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Eigenderivatives of general defective systems have been studied by the author in reference
[11] by utilizing perturbation methods; an application to a mechanical problem has also been
presented in reference [12]. It has been shown there that the eigensolutions of defective
systems are strongly sensitive to perturbations, since asymptotic expansions involve
fractional powers of the perturbation parameter. A different approach to the problem was
followed in the paper by Triantafyllou and Triantafyllou [13], in which a geometric theory
was developed to explain the frequency coalescence phenomenon. In addition, a sensitivity
analysis of simple conservative and dissipative systems was performed; however, no general
computational methods for large systems analysis have been given.

Defective systems, however, represent exceptional cases. More often systems having close
eigenvalues are encountered (mistuned systems), instead of perfectly coincident (tuned
systems). In these cases, if the associated eigenvectors make groups of nearly parallel vectors,
the system can be classified as nearly defective. If a standard procedure of sensitivity analysis
for distinct eigenvalues is applied to such a system, series expansions are obtained, valid in
very narrow regions of the space of the parameters, even if the mistuning is not very small;
therefore they are useless for practical purposes.

This circumstance can easily be illustrated by a simple example. Consider the matrix

A
 (j)=$1j 1
1%, (1)

depending on one small parameter jW 1. It admits two nearly coincident eigenvalues
l
 1,2(j)=12 j1/2 and two nearly parallel eigenvectors û1,2(j)= {1, 2j1/2}T; therefore it is
nearly defective with mistuning j1/2. Now perturb the matrix A
 as

A	 (j, h)=$ 1
j+ h

1+ h

1 %, (2)

where hW 1 is a second small parameter. The eigenvalues of the perturbed matrix A	 are
l	 1,2(j, h)=12 [(1+ h)(j+ h)]1/2. By expanding them for small h and keeping j fixed the
following expression is obtained:

l	 1,2(j, h)= l
 1,2(j)2 h{(1+ j)/2j1/2}+O(h2). (3)

This expansion is not uniformly valid, since the second term is of the same order of or larger
than the first term when heO(j1/2).

The basic idea on how to approximate eigensolutions of perturbed nearly defective
matrices A	 is here borrowed from the theory of elastic stability by Koiter [14]. Accordingly,
the unmodified nearly defective system A
 is viewed as a perfect (tuned) system A0 affected
by small imperfections causing the mistuning, controlled by a parameter j. When a second
control parameter h acts on the imperfect system (the modification parameter here, the load
parameter in elastic stability), the solution is sought as a j-perturbation of the h-response
of the perfect system, which itself is obtained by a perturbation method. However, Koiter’s
problem is a direct problem, since the perfect system A0 is known; on the contrary, since only
the imperfect system A
 is given here, a ‘‘close’’ ideal perfect system has to be found by solving
an inverse problem.

If the previous example is considered again, a tuned system A0 close to A
 can easily be
found by posing j=0 in A
 (j). The matrix A0 =A
 (0) is a Jordan block admitting the double
eigenvalue l0 =1 and the unique proper eigenvector u0 = {1, 0}T. If A0 is perturbed only by
h (perturbed perfect system) the eigenvalues l	 1,2(0, h)=12 h1/2 +O(h3/2) will be found.
However, since j-perturbations are also present (perturbed imperfect system) the two
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parameters must be varied simultaneously. If a curve j= j(z), h= h(z) is selected on the
(j, h)-plane, the problem is conveniently converted into a one-parameter perturbation
problem; by choosing the straight line j= az, h= bz and expanding l	 1,2(j(z), h(z)) around
z=0, it follows that

l	 1,2(j, h)=1+ [z(a+ b)]1/2 +O(z3/2)=1+(j+ h)1/2 +O(j3/2, h3/2). (4)

This expansion is uniformly valid. It can be considered to be a j-perturbation of l	 1,2(0, h),
to which it tends when hw j.

In this paper an algorithm for building up a suitable tuned system is developed for general
systems in which the eigensolutions are nearly coincident in twos; however, the method can
easily be extended to handle more general cases. After the ideal system is built up, a
perturbation procedure similar to that utilized in reference [11] is followed, where, in
addition, the mistuning is taken into account.

A simple two-dimensional system is considered first, then the mechanical two-d.o.f.
(four-dimensional) system studied in reference [12] is analyzed.

2. PERTURBATIONS OF GENERAL NEARLY DEFECTIVE SYSTEMS

2.1.  

Consider an N×N real matrix A=A(p), depending on vector p of M non-dimensional
real parameters pa (a=1, 2, . . . , M). Suppose that in the M-dimensional space P of the
parameters pa , a regular surface S having the following properties exists (see Figure 1). At
any point P $ S there corresponds a matrix A having a multiple eigenvalue l with algebraic
multiplicity mq 1 and geometric multiplicity n=1 (the general case nQm dealt with in
reference [11] will not be considered here); u is the unique right eigenvector and v is the unique
left eigenvector (AHv= l�v) associated with l. Therefore surface S represents a
multi-parameter family of defective systems in the space P.

Now fix a point P0 on S and denote by A0 =A(p0) the corresponding matrix, having the
multiple eigenvalue l0 and (unique) associated eigenvectors u0 and v0. It is well known that
m generalized right and left eigenvectors, xi and yi , respectively, can be associated with the
defective eigenvalue l0. They are determined by the recurrence formulas

(A0 − l0I)xi = xi−1, (A0 − l0I)Hyi−1 = yi , i=2, 3, . . . , m, (5)

Figure 1. A multi-parameter family of defective systems and its perturbations in the parameter space.
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where x1 0 u0, ym 0 v0; i is called the index (or the order) of the eigenvector. The generalized
eigenvectors are found from equations (5) to within arbitrary constants ai and bi , since
xi + aiu0 and yi + biv0 are also solutions of the same equations. Constants ai can be chosen
by imposing the normalization conditions eT

h x1 =1, eT
h xj =0 ( j=2, 3, . . . , m) (eh = hth

N-dimensional canonical vector): i.e., by requiring that only the proper eigenvector x1 has
a non-vanishing hth (properly selected) component. Constants bi can be determined by
enforcing the bi-orthogonality conditions yH

i xj = dij , some conditions being automatically
verified as a consequence of equations (5).

2.2.   

By perturbing the parameters pa around pa0 in the direction r� = rae� a (sum understood,
e� a = ath M-dimensional canonical vector) (see Figure 1) it follows that p̂a (j)= pa0 + jra ,
j=2>P0P
 >W 1 being the perturbation parameter. Correspondingly, A
 (j)=A(p̂(j)) is
expanded in a series of powers of j,

A
 (j)=A0 + jAj + 1
2 j2Ajj +· · · , (6)

where

Aj =(1A0/1pa )ra , Ajj =(12A0/1pa 1pb )rarb . (7)

The unknown eigensolutions l
 i (j), ûi (j) (i=1, 2, . . . , N) of A
 (j) can be determined
through a perturbation procedure by assuming that they can be generated from the
eigensolutions l
 i (0), ûi (0) of the non-perturbed matrix A0. However, while a standard
procedure based on series expansions of integer powers of j can be used for non-defective
eigenvalues, series expansions of fractional powers of j must be employed for defective
eigenvalues (see the introductory example and references [1] and [11]). By limiting the
attention to the m eigenvalues generated by the defective eigenvalue l0, the following
expansions are performed:

l
 k (j)= l0 + j1/ml� 0k + 1
2 j2/ml� 0k +· · · ,

ûk (j)= u0 + j1/mu̇0k + 1
2 j2/mü0k +· · · , k=1, 2, . . . , m. (8)

Here the dot denotes differentiation with respect to j1/m. Moreover, to make the eigenvectors
ûk unique, the normalization conditions eT

h ûk =1 (k=1, 2, . . . , m) are enforced for any j,
this entailing eT

h u̇0k = eT
h ü0k =· · ·=0.

The normalized coefficients of the series expansions (8) can be evaluated by solving the
relevant perturbation equations and accounting for equations (5). It is found [11] that

l� 0k =(yH
mAjx1)1/m, l� 0k =2(yH

mAjx2 − yH
mu*)/(ml� m−2

0k ),

u̇0k = l� 0kx2, ü0k =6l� 0kx2 +2l� 20kx3

l� 0kx2 +2u*

if mq 2

if m=27, (9)

where u* is the (unique) solution of the non-homogeneous problem

(A0 − l0I)u*= l� m0kxm −Ajx1, eT
h u*=0. (10)

Index k in equations (9) and (10) refers to one of the m complex roots furnished by equation
(9a); u* does not depend on k.

Equations (8) and (9) show that a nearly defective systemhas nearly coincident eigenvalues
l
 k and nearly parallel eigenvectors ûk , since l
 k − l0 =0(j1/m), ûk − u0 =O(j1/m) for any k. The
small quantity D=O(j1/m) will be referred to as the mistuning of the system. If left
eigenvectors v̂k are also of interest, they can be evaluated in the same way; it is found that
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v̂k − v0 =O(j1/m) and v̂H
k ûk =O(j1−1/m): i.e., left eigenvectors are clustered around v0 and are

therefore nearly orthogonal to the corresponding right eigenvectors, clustered around u0.
Modal matrices U
 =[ûi ] and V
 =[v̂i ]=U
 −H (i=1, 2, . . . , N) are therefore ill-conditioned.

2.3.  

If l� 0k =0 the asymptotic expansions (8) are not valid. It is possible to show that this critical
case occurs when the direction r� of the perturbation is tangent to S at P0.

To prove this property it is convenient first to re-write l� m0k 0 l� m0 as a scalar product, namely
l� m0 = q� · r� , where the vector q� = vH

0 (1A0/1pa )u0e� a has been defined and equations (7a) and (9a)
have been used. Then, to find the direction of q� , one can proceed as follows.

Consider an arbitrary regular curve C $ S for P0, having parametric equations pa = pa (e),
with pa (0)= pa0 (see Figure 1). Along the curve C, A=A(e), u= u(e), v= v(e), with
A(0)=A0, u(0)= u0 and v(0)= v0. As A(e) is defective for any e, it ensues that vH(e)u(e)=0
or, from the eigenvalue problem, vH(e)A(e)u(e)=0. By differentiating the two identities with
respect to e, and evaluating them at e=0, it follows that

v̇H
0 u0 + vH

0 u̇0 =0, v̇H
0 A0u0 + vH

0 A0u̇0 + vH
0 A� 0u0 =0. (11)

By virtue of equation (11a) and the eigenvalue problem, the sum of the first two terms in
equations (11b) vanish and therefore vH

0 A� 0u0 =0. Since A� 0 is proportional to (1A0/1pa )ta ,
where ta are the components of the unit vector t� tangent to C at P0, from the previous result
it ensues that q� · t� =0; so, as C is arbitrary, q� is orthogonal to S. Therefore,
if the perturbation is tangent to S, l� 0k =0, and if the perturbation is normal to S,
l� 0k = >q� >1/m =max.

Tangent perturbations (r� 0 t� ) will be referred to as singular perturbations. When
perturbations of the matrix A0 are singular, the perturbations of the eigensolutions
are of order smaller than j1/m; if m=2, the latter are of order j: i.e., of the same
order as the changes of the parameters. In the geometric theory of reference [13] such
eigenvalue behaviour occurs near a degenerate coalescence point on the complex frequency
plane.

2.4.     

If sensitivities of the eigensolutions l
 k , ûk of a given nearly defective system A
 (j) have to
be determined, parameters pa must be perturbed around p̂a (j) (see Figure 1). A direction
s� = sae� a is chosen and an abscissa h=2>P
 P	 >W 1 is introduced; so p̃a (h; j)= p̂a (j)+ hsa

holds along s� , j being a parameter. By expanding A	 =A(p̃(h; j)) and its eigensolutions in
series of integer powers of h and keeping j fixed, it follows that

A	 (h; j)=A
 + hA
 h + 1
2 h2A
 hh +· · · , l	 k (h; j)= l
 k + hl
 'k + 1

2 h2l
 0k +· · · ,

ũk (h; j)= ûk + hû'k + 1
2 h2û0k +· · · , k=1, 2, . . . , m, (12)

where

A
 h =(1A
 /1pa )sa , A
 hh =(12A
 /1pa 1pb )sasb (13)

and the dash denotes differentiation with respect to h. It should be noted that expansions
(12b, c) hold for any k $ [1, N] since A
 is non-defective; however, attention will be focused
here on nearly coincident eigensolutions only (k $ [1, m]). Equations (12b, c) will be referred
to as standard perturbation expansions (SPE’s).
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The following eigenvalues sensitivities are obtained:

l
 'k =
v̂H

k A
 hûk

v̂H
k ûk

, û'k = s
N

j=1

j$ k

1
l
 k − l
 j

v̂H
j A
 hûk

v̂H
j ûj

ûj + akûk ,

l
 0k =
v̂kA
 hhûk

v̂H
k ûk

+
2

v̂H
k ûk

s
N

j=1

j$ k

1
l
 k − l
 j

v̂H
j A
 hûk v̂H

k A
 hûj

v̂H
j ûj

, k=1, 2, . . . , m. (14)

Here ak is an arbitrary constant to be determined by the normalization conditions and û'k has
been expanded in series of the eigenvectors ûj . Since l
 k − l
 j =O(j1/m) and v̂H

k ûk =O(j1−1/m)
for k and j $ [1, m], it ensues that l	 k − l
 k =O(h/j1−1/m) and ũk − ûk =O(h/j); therefore the
SPE’s are not uniformly valid when heO(j1−1/m) and heO(j), respectively.

Similar results have been obtained in reference [13] by analyzing series convergence instead
of uniform validity. It is shown that a coalescence on the complex frequency plane maps
into a branch point in the parameter space; therefore a power series expansion around a close
regular point (i.e., around a nearly defective system) has a small radius of convergence, less
than its distance from the singular point.

To obtain asymptotic expansions valid in a larger interval of h, the perturbation procedure
is modified as follows. The eigensolutions l	 k and ũk are expanded in series of the two small
parameters j and h around j= h=0; i.e., around the eigensolutions of the defective system
A0. The expansions are performed along the straight line t� = tae� a on which the abscissa
z=2>P0P	 >W 1 is introduced, so that jr� + hs� = zt� (see Figure 1). By expanding A	 (p(z))
it follows that

A	 (z)=A0 + zAz + 1
2 z2Azz +· · · , (15)

where

Az =(1A0/1pa )ta , Azz =(12A0/1pa 1pb )tatb . (16)

Since A0 is defective, l	 k (z) and ũk (z) have to be expanded in series of z1/m. So, expressions
similar to equations (8) and (9) hold, by replacing j by z. By taking into account that
zAz = jAj + hAh , where Ah =(1A0/1pa )sa , the dependence on the two parameters j and h

can be made explicit. The following expressions are thus obtained:

l	 k (j, h)= l0 + d1lk + 1
2 d2lk +· · · , ũk (j, h)= u0 + d1uk + 1

2 d2uk +· · · . (17)

Here

d1lk =[yH
m (jAj + hAh )x1]1/m, d2lk =2[yH

m (jAj + hAh )x2 − yH
mu*]/(md1l

m−2
k ),

d1uk = d1lkx2, d2uk =6d2lkx2 +2d1l
2
kx3

d2lkx2 +2u*

if mq 2

if m=27, (18)

in which u* is determined by

(A0 − lI)u*= d1l
m
k xm −(jAj + hAh )x1, eT

h u*=0. (19)

Equations (17) will be referred to as modified perturbation expansions (MPE’s). It should
be noted that they are not valid if the total perturbation zt� is singular: i.e., if d1lk =0.
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3. THE INVERSE PROBLEM

Practical problems can occur in the following form: a nearly defective system represented
by a point P
 in the parameters space P is given and sensitivities of some nearly coincident
eigenvalues and eigenvectors in the s� direction have to be determined. To obtain MPE’s a
tuned defective system P0 in the neighborhood of P
 must be selected as the starting point.
However, in general systems points P0 are not known and can be difficult to determine.
Moreover, defective systems could not exist in P, or at least only for meaningless values of
the physical parameters; e.g., negative values of essentially positive quantities. So it appears
convenient in any case to construct defective systems artfully.

The crucial task of how to build an ideal tuned system ‘‘close’’ to a real mistuned system
constitutes an inverse problem. It is dealt with here under the simplifying assumption that
only couples of nearly coincident eigenvalues occur (i.e., mE 2); a brief outline of how to
handle more general cases is given in the Appendix.

In principle, the choice of the tuned system P0 is arbitrary, but it should be expected that
the approximation improves as P0 becomes closer to P
 . For this reason a good choice seems
to be to search for an unknown tuned system P0 that is transformed into the given mistuned
system P
 , after non-singular perturbation. The easiest way to accomplish this is to extend
the M-dimensional space P= {pa} to an (M+ l)-dimensional space P+ = {pa , jj} by
introducing suitable new parameters jj ( j=1, 2, . . . , l) and to search for a defective system
in the subspace P
 + = {p̂a , jj} of P+: i.e., leaving unchanged the values of the M physical
parameters pa . In other words, a perturbation matrix −dA(p̂a , jj (p̂a )) is added to A
 (p̂a ) so
that a defective matrix A0(p̂a , jj (p̂a )) is obtained.

An example for N=2, M=1 and l=1 is shown in Figure 2. In the space P (the p1-axis),
an isolated unknown defective system exists at the origin O, the distance of which from the
given point P
 =(p̂1) is of the order of the mistuning D= l
 1 − l
 2 (i.e., the p1-perturbations
are singular). By introducing a suitably selected new parameter j1, a one-parameter family
of defective systems can be built up in the two-dimensional space P+. By choosing
P0 = (p̂1, j1(p̂1)), a tuned system close to P
 is obtained, the distance of which from P
 is of
order D2. Thus, in this case, extrapolating from P0 (ideal defective system) appears to be more
convenient than extrapolating from O (real defective system).

By coming back to the general case, a matrix A
 with eigensolutions l
 k , ûk and v̂k

(k=1, 2, . . . , N) is known, with v̂H
i ûj = dij . Two cases are considered: (a) there is a

unique couple of nearly coincident eigenvalues (with associated nearly parallel eigenvectors),

Figure 2. The ideal defective system P0 in the extended parameters space.
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the remaining eigenvalues being well separated; (b) there are several couples of nearly
coincident eigenvalues (each associated with nearly parallel eigenvectors) well separated
among themselves and from the remaining eigenvalues. While sensitivities of separated
eigensolutions can be determined by computing SPE’s, sensitivities of nearly coincident
eigensolutions must be evaluated by MPE’s. To obtain them, and unknown defective matrix
A0 must be determined, so that >dA>= >A
 −A0> is small with respect to >A
 >.

3.1.      

Let l
 1 and l
 2 be the (real) nearly coincident eigenvalues, with l
 1 − l
 2 =O(j1/2), j being
a small parameter. The space P= {pa} is extended by considering j as the (M+1)th
(real) parameter. In the extended space P+ = {pa , j} a defective matrix A0 is assumed to exist
having the spectral representation A0 =XJYH, where

l0 1

l0

J=G
G

G

G

G

K

k

l03 G
G

G

G

G

L

l

(20)
···

l0N

contains a Jordan block with a double eigenvalue l0 and X=[xk ] and Y=[yk ]=X−H are
the right and left eigenvector matrices, respectively. Only x2 and y1 are generalized (index
two) eigenvectors, the remainder being proper eigenvectors. (The change of notation with
respect to the previously defined eigenvectors (equations (5)), all associated with l0, should
be noted.)

The perturbation matrix is written as dA= jAj and Aj =[aij ] is represented as an N2-term
dyad: i.e., Aj = aijxiyH

j (sum understood). If dA has to be a non-singular perturbation of A0,
from equations (9a) yH

2 Ajx1 $ 0 must hold: i.e., a21 $ 0. The simplest choice is to assume that
aij = di2dj1: i.e.,

Aj = x2yH
1 . (21)

In other words, matrix A0 is perturbed by replacing the zero (2, 1) coefficient of J by j.
The perturbed matrix has the spectral representation A0 + jAj =U
 0L
 0V
 H

0 , where

U
 0 = [x1 + j1/2x2, x1 − j1/2x2, x3, . . . , xN ],

V
 0 = [(y1 + j−1/2y2)/2, (y1 − j−1/2y2)/2, y3, . . . , yN ],

L
 0 =diag (l0 + j1/2, l0 − j1/2, l03, . . . , l0N ). (22)

It should be noted incidentally that the first two (normalized) left eigenvectors tend to infinity
when j:0, because they are nearly orthogonal to the corresponding right eigenvectors.

The spectral representation of the known matrix is A
 =U
 L
 V
 H, where U
 =[ûk ], V
 =[v̂k ]
and L
 =diag (l
 k ). By equating the two matrices, i.e., by requiring U
 0 =U
 , V
 0 =V
 and
L
 0 =L
 , and solving with respect to the unknown quantities, it is found that

j1/2 = 1
2 (l
 1 − l
 2), l0 = 1

2 (l
 1 + l
 2), x1 = 1
2 (û1 + û2), x2 = 1

2 j−1/2(û1 − û2),

y1 = v̂1 + v̂2, y2 = j1/2(v̂1 − v̂2), (23)

together with lk = l
 k , xk = ûk and yk = v̂k for kq 2.
It is worth noting that perturbations (21) couple only the first two eigensolutions of A0,

while they leave the other eigensolutions unaltered. In particular, j, l0, xi and yi (i=1, 2)
depend only on l
 i , ûi and v̂i . Therefore, if only the sensitivities of the two nearly coincident
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eigensolutions are of interest, then the remaining eigensolutions of A
 do not have to be
evaluated.

In conclusion, the following algorithm can be applied.
(1) From the eigenvalue problems (A
 − l
 I)û=0 and (A
 − l
 I)Hv̂=0, l
 i , ûi and v̂i

(i=1, 2) are evaluated; right eigenvectors ûi are normalized according to eT
h ûi =1 and left

eigenvectors to v̂H
i ûj = dij .

(2) Equations (23) are employed to calculate j, l0, xi and yi (i=1, 2) (the normalization
condition eT

hxi =1 being automatically satisfied).
(3) Matrix Aj is computed from equation (21) and matrix A0 is then obtained as a

difference, A0 =A
 − jx2yH
1 .

(4) For a givenmodificationmatrixAh , themodified eigensolutions l	 i and ũi are calculated
from equations (17)–(19) (with m=2) as functions of a parameter h, j being fixed. Namely:

l	 i (j, h)= l0 2 (j+ hyH
2 Ahx1)1/2 + 1

2 h(yH
2 Ahx2 − yH

2 u*),

ũi (j, h)= u0 2 (j+ hyH
2 Ahx1)1/2x2 + h[1

2 (yH
2 Ahx2 − yH

2 u*)x2 + u*], i=1, 2, (24)

where u* is the solution of

(A0 − lI)u*= (yH
2 Ahx1)x2 −Ahx1, eT

h u*=0. (25)

Equations (24) and (25) are simpler than general equations (17)–(19), since the squared
mistuning j appears only at the first order; this is due to the particularly simple form (21)
of Aj . MPE’s performed by using points P0 $ P as starting points do not generally have this
property. There are two consequences as a result of this: (a) when h:0 second order MPE’s
furnish the exact solution; (b) the vector u* can be made independent of h, so it can be
calculated once and for all. The last circumstance ensures the effectiveness of the method;
if otherwise, it would not be computationally convenient.

3.2.      

Let l
 1, l
 2, . . . , l
 2l be 2l (generally complex) eigenvalues, nearly coincident in twos, with
l
 1 − l
 2 =O(j1/2

1 ), l
 3 − l
 4 =O(j1/2
2 ), . . . , l
 2l−1 − l
 2l =O(j1/2

l ), where j1, j2, . . . , jl are small
parameters. The space P is extended by considering the jj’s as additional (generally complex)
parameters. In the (M+ l)-dimensional space P+ a defective matrix A0 is sought. Its Jordan
canonical form contains l blocks having double eigenvalues l01, l03, . . . , l0,2l−1, so that
x1, x3, . . . , x2l−1, xk (kq 2l) are proper eigenvectors and x2, x4, . . . , x2l are generalized
(index two) right eigenvectors. Similarly, y2, y4, . . . , y2l , yk (kq 2l) are proper left
eigenvectors and y1, y3, . . . , y2l−1 are generalized left eigenvectors.

The following perturbation matrix dA is chosen:

dA= j1Aj1 + j2Aj2 + · · ·+ jlAjl = j1x2yH
1 + j2x4yH

3 + · · ·+ jlx2lyH
2l−1. (26)

Accordingly, the l Jordan blocks are perturbed by posing the (2, 1) coefficients equal to jj

( j=1, 2, . . . , l). As previously noted, such a perturbation couples only the eigenvectors of
each block, not the eigenvectors of different blocks. Therefore, by proceeding as in the
previous case, formulas similar to equations (23) are derived,

j1/2
j = 1

2 (l
 2j−1 − l
 2j ), l0,2j−1 = 1
2 (l
 2j−1 + l
 2j ), x2j−1 = 1

2 (û2j−1 + û2j ),

x2j = 1
2 j−1/2

j (û2j−1 − û2j ), y2j−1 = v̂2j−1 + v̂2j , y2j = j1/2
j (v̂2j−1 − v̂2j ), (27)

whereas l0k = l
 k , xk = ûk and yk = v̂k (kq 2l) are still obtained.
By referring to the jth couple of nearly coincident eigensolutions, modified eigensolutions

l	 i and ũi (i=2j−1, 2j) can be obtained by equations (17)–(19) by replacing jAj

by dA=al
j=1 jjAjj and reading x2j−1, xj , y2j−1 and y2j instead of x1, x2, y1 and y2.
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However, due to the choice (26) of dA and the bi-orthogonality conditions among the
generalized eigenvectors, only the perturbation jjAjj gives non-vanishing contributions to
l	 i and ũi . In conclusion, the algorithm valid for a single couple of nearly coincident eigenvalues
is still valid for several couples, provided that the couples are well separated. So the analysis
can be performed singularly for each couple by applying equations (24) and (25) and ignoring
the other couples. However, if second order sensitivities d2li and d2ui

have to be evaluated, matrix A0 =A
 −al
j=1 jjAjj must be evaluated to find u*, thus

entailing the necessity to calculate all the right and left eigenvectors associated with the l couples
of eigenvalues.

It should be noted from equations (27) that the parameters jj and the eigenvectors of A0

associated with complex conjugate eigenvalues of A
 themselves are complex conjugate, so
that, from equation (26), dA is real, and therefore A0 is also real.

An important particular case occurs when l=2 and the two couples of eigenvalues are
complex conjugate. Then j1 0 j, j2 0 j� and equation (26) reads

dA=2 Re [jx2yH
1 ]. (28)

4. EXAMPLE 1: A TWO DIMENSIONAL SYSTEM

As a first example, consider the free motion z(t) of a damped, single-d.o.f. system,
governed by the differential equation z̈+2dż+ kz=0. Upon assuming z= {ż, z}T as the
state vector, the dynamical matrix is

A=$−2d

1
−k

0 %. (29)

The system is two-dimensional (N=2) and depends on two physical parameters (M=2):
i.e., p= {p1, p2}0 {d, k}T. It admits the following eigenvalues lk and right and left
bi-orthgonal normalized eigenvectors uk and vk (k=1, 2):

l1,2 =−d2zd2 − k , u1,2 = {l1,2, 1}T, v1,2 = {−l1,2, k}T/(k− l2
1,2). (30)

The eigenvalues l1,2 are represented in Figure 3 versus the parameters pa .
Along the curve C of equation k= d2 the system is defective (critically damped). In fact,

it has a unique double eigenvalue l0 =−d (m=2, n=1) and unique right and left
eigenvectors, u0 = {−d, 1}T and v0 = {d, k} respectively; in addition, vH

0 u0 =0.

Figure 3. Eigenvalues loci for the system (29).
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Figure 4. Parameters space for the system (29).

By perturbing a selected point P0 $ C in the direction r� = rde� d + rke� k , nearly defective
systems P
 are obtained (see Figure 4), with parameters d
 = d0 + jrd and k̂= k0 + jrk . Their
eigensolutions expansions could be found by applying general equations (8)–(10); however,
since closed form solutions (30) are known in this case, it is simpler to expand equations (30)
directly in series of j. The following j1/2-derivatives are obtained:

l� 0k =2(2d0rd − rk )1/2, l� 0k =−2rd , l(3)
0k =3r2

d /l� 0k ,

u̇0k = {l� 0k , 0}T, ü0k = {l� 0k , 0}T, u(3)
0k = {l(3)

0k , 0}T, k=1, 2. (31)

When r� is varied, with P0 remaining unchanged, the sensitivity of the eigensolutions varies.
By observing that l� 0k =2[−(1+4d2

0 )1/2r� · n� ]1/2, where n� is the unit vector normal to C at P0,
it follows that the greatest sensitivity occurs when perturbations are normal to C (r� 0 n� ),
and the smallest sensitivity when the parameters are perturbed in the tangential direction
(r� 0 t� ). In the last case (singular perturbations) l� 0k =0 and sensitivity is of order j, instead
of j1/2; in addition, expansions (8) cannot be applied, since l(3)

0k =a. The region of
non-uniformity of the asymptotic expansions (8) is r� · n� EO(j), as ensues by equating the
orders of the different terms. For tangent perturbations an exact linear variation of l is
found: i.e., l
 k =−d0 + (−12 1)jrd .

By perturbingP
 again, systemsP	 along s� are obtained (seeFigure 4). By posing d	 = d
 + hsd

and k̃= k̂+ hsk and expanding equations (30) for small h and j fixed, equations (12b, c) are
obtained, with

l
 'k =−sd 2 (2d
 sd − sk )/(2D), l
 0k =2s2
d /D3 (2d
 sd − sk )2/(4D3),

û'k = {l
 'k , 0}T, û0k = {l
 0k , 0}T, k=1, 2, (32)

and D=D(j)= (l
 1 − l
 2)/2= (d2 − k)1/2. Analogous expressions hold for left eigenvectors.
Parameter DW 1 is a mistuning parameter, accounting for the small differences between the
eigenvalues; namely, D=O(j1/2) if r� 0/ t� and D=O(j) if r� 0 t� . As a consequence, series
(12b, c) are valid only for very small h. In fact, when h=O(D2) the third term comes to be
of the same order as the second, and when h=O(D) the second term comes to be of the
same order as the first. Therefore equations (12b, c) cannot be used in practice.

One can now perform MPE’s by assuming P0 $ C as the starting point (i.e., without
extending the space P). The following z1/2-derivatives in the t� direction (see Figure 4) are
obtained:

l� 0k =2(2d0td − tk )1/2, l� 0k =−2td , l(3)
0k =3t2

d /l� 0k ,

u̇0k = {l� 0k , 0}T, ü0k = {l� 0k , 0}T, u(3)
0k = {l(3)

0k , 0}T, k=1, 2. (33)
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Upon recalling that jtd = jrd + hsd and jtk = jrk + hsk , it follows that

l	 1,2(j, h)=−d0 2 [j(2d0rd − rk )+ h(2d0sd − sk )]1/2 − (jrd + hsd )

2(jrd + hsd )2/2[j(2d0rd − rk )+ h(2d0sd − sk )]1/2. (34)

The asymptotic expansion (34) is not affected by the drawback of expansions (12b); however,
it has a narrow region of non-uniformity around t� = t� : i.e., for total perturbations zt� of
singular type, as occurs for point Pc $ s in Figure 4.

If the algorithm of Section 3 is applied instead, the following results are obtained,

j= d
 2 − k̂, l0 =−d
 , X=$−d

1

1
0%, Y=$01 1

d
 %,

A0 =$−2d

1

−d
 2

0 %, u*=0, (35)

and, from equation (20a), it follows that

l	 1,2 =−d
 2 [d2 − k̂+ h(2d
 sd − sk )]1/2 − hsd . (36)

So, in this particular example, it is easy to check that extrapolating from P+
0 = (d
 , k̂, j) in

the extended three-dimensional P+ space is equivalent to extrapolating from P0 = (d
 , d
 2) in
the P space.

Two numerical examples have been worked out to compare exact, SPE’s and MPE’s.
SPE’s were truncated to second order (h2) terms; and MPE’s to third order (z3/2) or second
order (z2/2) terms. A nearly defective system P
 was given and eigenvalues sensitivities in a
selected s� direction were evaluated. The MPE (equation (34)) was built up starting from a
point P0 close to P
 , arbitrarily chosen on curve C.

As a first example, P
 =(1, 0·9) and sd =−sk =z2/2 were considered. By varying h in
the interval [−0·5, 0·5], the eigenvalues loci shown in Figure 5 were obtained. The SPE is
a very poor approximation of the exact solution; in particular, it furnishes Im (l	 )=0 for
any h. On the contrary, the third order MPE relative to the starting point P0 = (1, 1) and

Figure 5. Eigenvalues versus modifications for d
 =1, k̂=0·9 and sd =−sk =z2/2. ----, Exact; ----, third
order MPE; – –, SPE; - - -, second order MPE.

R
e(

l
1,

2
)
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Figure 6. Parameters space and eigenvalues versus modifications for d
 =0, k̂=−0·01, sd =1 and sk =0. ----,
Exact; – –, SPE; - - - -, third order MPE.

the exact solution are undistinguishable in the plot, although a large interval of h is
considered; the second order approximation also furnishes an excellent approximation. In
this case the choice of point P0 does not substantially affect the solution.

As a second example, P
 =(0, −0·01) and sd =1, sk =0 were considered, so that h0 d

(see Figure 6(a)). The eigenvalues l	 k are real for any h and are plotted in Figure 6(b). As in the
previous case, the SPE rapidly diverges from the exact solution. Two MPE’s were computed,
starting from two different points of C, namely P0 = (20·25, 0·252). The two solutions go
to 2a when h=20·105 (see Figure 6(a)), but furnish good approximations of the exact
solution on one side of the asymptotes. This is due to the fact that the parameters are
perturbed along a direction s� 0 e� d , forming a small angle with the tangents t� to C at points
P0 near the origin, so they have the character of singular perturbations. In this critical case,
therefore, the choice of P0 appears to be important.

5. EXAMPLE 2: A FOUR-DIMENSIONAL SYSTEM

As a second example consider the two-d.o.f. system studied in reference [12], consisting
of two single-d.o.f. oscillators of stiffness ki and mass mi (i=1, 2), coupled by a damper of
constant c. With the state vector denoted by z= {ż1, ż2, z1, z2}T, zi being the displacement
of the oscillator i and żi its velocity, the dynamic matrix of the system is

A=G
G

G

K

k

−2d

2d/m
1
0

2d

−2d/m
0
1

−1
0
0
0

0
−k/m

0
0

G
G

G

L

l
, (37)

where m=m2/m1, k= k2/k1 and 2d= c/zk1m1 are non-dimensional parameters. The system
is therefore four-dimensional (N=4) and the space P three-dimensional (M=3), since
p= {k, m, d}T. It is easy to check that if

m=(12 d)/(13 d), k=1/m, (38)

matrix A is defective, since it admits two double eigenvalues (complex conjugate if
dQz2/2), each associated with a unique eigenvector (m=2, n=1). Equations (35) define
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two curves, C1 and C2, in P: i.e., two one-parameter families of defective systems (see Figure
7). Due to the symmetry of the system, one family can be obtained from the other simply
by exchanging stiffnesses and masses of the oscillators.

Now one can consider a nearly defective system A
 , represented in the space P by a point
P
 =(k̂, m̂, d
 ) close to the curve C1, and determine its eigensolutions sensitivities in the
direction s� .

A specific numerical case was considered. Let P
 =(0·851, 1·271, 0·10), the eigenvalues of
which are l
 1,3 =−0·0792 0·882i and l
 2,4 =−0·0992 0·919i; the mistuning is therefore of
the order of 4%. The direction s� = {0·556, −0·831, 0} was chosen, along which
k= k̂(1+ h), m= m̂(1− h) and d= d
 .

To apply the modified perturbation method, point P
 could be considered as a perturbation
of any point of C1 close to P
 : e.g., P1 = (0·818, 1·222, 0·10) (see Figure 7), the double
eigenvalue of which is l=−0·0912 0·900i. However, one can ignore the existence of the
curve C1 and search for a defective point P0 in a two-dimensional subspace of the
five-dimensional extended space P+ = {k, m, d, j1, j2}; i.e., by fixing (k, m, d)= (k̂, m̂, d
 )
and varying j1 and j2. By applying the algorithm of Section 3,
j1 = j�2 =−(2·415+3·724i)10−4 is found, together with A0 and l0. The relevant second
order MPE’s (equations (24)) are then compared with the second order SPE’s (equations
(12b, c)) and the exact (numerical) solutions.

In Figure 8 are shown Re (l	 1,2) and Im (l	 1,2) versus the perturbation parameter h.
It is apparent that the MPE’s are in good agreement with the exact solution for
h $ (−0·15, 0·15) (i.e., for modifications of the parameters up to 15%), whereas the SPS’s
furnish very poor approximations, although the mistuning is not too small.

An alternative representation of the same results can be obtained by plotting the
eigenvalues paths l	 i (h) in the complex plane (see Figure 9). Here a larger interval of h is
considered; marked points on the curves refer to h=−0·15, 0, 0·15, 0·30 and 0·45,
respectively, and the arrows indicate the directions of the increasing h’s. When h=0·15 the
two eigenvalues are well separated; when h increases they first approach each other roughly
on a straight line; then, when h2 0, they veer abruptly and describe a circle in opposite
directions; successively, when h2 0·4, they veer again to come back on to the previous
straight line. It is worth noting that the two veerings occur when the modified system P	 is
close to the defective systems P1 and P2 (see Figure 7). While the accuracy of the MPE is
excellent when hQ 0, due to the presence of the second veering, it is less good when hq 0;
however, compared with the SPE, the solution is markedly improved.

Figure 7. The parameters space for the system (37).
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Figure 8. Eigenvalues versus modifications for a two-d.o.f. system. ----, Exact; – – – –, MPE; — —, SPE.

The eigenvectors ũ1(h) and ũ2(h) are represented in Figure 10. Vectors are normalized
according to eT

4 ũi =1: i.e., by assuming that the displacement of the second oscillator is equal
to one. The paths of the other three components are plotted in the complex plane for the
same h’s considered above. It is found that the second component (the velocity of the second
oscillator) varies on a much slower scale than that of the first and third components (velocity
anddisplacement of the first oscillator, respectively), although it exhibits a similar behaviour;
in addition, it remains about p/2 out of phase with respect to the associated displacement.
On the contrary, the velocity and the displacement of the first oscillator vary rapidly, their
phase difference being nearly constant, equal to about p/2. The paths are straight lines when
h is less than zero or larger than (about) 0·4, and are curves closely running around the unit

Figure 9. Eigenvalue paths in the complex plane. q–q–q–q, Exact l	 1; w–w–w–w, exact l	 2; r–r–r–r,
MPE; – – –, SPE. hmin =−0·15; hmax =0·45.
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Figure 10. Eigenvector components paths in the complex plane (fourth component equal to one). q–q–q–q,
Exact ũ1; w–w–w–w, exact ũ2; r–r–r–r, MPE. hmin =−0·15; hmax =0·45.

circle when h is in the range (0, 0·4); the components of the two eigenvectors go along the
circle in opposite directions. When h=0·198, i.e., when the two oscillators are equal
(m̃= k̃=1), the two displacements are in phase (Re (l	 )=0) or in phase opposition
(Re (l	 )=−0·2) and are of the same magnitude; when h is negative or larger than 0·4 the
two displacements are p/2 out of phase (forward or backward, respectively), but the
magnitudes are quite different, since in each mode one component prevails. As for
the eigenvalues, the MPE’s furnish good approximations of the exact solution for moderate
h; SPE’s, not shown, again give poor approximations.

6. REMARKS AND CONCLUSIONS

Three remarks may be made on the method proposed.
(1) The problem treated here has some similarity with localization and loci veering

phenomena, already studied in depth (e.g., see the paper by Pierre [15] and reference [13] for
helpful comments). In those problems too, the eigenvalues depend on two small parameters:
an imperfection (modification) parameter h and a coupling parameter (mistuning) D. Pierre
also utilized perturbation methods: when the h/D ratio was small he assumed h as the
perturbation parameter; when the ratio was large, he considered D as the perturbation
parameter and included h in the unperturbed system to split its eigenvalues. In all cases, series
of integer powers were used, since only non-defective (conservative) systems were taken into
account. Pierre’s method could also be applied to the problem considered here; however,
it would require the solution of a new eigenvalue problem, after having solved the unmodified
problem, in contrast with the main scope of the sensitivity analysis. Therefore, in the method
proposed, D and h are considered together to be perturbations of an ideal system with
repeated eigenvalues. Since the unperturbed system is defective, fractional powers are used.

(2) The key point of the algorithm is to build the tuned system A0, after the unmodified
system A
 has been given. The basic idea of Section 3 is to perturb the canonical Jordan form
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of A0 by introducing suitable new parameters ji , and equating the perturbed eigenvalues to
the unmodified ones. In this way the parameters ji and l0 can be found. Therefore, if only
two eigenvalues l
 k are nearly coincident, the unique parameter j1, together with l0, is
sufficient for the purpose; if three eigenvalues l
 k are nearly coincident, two parameters j1

and j2 must be introduced to perturb the Jordan block, and so on. Therefore the method
can easily be extended to more complex cases of several nearly coincident eigenvalues. Some
details on the topic are given in the Appendix.

(3) The idea of extending the parameter space in order to find a coalescence point close
to the actual point already underlies reference [13]. There, in fact, the perturbation parameter
h was allowed to assume complex values and therefore its imaginary part had a rôle
equivalent to that of the parameter j1 of the present method. However, only the direct
problem was dealt with in reference [13], and the theory cannot be extended in a simple way
to solve the inverse problem, if the general case of several nearly coincident eigenvalues is
considered.

In closing, the following conclusions can be drawn.
(1) A linear system is nearly defective if two or more eigenvalues are nearly coincident

and the associated eigenvectors nearly parallel. It can be considered as a perturbation of an
ideal, tuned, defective system having perfectly coincident eigenvalues and eigenvectors.

(2) If modified eigensolutions are evaluated by extrapolating the unmodified nearly
coincident eigensolutions, SPE’s are obtained in terms of integer powers of the modification
parameter h. The SPE’s are uniformly valid only in a very small interval of h, so they are
not useful for practical purposes.

(3) If modified eigensolutions are extrapolated by the tuned system, MPE’s are obtained
in terms of fractional powers of two parameters, the mistuning and the modification
parameters. MPE’s are uniformly valid for any h, except for critical modifications having
the character of singular perturbations.

(4) A geometric interpretation of the singular perturbations has been given: they occur
when the modification is tangent to the locus of the defective systems in the space of the
parameters.

(5) To apply MPE’s a tuned system close to the mistuned system should be known. Since
in general this is not the case, an ideal tuned system can be artfully built by suitably extending
the space of the parameters. The tuned system obtained does not represent any physical
system, being only a mathematical tool to solve the problem.

(6) The efficiency of the method has been tested on simple examples. In particular, good
accord between exact and perturbational solutions has been found up to modifications of
15%, although an unfavorable case has been considered.
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APPENDIX: THE INVERSE PROBLEM IN THE GENERAL CASE

An outline of how to extend the algorithm of Section 3 to the more general case of several
nearly coincident eigenvalues with associated nearly parallel eigenvectors is given here.

Let l
 1, l
 2, . . . , l
 r be r nearly-coincident eigenvalues of A
 , the corresponding right and
left nearly parallel eigenvectors of which are collected in the N× r matrices U
 r and V
 r ,
respectively. The unknown ideal defective matrix A0 has an eigenvalue l0 of multiplicity
m= r and associated generalized eigenvectors matrices Xr and Yr , of dimensions N× r.
The r× r Jordan block Jr of A0 is perturbed by r−1 parameters jj as follows:

l0 1

l0 1

J
 r = Jr + dJr =G
G

G

G

G

K

k

··· ··· G
G

G

G

G

L

l

. (A1)

l0 1

j1 j2··· jr−1 l0

Consequently, the perturbation matrix dA=XrdJrYH
r is

dA= j1xryH
1 + j2xryH

2 + · · ·+ jr−1xryH
r−1. (A2)

The parameters jj and l0 must be chosen in such a way that J
 r has r eigenvalues equal
to l
 1, l
 2, . . . , l
 r : i.e.,

det (J
 r − lI)= t
r

k=1

(l− l
 k ) [l. (A3)

From the previous identity r algebraic equations are obtained, which can be solved in
sequence for the unknowns l0, jr−1, jr−2, . . . , j1. In particular, l0 = (ar

k=1 l
 k )/r is found:
i.e., l0 is the centre of mass of the points l
 k on the complex plane.

J
 r admits the spectral representation J
 r =RrL
 rSH
r , where L
 r =diag (l
 1, l
 2, . . . , l
 r ) and

Rr and Sr =R−H
r are r× r matrices collecting its right and left eigenvectors, respectively.

Therefore, the perturbed matrix A0 + dA has proper eigenvectors matrices U
 0r =XrRr and
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V
 0r =YrSr . By requiring U
 0r =U
 r and V
 0r =V
 r and solving with respect to the unknown
quantities, one finds that

Xr =U
 rR−1
r , Yr =V
 rRH

r . (A4)

From equations (A4) the generalized eigenvectors x1, x2, . . . , xr and y1, y2, . . . , yr are
obtained. However, they generally do not satisfy the requested normalization conditions
eT

hx1 =1, eT
hxj =0 ( jq 1) and yH

i xj = dij . Therefore a new set of normalized eigenvectors
x*k = xk + akx1 and y*k = yk + bkyr must be constructed. By using the new vectors, dA can
be evaluated from equation (A2) and A0 =A
 − dA computed as a difference. Obviously, if
more groups of nearly coincident eigenvalues occurs, the relevant perturbation matrices dAi

must be added among them, as already seen in Section 3.
Finally, it should be noted that, when equations (18) and (19) are used (with dA instead

of jAj ), d1lk is found to depend on j1 only, d2lk on j1 and j2 and so on; moreover, u* is
independent of the j’s, as in the particular case r=2.




