification Gac(t) can be defined as

Gac(t) = max
Eac(t)

Eac(0)
= max

q(x,0)6=0

〈
q(x, t)

∣∣∣q(x, t)〉
Wac〈

q(x, 0)
∣∣∣q(x, 0)

〉
Wac

(18)

This quantity should be thought of as the upper bound of the envelop of the equivalent

acoustic energy. Starting from any perturbation with a unit energy norm, the equivalent

acoustic energy term will always remain smaller than or equal to this coefficient: Eac(t) <
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Gac(t), ∀t. Still, there is no reason why the optimal perturbation, which maximizes Eac at

time t1, should also maximize Eac at time t2 6= t1, thus the envelop.

Schmidt & Henningson5 provide a procedure to assess this maximum possible amplification

for complex signals q(x, t) that can be expressed as a linear combination of m complex

eigenmodes:

q(x, t) =
m∑
j=1

kj v̂j(x)e−iωjt (19)

This expansion of q(x, t) as a linear combination of eigenmodes can be rewritten in a compact

matrix notation as

q(x, t) = V̂ (x)e−iΩtk (20)

where the jth column of the matrix V̂ (x) contains the complex-valued eigenvector v̂j(x),

the diagonal matrix Ω = diag(ω1, ω2, ..., ωm) contains the complex frequencies of the m

eigenvectors used for the expansion and the vector k stores the coefficients kj of the linear

combination Eq. (19).

Introducing Eq. (20) into the definition of the equivalent acoustic energy of Eq. (14), one

obtains:

Em
ac(t) =

〈
q(x, t)

∣∣∣q(x, t)〉
Wac

=

∫
V

q(x, t)H Wac q(x, t)dV

=

∫
V

(
e−iΩtk

)H
V̂ (x)H Wac V̂ (x)e−iΩtkdV

=
(
e−iΩtk

)H
Mac

(
e−iΩtk

)
(21)

where the matrix M contains the inner products of the m selected eigenvectors:

Mac =

∫
V

(
V̂ (x)H Wac V̂ (x)

)
dV =

〈
V̂ (x)

∣∣∣V̂ (x)
〉
Wac

(22)

The element kl of this matrix reads:

Mkl
ac =

∫
V

(
v̂k(x)H Wac v̂l(x)

)
dV (23)

Since
〈
·
∣∣∣ ·〉

Wac

is an inner product, Mac is a positive Hermitian matrix so that its Cholesky

decomposition exists and yields the square matrix Fac of size m such that FH
acFac = Mac.

Introducing the decomposition of Mac into the acoustic energy term of Eq. (21) one obtains:

Em
ac(t) =

(
Face

−iΩtk
)H (

Face
−iΩtk

)
(24)

12



This equation shows that Eac(t) is nothing but the L2-norm of the vector Face
−iΩtk. Note

that in difference to the energy term defined for one single mode (Eq. (14)), the equivalent

acoustic energy term for a superposition of several modes is function not only of ωi, but also

of ωr (via the matrix Ω).

Finally, noting that the Cholesky factor Fac is not singular, the maximum possible amplifi-

cation at time t takes the following form:

Gm
ac(t) = max

Em
ac(t)

Em
ac(0)

= max
‖Face−iΩtk‖2

2

‖Fack‖2
2

= max
Fack

‖Face−iΩtF−1
ac Fack‖2

2

‖Fack‖2
2

(25)

By definition, this quantity is the L2-norm of the operator Face
−iΩtF−1

ac . In other words, the

maximum amplification at time t is given by the largest singular value of Face
−iΩtF−1

ac .

The optimal initial perturbation is given by the corresponding right singular vector of

Face
−iΩtF−1

ac .

On the LHS of Eq. (25), the superscript m indicates that this expression gives the maximum

energy amplification at time t for all the perturbations which can be obtained by combining

the m selected eigenvectors (this notation is sufficient if one assumes that the m vectors

selected correspond to the m lowest eigenfrequencies). In the same way, the maximum tran-

sient growth, which can be obtained by combining these m eigenvectors, can be obtained by

maximizing Gm
ac(t) over time and shall be noted:

Gm
max,ac = max

t
Gm
ac(t). (26)

In the case where the eigenmodes are orthogonal and all damped, the matrices Mac and

Fac are both diagonal. Then, Eq. (25) shows that the maximum growth rate equals unity

(because Face
−iΩtF−1

ac reduces to e−iΩt) as it is expected when non-normality is not present.

As a last comment, we stress the fact that the singular value decomposition is performed on

a matrix of size m (which is the number of eigenmodes used to generate the signal), making

the above approach computationally inexpensive.

D. Extension to non isentropic modes

When the LEE equations are solved instead of the Helmholtz equation for pressure only,

the thermoacoustic modes contain one more component, in the presented case the fluctuating

13



entropy. Any mode can thus be represented with the following compact notation :

v(x, t) = v̂(x)e−iωt = v̂(x)e−iωrteωit with v̂(x) =


p̂(x)

û(x)

ŝ(x)

 =



p̂(x)

ûx(x)

ûy(x)

ûz(x)

ŝ(x)


(27)

To describe the energy contained in this kind of modes, the corollary for disturbance energy

derived by Myers24 and extended by Karimi et al.25 is appropriate. Thus, instead of the

classical acoustic energy of Eq. (15), the following term should be used to determine the

total energy of the disturbances:

Etot,< =

∫
V

(
1

2γ(x)p0

p′(x, t)2 +
ρ0(x)

2
u′(x, t)2 +

ρ0(x)T0(x)

2Cp(x)
s′(x, t)2 + ρ′(x, t)u0(x) · u′(x, t)

)
dV

(28)

The weight matrix Wtot that relates the inner product of Eq. (12) to a complex based

equivalent of the total disturbance energy of Eq. (28) reads

Wtot =



1
2γp0

u0x
2c20

u0y
2c20

u0z
2c20

0

u0x
2c20

ρ0
2

0 0 −ρ0u0x
2Cp

u0y
2c20

0 ρ0
2

0 −ρ0u0y
2Cp

u0z
2c20

0 0 ρ0
2

−ρ0u0z
2Cp

0 −ρ0u0x
2Cp

−ρ0u0y
2Cp

−ρ0u0z
2Cp

ρ0T0
2Cp


(29)

The resulting energy term reads then

Etot(t) =
〈
v(x, t)

∣∣∣v(x, t)
〉
Wtot

= e2ωit

∫
V

(
1

2γp0

|p̂|2 +
ρ0

2
|û|2 +

ρ0T0

2Cp
|ŝ|2 +

(
p̂

c2
0

− ρ0

Cp
ŝ

)
|u0 · û|

)
dV

(30)

where the dependencies on x were omitted for clarity.

The energy term based on complex quantities (Eq. (30)) is formally equivalent to the one

based on real-valued quantities (Eq. (28)), as the last term of the RHS integral can be

rewritten using the linearized state equation

ρ̂ =
p̂

c2
0

− ρ0

Cp
ŝ.

14



It can be shown26 that the matrix Wtot defined in Eq. (29) is definite positive as long

as the local mean flow Mach number is smaller than a critical value, more precisely if

Ma =
√

u0 · u0/c0 < 1/γ. Since this condition is well satisfied for practical combustion

systems, the following integral:〈
v̂1(x)

∣∣∣v̂2(x)
〉
Wtot

=

∫
V

(
v̂1(x)H Wtot v̂2(x)

)
dV (31)

defines an inner product. Thus, the analytical development described in section II C remains

valid in the non-isentropic case and the maximum growth at time t can be written as:

Gm
tot(t) = max

Em
tot(t)

Em
tot(0)

= max
Ftotk

‖Ftote−iΩtF−1
tot Ftotk‖2

2

‖Ftotk‖2
2

= ‖Ftote−iΩtF−1
tot ‖2

2 (32)

where the Cholesky factorisation of the matrix

Mtot =

∫
V

(
V̂ (x)H Wtot V̂ (x)

)
dV = FH

totFtot

has been introduced. This decomposition exists, if Wtot is symmetric positive definite26,

i.e. when Ma < 1/γ. It might also exist even if the latter condition is not met locally,

in a choked nozzle say, where the local mean Mach number is obviously greater than the

critical value. This is due to the volume integral in the definition of Mtot, which allows

some compensation between low and large Mach number regions. Similarly to the isentropic

case of section II C, the maximum energy at time t is given by the largest singular value

of Ftote
−iΩtF−1

tot and the corresponding initial perturbation is given by the right principal

singular vector. The maximum transient growth which can be obtained by combining m

eigenvectors is:

Gm
max,tot = max

t
Gm
tot(t). (33)

As in the isentropic case of section II C, we may remark that :

• Eq. (32) produces Gm
max,tot = 1 when the eigenmodes are orthogonal and damped,

• the requested SVD is still to be made on a matrix of size m, thus not very CPU-

demanding

The theoretical results established in sections II C and II D are now used to study an aca-

demic configuration where Mach number effects are present.

15



III. RESULTS

A. Configuration

FIG. 1. The numerical setup to assess non-normality with non-zero mean flow (from Nicoud and

Wieczorek9).

L (m) Lc (m) xthroat (m) xf (m) δf (m) γ r (S.I)

1.1 1.0 1.0863 0.5 0.15 1.4 287

pin
0 (Pa) T in

0 = Tu (K) Tb (K) M in
0 Mout

0 xref (m)

101325 300 1200 0.05 1.5 0.42

TABLE I. Main physical parameters used for configuration of Fig. 1.

The numerical setup consists in a duct of constant cross section of length Lc, with a region

of heat release (”flame”) of axial extent δf located at x = xf and connected to a nozzle of

length L−Lc (see Fig. 1). As in9, the mean flow is assumed isentropic except in the region of

heat release and is constructed from analytical expressions of the temperature profile in the

combustion chamber and the Mach number distribution in the isentropic nozzle as follows:

T0(x) =
T out0 + T in0

2
+
T out0 − T in0

2
tanh

(
3
x− xf
δf/2

)
(34)

Ma0(x) = Main0 + (Maout0 −Main0 )

(
x− Lc
L− Lc

)3

(35)

The mean flow is then entirely determined by the choice of three independent inlet quan-

tities (for example pin
0 , T in

0 , M in
0 ), the outlet Mach number Mout

0 and relevant geometrical

parameters δf , xf , Lc, xthroat and L.
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The mean profiles depicted in Fig. 2 correspond to the numerical values gathered in Table I

and used throughout the course of this study. Tu and Tb are the temperature of cold (”un-

burnt”) and hot (”burnt”) gas on both sides of the heat source, respectively. Note that in

the presented case, the gain of the transfer function Hq of Eq. (6) is set to zero, i.e. unsteady

heat release is not considered. However, there is still interaction of the acoustic field with

the heat source, as acoustic perturbations generate entropy waves in the zone of non-zero

heat release, which are then convected downstream and may in turn create acoustic waves

at the nozzle, which then propagate back into the duct9,27.

(a)Mach number (b)Static pressure (Pa) (c)Static temperature (K)

FIG. 2. Mean flow fields for the configuration of Fig. 1.

The first eigenmodes of the configuration are computed following the procedure described

in9 where the Linearized Euler Equations written in the frequency space are discretized on

a staggered mesh. The first three modes are displayed in Fig. 3 where the modulus of the

complex amplitudes of pressure, velocity and entropy are plotted.

(a)Mode 1 at 59.1− 8.3i Hz (b)Mode 2 at 169.6− 9.4i Hz (c)Mode 3 at 231.7− 4.3i Hz

FIG. 3. The first 3 modes in the configuration of Fig. 1. : |p̂(x)|; : |û(x)|; :

|ŝ(x)|. The fluctuating quantities are scaled by γp0, c0 and 10× Cv respectively.
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B. Transient Energy Growth & Optimal Initial Perturbation

Based on the first six eigenmodes obtained from solving the Linearized Euler Equations,

the optimal initial perturbation and the corresponding transient growth are determined. As

explained in section II, two alternative definitions of ”perturbation energy” are used, based

on the classical acoustic energy Gm
ac(t) as noted in Eq. (25), and on the total disturbance

energy Gm
tot(t) as in Eq. (32), respectively. As the configuration allows for the presence

of entropy fluctuations, the optimal initial perturbation may include acoustic and entropy

fluctuations in both cases (see Fig. 5). The important difference between Gm
ac(t) and Gm

tot(t)

consists in the fact that the contribution of entropy fluctuations to the energy term are

considered negligible in the former approach, whereas they are taken into account in the

latter.

It should be noted that the evaluation based on Eac(t) alongside with Etot(t) is included here

in order to point out the importance of the correct choice of the energy form. The evaluation

of non-orthogonal effects as post-processing of an eigenvalue analysis may be more prone to

inconsistencies than other approaches. The following demonstration is therefore meant to

caution the reader against misleading results, which occur if the presented technique is used

inadequately.

The temporal evolution of the terms G6
ac(t) and G6

tot(t) is shown in Fig. 4(a). In this

plot, the time is scaled by the period of the first eigenmode, which has a frequency of

f1 = 59.1 − 8.3iHz (cf. Fig. 3(a)); the possible transient energy growth is plotted using a

log-scale. It is obvious that the two quantities behave very differently, their maximal values

being G6
max,ac ≈ 6000 and G6

max,tot ≈ 6. In both cases, however, the maximum possible

amplification is reached at a reduced time of t′max ≈ 0.5, i.e. after half a period of the first

mode. It should also be noted that at very low Mach numbers the two approaches lead to

results comparable with each other, with values of Gm
max,tot ≈ Gm

max,ac ≈ 1 (not shown).

Fig. 4(b) shows the temporal evolution of G6
tot(t) together with that of the energy of the

optimal initial perturbation E6
opt,tot(t). The energy of the initial perturbation follows very

closely the curve of G(t). This indicates that the optimal initial condition maximises the

energy of the system not only at t = tmax, but rather throughout the complete initial phase

considered here.
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(b) G6
tot(t); E6

opt,tot(t)

FIG. 4. Temporal evolution of the maximum possible amplification and energy term as obtained

from the first six eigenmodes. Time is scaled by the period of the first eigenmode t′ = t
T1

with

f1 = 59.1− 8.3i Hz.

The optimal initial perturbations that allow to obtain the maximum possible amplifica-

tions G6
ac(t) and G6

tot(t) are shown in Fig. 5 for t = 0. Figure 6 shows the same perturbations

at the moment of maximum possible amplification, i.e. at t = tmax.

In the optimal initial perturbation obtained using the total energy approach (see Fig. 5(b)),

fluctuations of entropy, pressure and velocity are equally present. At the time of maximum

growth t = tmax, the entropy contribution to the disturbance energy term Etot has increased

significantly, while the acoustic mode persists (see Fig. 6(b)). The situation is rather differ-

ent for the optimal perturbation computed based on the acoustic energy only. At the initial

time, the optimal perturbation contains mainly entropy fluctuations, the acoustic contribu-

tion being virtually zero (see Fig. 5(a)). However, at t = tmax the entropy fluctuations have

decreased, while the acoustic part has increased significantly (see Fig. 6(a)). This means

that energy has been transferred from entropy towards acoustic fluctuations. However, as

entropy fluctuations were not taken into account in the computation of the energy term,

this also means that the acoustic energy term Eac is amplified enormously as it grows from

an initial value close to zero to a non-zero value at t = tmax.

This observation is consistent with the fact that a large value of G6
max,ac is observed in Fig. 4,

while the value of G6
max,tot is a lot smaller.
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(a)optimal perturbation for G6
ac(0)
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(b)optimal perturbation for G6
tot(0)

FIG. 5. Spatial distribution of the optimal initial perturbation at t = 0: p′(x, t); u′(x, t);

s′(x, t). The fluctuating quantities are scaled by γp0, c0 and Cv respectively.
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(a)optimal perturbation for G6
ac(tmax)
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(b)optimal perturbation for G6
tot(tmax)

FIG. 6. Spatial distribution of the optimal perturbation at t = tmax. p′(x, t); u′(x, t);

s′(x, t). The fluctuating quantities are scaled by γp0, c0 and Cv respectively. Note the

different scale of the ordinates.

To better understand the physical background of the difference between Gm
max,ac and

Gm
max,tot, the convergence of these quantities with respect to the number of eigenmodes m

used for the analysis is displayed in Fig. 7. From Fig. 7(a) one may conclude that the max-

imum transient amplification is well predicted with only 5-6 modes, when the total energy

of the disturbances is considered. Adding more modes to the analysis does not have a huge

impact on the result for Gm
max,tot. By contrast, for the growth rate based on the acoustic

energy Gm
max,ac convergence is hardly reached when 10 modes are used. It seems that the

values of Gm
max,ac would increase even more when a larger number of eigenmodes is retained.
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This observation is confirmed by Fig. 7(b), which shows the contribution of acoustic fluc-

tuations to the optimal initial perturbation computed with the norm based on the acoustic

energy (cf. Figs. 5(a) and 6(a)). For this plot, the value σ(t) has been defined as the ratio

of acoustic energy to total disturbance energy:

σ(t) =
Eac(t)

Etot(t)
, (36)

where Eac(t) and Etot(t) are the terms defined in Eq. (14) and (30) respectively. Values of σ(t)

close to one indicate hence preponderance of acoustic fluctuations and negligible influence

of entropy fluctuations, while values of σ(t) near zero denote huge contributions of entropy

fluctuations in the signal. For the optimal perturbation corresponding to Gm
max,ac at t = 0,

the contribution of the acoustic energy to the total energy clearly tends to zero for increasing

m (◦-symbols). At the same time, the contribution of acoustic energy to the perturbation

at t = tmax remains of the same order of magnitude (×-symbols). The acoustic transient

growth Gm
ac(t) = maxEac(t)/Eac(0) is hence virtually unlimited for increasing values of m,

as Eac(tmax) does not decrease in the same way as Eac(0).

This behaviour is possible, since the entropy mode of fluctuations can feed the acoustic

mode when the mean flow is accelerated9,27,28. Another path from entropy to acoustic was

discussed by Nicoud and Poinsot29 in the case where the thermal diffusivity is not zero. The

very large value of G6
max,ac displayed in Fig. 4 is merely the consequence of these physical

phenomena. In other words, non-normality effects cannot be characterized by the transient

growth of acoustic energy when either mean flow or thermal diffusivity are present; the total

transient growth based on the complete energy of the fluctuations must be used instead

(cf.18,30).

IV. PARAMETER STUDY

In the following, two aspects contributing to non normality in the system will be investi-

gated separately: the influence of the mean flow Mach number and flame-acoustic interaction

via unsteady heat release. The configuration to be analyzed is simplified to a duct with a

1D flame, the isentropic nozzle being removed (see Fig. 8). The boundary conditions are set

to û = 0 and ŝ = 0 at the inlet and to p̂ = 0 at the outlet of the domain. This means, that

as soon as a mean flow is present, both acoustic energy and energy contained in entropy
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(b)Contribution of the acoustic energy to the

optimal initial perturbation for Gm
max,ac.

◦: σ(t = 0); ×: σ(t = tmax)

FIG. 7. Dependence of transient growth on the number of eigenmodes m retained for the analysis.

FIG. 8. Configuration used for Parameter Study.

fluctuations may leave the domain.

The flow parameters concerning temperature, pressure and gas constant of the fluid, as well

as the position and thickness of the flame, remain those of Table I.

A. Variation of mean flow Mach number

In this subsection, the effect of mean flow Mach number on transient growth is explored.

In particular, for inlet Mach numbers in the range from M in
0 = 0.05 to 0.20, the maximum

possible transient growth is computed based on the total disturbance energy, using up to

eight eigenmodes of the configuration for modal expansion.

Cases with inlet Mach numbers smaller than M in
0 = 0.05 are not considered here, as for low
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FIG. 9. Variation of Gmax with the inlet Mach number.

mean flow Mach numbers the entropy fluctuations are structures with a wavelength much

shorter than the acoustic wavelength, by a factor that corresponds to the mean flow Mach

number λe/λac ≈ u/c = M . This implies that for low Mach numbers the computational

grid has to be very fine in order to correctly capture the effect of entropy perturbations. At

the same time, a demonstration of low Mach number computations is not the main concern

here, as the effects of non normality are expected to decrease with the mean flow velocity.

The results for Gm
max as defined in Eq. (33) obtained by combining the first m eigenmodes

are plotted in Fig. 9(a). The plot confirms that the growth factor Gm
max converges towards

a stable value when about seven modes are included in the analysis. Figure 9(b) resumes

the values of Gmax obtained by combining eight eigenvectors as function of the inlet Mach

number. As expected, non normal effects are relatively small at low Mach numbers, and

increase with growing mean flow velocity. For M in
0 = 0.05, the maximum transient growth

obtained is approximately Gmax ≈ 2.5, which is considerably lower than the value obtained

for the same velocity for the configuration including the choked nozzle. Yet, increasing

the mean flow Mach number leads then to maximum possible growth factors as high as

Gmax ≈ 18 for M in
0 = 0.20.
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B. Variation of the strength of the unsteady heat release term

In the remainder of this section, the impact of unsteady heat release on non-normal

interactions and resulting growth of perturbation energy is investigated. As before, the

effects of non-normality are determined based on the total disturbance energy approach.

As introduced in section II, the unsteady heat release is described using an n-τ -model,

leading to the expression stated in Eq. (6). In the frequency domain, this unsteady heat

release term reads:

q̂(x) =
qtotal
Ubulk

Hq(x)eiωτ ûxref
· nref (37)

The local interaction index Hq can be linked to a parameter n as follows:

Hq(x) = n
δf

Ubulk

qtotal

γ
γ−1

p0 for xf − δf
2
< x < xf +

δf
2

;

Hq(x) = 0 otherwise
(38)

where xf and δf denote the position and the thickness of the flame, respectively.

Varying the parameter n hence allows to change the strength of the flame-acoustic inter-

action, which is what is investigated in the following. However, once unsteady heat release

is introduced with n > 0, some of the modes are expected to become linearly unstable. This

is indeed observed for the configuration investigated here, see Table II, which shows a trend

towards positive values for the imaginary part of all eigenfrequencies if the interaction index

n is increased. The analysis has been carried out at a relatively high inlet Mach number

of Min = 0.2, resulting in high losses of disturbance energy at the boundaries, and thus

reducing both the growth rates and the number of unstable modes. Nevertheless, modes 4

and 5 are linearly unstable for n > 2.

In such cases, the computation of a transient growth factor is not obviously meaningful,

perhaps not even possible. However, the system being linearly unstable does not mean

that non-orthogonal effects do not exist anymore, but rather that Gm
tot(t) cannot be used

for the evaluation, as it will inevitably tend to infinity. For this reason confrontation with

linearly unstable systems is usually avoided. Otherwise, an analysis can be made possible by

introducing a damping term in the governing equations8. However, this approach requires

changes to the formulation of the underlying eigenvalue problem, and is thus opposed to the

idea of studying non-normal effects in a post-processing step.

In this paper a different strategy is therefore adopted: Simply speaking, the growth of

perturbation energy including non-normal interactions is compared to the growth of the
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m n = 2 n = 3 n = 4

1 53.3− 64.0i 45.3− 58.3i 39.4− 54.6i

2 332.6− 10.6i 342.5− 5.4i 350.3− 2.1i

3 457.5− 188.1i 440.9− 169.6i 433.7− 160.0i

4 662.6 + 41.5i 677.9 + 73.9i 696.7 + 103.6i

5 893.4 + 10.6i 877.5 + 26.6i 859.9 + 37.5i

6 1114.1− 204.7i 1069.6− 194.2i 1045.4− 186.2i

7 1229.6− 43.8i 1221.4− 30.2i 1217.0− 23.5i

8 1567.4− 37.7i 1404.3− 143.3i 1415.2− 124.1i

9 1784.1− 76.8i 1567.4− 37.7i 1574.9− 29.5i

10 1933.8− 33.5i 1805.0− 68.8i 1819.0− 60.9i

TABLE II. Eigenfrequencies of first modes with flame-acoustic interaction n > 0, time delay

τ = 0.5ms, inlet Mach number of Min = 0.2. Mode index m in bold face indicates linearly unstable

modes.

energy of the most unstable eigenmode,

Emax = E0 exp(−2ωmaxi t). (39)

Results are shown in Fig. 10. Is is evident that non-normal interactions can accelerate the

growth, such that larger perturbation energies are reached at earlier times. However, such

enhanced growth is only observed in the early stages of growth t′ < 0.2, at later times the

growth rate of the most unstable modes dominates the evolution. This becomes particularly

obvious when the data shown in Fig. 10 is plotted on a log-linear scale (see Fig. 11). Then

it becomes clear that for n = 2 and n = 4, perturbation energies including non-normal

interactions are about four times and two times larger, respectively, than the energy that

the most unstable mode reaches at the same time.

As mentioned before, for the case of a linearly unstable system G(t) will tend to infinity

and can therefore not be used for the analysis. In such conditions, the largest oscillation

amplitudes are always observed at t→∞, and they would correspond to the most unstable

mode, i.e. the mode with largest imaginary part ωi.
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FIG. 10. Growth of perturbation energy with unsteady heat release n = 2 (left) and n = 4 (right)

for m = 10 eigenmodes. – · – · – : most unstable mode Emax(t); —— : G(t) maximum growth;

– – – : E(t) growth from optimal initial condition
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FIG. 11. Growth of perturbation energy with unsteady heat release n = 2 (left) and n = 4 (right),

log-linear scale. – · – · – : most unstable mode Emax(t); —— : G(t) maximum growth; – – – : E(t)

growth from optimal initial condition

In order to identify the optimal initial conditions and to quantify the effect of accelerated

initial growth observed in Fig. 10, the approach used so far is slightly modified: The expo-

nential growth of the term G(t) is counteracted by multiplication with exp(−2ωmaxi t), which

leads to a modified growth term of the form

Gcomp
max ≡ max

t

[
G(t) exp(−2ωmaxi t)

]
(40)
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FIG. 12. Temporal evolution of the compensated terms for n = 2 (left) and n = 4 (right) for

m = 10 eigenmodes: —— : G(t) exp(−2ωmaxi t) – – – : E(t) exp(−2ωmaxi t)

(where comp stands for compensation of the exponential growth.) In difference to G(t), the

growth term of Eq. 40 tends towards a stable value for large times, and presents a maximum

value during the initial cycle. This ”compensated” growth term can therefore be used to

quantify the effect of accelerated growth in unstable non-orthogonal systems, the approach

being otherwise the same as for linearly stable systems.

V. CONCLUSION

This article evaluates non-normal effects for a thermoacoustic system that contains both

a source of entropy fluctuations and a zone of accelerated mean flow. Rather than using a

singular value decomposition approach, the determination of the maximum transient energy

growth and the corresponding optimal initial perturbation is carried out as a very efficient

post-processing analysis based on an expansion in eigenmodes. These modes are obtained

by solving the Linearized Euler Equations using a finite volume technique, a method which

allows to take into account mean flow effects and is at the same time suitable for complex

geometries. It should be noted, though, that as the approach is based on an eigenmode

decomposition, the computation of eigenvectors being associated to discrete frequencies is

a prerequisite to this analysis. The generalization of the presented technique from 1D to

a complete 3D analysis based on the Linearized Euler Equations is limited to the case of

discrete eigenmodes. For hydrodynamic instabilities associated to a continuous frequency

spectrum, the presented approach may require further adjustments not considered in this
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study.

The results confirm that the eigenmodes of thermo-acoustic configurations are, in general,

not orthogonal, which allows for transient growth of disturbance energy. However, it is

pointed out that for the analysis of non-normal effects of such a configuration the definition

of the norm, or equivalently the proper choice of the disturbance energy, is crucial. Two

approaches are presented in this paper, the first one being based on an energy term that is

equivalent to the classical acoustic energy; the second one being based on the total distur-

bance energy and therefore including the contribution of entropy fluctuations. It is shown

that the use of the acoustic energy concept may cause misleading results in configurations

that include mean flow effects: If the energy of entropy fluctuations is neglected in the anal-

ysis, any energy transfer from entropy to acoustic fluctuations will lead to spurious values

for transient (acoustic) energy growth.

Applied to a schematic representation of a combustion chamber with a moderate mean

flow speed and choked exit without unsteady heat release, the method presented predicts a

maximum possible amplification of Gmax,tot ≈ 6. For this configuration, a linear combina-

tion of five to six eigenmodes is sufficient to determine the maximum possible amplification

and the optimal initial perturbation. A subsequent parameter study shows the effects of

the mean flow Mach number and unsteady heat release on the degree of non-normality.

The analysis confirms that non normal effects increase with the mean flow velocity and the

strength of the thermo-acoustic interaction. It is demonstrated also that linearly unstable

systems can be analysed with the method presented. The results show that transient growth

due to non-normality may lead to high amplitudes of perturbations at times earlier than

those predicted by linear theory, i.e. before the exponential growth is the dominant aspect.

After completion of the work described in the present paper, Subramanian & Sujith31

have proposed a norm for the energy of heat release fluctuations in a model of a laminar

premixed flame. In support of the findings of the present study, it is found that the transient

growth of energy detected in the system may be strongly influenced by the choice of norm.
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Appendix A: Orthogonality of the Eigenmodes

The objective of this appendix is to give a short derivation of Eq. (17), which is used to

discuss the orthogonality of the eigenmodes.

Consider two eigenvectors v̂1 and v̂2, that are associated to the complex eigenfrequencies ω1

and ω2, respectively. A weighted inner product can then be defined as follows:

〈
v̂1

∣∣∣v̂2

〉
Wac

=

∫
V

1

2γp0

p̂1p̂
∗
2 dV +

∫
V

ρ0

2
û1 · û∗2 dV, (A1)

where V denotes the domain’s volume, and ∗ stands for complex conjugates.

Writing the Helmholtz-Equation (cf. Eq. (7))for the complex conjugate of p̂2 yields:

p̂∗2
γp0

= − 1

ω∗22

∇ · 1

ρ0

∇p̂∗2 − i
γ − 1

γp0ω∗2
q̂∗2, (A2)

The first integral on the RHS of Eq. A1 can thus be rewritten as:∫
V

1

2γp0

p̂1p̂
∗
2 dV = − 1

2ω∗2
2

∫
V

p̂1∇ ·
1

ρ0

∇p̂∗2 dV − i
1

2ω∗2

∫
V

γ − 1

γp0

p̂1q̂
∗
2 dV (A3)

Using integration by parts, this result can be further developed into:∫
V

1

2γp0

p̂1p̂
∗
2 dV =

1

2(ω2
1 − ω∗22 )

∫
S

1

ρ0

(p̂1∇p̂∗2 − p̂∗2∇p̂1) · ndS

+
i

2(ω2
1 − ω∗22 )

∫
V

γ − 1

γp0

(ω∗2 p̂1q̂
∗
2 + ω1p̂

∗
2q̂1) dV,

(A4)

where S denotes the domain’s boundary and n the unit vector normal to the boundary.

The second integral on the LHS of Eq. (A1) can be rewritten using the relation ρ0ûk =

1
iωk
∇p̂k, which yields: ∫

V

ρ0

2
û1 · û∗2 dV =

1

2(ω1ω∗2)

∫
V

1

ρ0

∇p̂1 · ∇p̂∗2 dV (A5)
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Further development using integration by parts leads to:

1

2(ω1ω∗2)

∫
V

1

ρ0

∇p̂1 · ∇p̂∗2 dV =
1

2(ω2
1 − ω∗22 )

∫
S

1

ρ0

(
ω1

ω∗2
p̂1∇p̂∗2 −

ω∗2
ω1

p̂∗2∇p̂1) · ndS

+
i

2(ω2
1 − ω∗22 )

∫
V

γ − 1

γp0

(ω1p̂1q̂
∗
2 + ω∗2 p̂

∗
2q̂1) dV,

(A6)

Finally, adding the expressions given in Eqs. (A4) and (A6) yields the result discussed in

section II:〈
v̂1

∣∣∣v̂2

〉
Wac

=
1

2

1

ω1 − ω∗2

[ ∫
S

1

ρ0

(
p̂1
∇p̂∗2
ω∗2
− p̂∗2
∇p̂1

ω1

)
·ndS+i

∫
V

γ − 1

γp0

(
p̂1q̂
∗
2 + p̂∗2q̂1

)
dV
]

(A7)
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