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Abstract

The objective of this paper is to propose a vibration-based automated framework dealing with local faults
occurring on bearings in the transmission of a helicopter. The knowledge of the shaft speed and kinematic
computation provide theoretical frequencies that reveal deteriorations on the inner and outer races, on the
rolling elements or on the cage. In practice, the theoretical frequencies of bearing faults may be shifted. They
may also be masked by parasitical frequencies because the numerous noisy vibrations and the complexity of
the transmission mechanics make the signal spectrum very profuse. Consequently, detection methods based
on the monitoring of the theoretical frequencies may lead to wrong decisions.

In order to deal with this drawback, we propose to readjust the fault frequencies from the theoretical fre-
quencies using the redundancy introduced by the harmonics. The proposed method provides the confidence
index of the readjusted frequency.Minor variations in shaft speed may induce random jitters. The change
of the contact surface or of the transmission path brings also a random component in amplitude and phase.
These random components in the signal destroy spectral localization of frequencies and thus hide the fault
occurrence in the spectrum.

Under the hypothesis that these random signals can be modeled as cyclostationary signals, the envelope
spectrum can reveal that hidden patterns.In order to provide an indicator estimating fault severity, statistics
are proposed. They make the hypothesis that the harmonics at the readjusted frequency are corrupted with
an additive normally distributed noise. In this case, the statistics computed from the spectra are chi-square
distributed and a signal-to-noise indicator is proposed.

The algorithms are then tested with data from two test benches and from flight conditions. The bearing
type and the radial load are the main differences between the experiences on the benches. The fault is mainly
visible in the spectrum for the radially constrained bearing and only visible in the envelope spectrum for the
“load-free” bearing. Concerning results in flight conditions, frequency readjustment demonstrates good
performances when applied on the spectrum, showing that a fully automated bearing decision procedure is
applicable for operational helicopter monitoring.
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frequency estimation
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Nomenclature

• f : frequency

• f : Hertz

• αth : theoretical fault frequency

• α∗ : actual fault frequency

• α̂ : estimated fault frequency

• Ckx : k = 1⇒ classic spectrum, k = 2⇒ enveloppe spectrum

• ∆ f : frequency range around αth where α∗ is

• δ f : frequency range containing not more than one harmonic

• r1, r2 : frequency range for σ2 estimation

• I : prior for frequency readjustment

• R(α̂) : statistical indicator

• x : preprocessed vibrations

• s : fault vibrations at α in the preprocessed vibrations

• p : parasitical periodical vibrations in the preprocessed vibrations

• ε : gaussian background noise in the preprocessed vibrations

• σ2 : variance of ε

• γ :
√
‖s‖2 /σ2

• D : experimental data for frequency readjustment

• B : first order Bessel function

• u : uniform background for synthetic spectrum

• b f : Bernoulli parasitical frequencies af frequency f for synthetic spectrum
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1. Introduction

Early fault detection is a crucial problem in helicopter maintenance strategy. Indeed, a small fault, if it
is not detected, could increase and lead to a breakdown of the system and in some cases lead to an accident.
Condition monitoring methods are effective ways to perform health monitoring of the system [1]. Among
condition monitoring methods, vibration analysis using non-intrusive sensors matches well with helicopter
environment. Accelerometers are among the most suitable sensors for non-intrusive health monitoring of
helicopters in terms of space, cost and qualification.
Among helicopter elements, the health of bearings elements plays a key role for the power transmission
chain integrity and often act as mechanical fuse. Its monitoring is therefore worth to be carried out with the
most effective methods.
However, helicopter environment is very noisy. It does not permit to access high frequency vibrations and
bearing’s vibrations are corrupted by neighbour elements: gears, shafts, local resonances... Performance of
classical methods are limited with these conditions.

In such an environment, a good understanding of the features of each sub-system of a bearing gives a
priori information that may improve the decision performances in terms of accuracy. The four elements
of rolling bearings are the inner race (attached to the shaft), the rolling elements, the cage (holding rolling
elements together) and the outer race (attached to helicopter’s structure). These four sub-elements are prone
to degradations at four different frequencies, [2]. It is then possible to separate one fault to another based on
those frequencies.

The actual dynamical conditions induce uncertainties on these frequencies. These uncertainties are par-
ticularly large for high speed bearings producing high frequency faults and large uncertainties.

Our objective is to design an automated framework based on passive vibration analysis that operates in
gearboxes and shafts of helicopters and that detects the defects in bearings without any need of historical
data. Unequal loading distribution, makes the balls jitter randomly inside the cage, which consequently ran-
domizes the time between two consecutive impacts. According to [3] section 2.2.3, random slidings produce
a 1 % deviation from the theoretical period of impact. Since this randomness affects the phase, spectral
coherence is not preserved, and the harmonics that account for the bearing faults spread and vanish within
the spectrum. Fault is still, present in the vibration spectrum as a repetitive and scattered pattern, making
it very hard to be detected [4]. However, this pattern is periodic within the spectrum and consequently the
spectrum is self-correlated. Spectral correlation analysis is related to the so-called cyclostationary analysis.
This operation reinforces hidden periodic patterns in the spectrum and is achieved using the envelope of the
vibration, instead of the raw vibration. Periodic vibrations may still corrupt this operation due to the har-
monics that are periodically present in the spectrum. Consequently, proper preproccessing has to be applied
to remove purely periodic vibrations.

Randall and Sawalhi present in [3] and [5] a signal processing procedure for bearings monitoring in
helicopters, but do not present results on fligth recordings. In [4], the authors highlight that local bearing
faults are not rigorously modeled by cyclostationary processes, but rather pseudo-cyclostationary processes
and that the difference is small enough for the practical use of cyclostationarity.

Frameworks have been introduced in the literature to automatically detect a fault and assess its severity.
In book [6], chapter 8 presents a framework for monitoring helicopter gearboxes based on classic indicators
and machine learning. However, the author does not tackle the specific problem of bearing monitoring, but
use standart indicators to detect general abnormal behavior (statistical moments, cepstrum...). The conclu-
sion specifies the typical features a monitoring system should have: homogenous and heterogeneous sensors
fusion, or ability to integrate into their systems; qualitative and quantitative prior information. The authors
of [7] suggest an automated software that detects bearing faults based on Spectral Kurtosis and Root Mean
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Square in frequency layers. Reassignment method is also applied to improve time-frequency readability.
Early applications of reassignment methods in helicopter context can be found in [8].

Finally, in [9], a semi-automated way is proposed to inspect bearings health througth vibrations for var-
ious cases studies (high/low speed or including modulations) and using impulsivity and spectral correlation
analysis. Auto-adaptative linear filters and other signal processing methods are presented and tested to reveal
faults and assess their severity (bearing prognosis). According to our knowledge, [10] is the first published
article concerning the use of cyclostationary in the helicopter’s field.

Once the pre-processing has increased the fault pattern, a decision method has to be established in order
to make final inferences.

The search for asymptotic tests on cyclostationary has been adressed by [11], providing time or spectral
procedures. Limitations are due to ill-conditioning issues and long computation times. Substancial simplifi-
cations are proposed in [12] in order to overcome these two problems and make it operational for practical
implementations. Another statistical test has been presented to measure content at cyclic frequencies in
specified frequency bands [13]. All of these tests are based on chi-square or ad hoc density derived from the
first two moments of the vibrations.

The frequencies of faults are theoretically known thanks to kinematical approach, which provided an
explicit formula. However, a bias may exist between theoretical and experimental fault frequencies, making
possible to miss the real ones. This problem arises in flight where dynamic conditions are unstable.

In the following sections, a framework based on spectral and cyclostationary analysis will be proposed to
detect the presence of local bearing faults in helicopters. The first part briefly introduces the main concepts
that deal with bearings and cyclostationary, including the pre-processing steps that enhance fault patterns.
The second and third parts deal with frequency readjustment and spectral/cyclostationary indicators. Then
the proposed framework is applied on test bench and in-flight recordings.

2. Material and methods

2.1. Mechanical systems and measurements
Benches and flight data have been recorded from accelerometers mounted on helicopter’s intermediary

transmission for three kinds of helicopter. The intermediary transmission is made of one shaft transmitting
power from the main gearbox to the tail rotor. The monitored bearing is mounted on this shaft, and one
accelerometer is mounted on this bearing. The shaft is rotating at 80Hz(= 4800rpm), the sampling frequency
is 20kHz and the recording time is few seconds long. The benches kinematics do not include the whole
helicopter, but only restricted areas like gearboxes, tail transmission... Inner or outer race pitting are the
two kind of defects that are present in the data. The placement of the accelerometer is similar from one
helicopter to another. Vibrations acquired through the accelerometers mounted on the gearboxes contains
many internal or external sources:

• main rotor: coupling with other elements, blades vibrations

• aerodynamic effects: wind/structure interactions, rotor flow, aerodynamical stall

• gearboxes and engines: unbalance and misalignment, meshing vibrations, speed fluctuations

All these sources are transmitted through the structure to the accelerometer. It results in a profuse spectrum
and finding satisfactory explanations for every single harmonic observed may be insoluble. A fault-free
power spectrum is plotted in figure 1.

To be able to find the patterns of interest in such a noisy spectrum, an efficient understanding of the
properties of fault or normal vibrations is necessary. For the sequel of the article, bearing fault detection

4



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
·104

−160

−140

−120

−100

−80

−60

−40

Aeorodynamical vibrations

Frequency [Hz]

A
m

pl
itu

de
[d

B
]

Power Spectral Density

Figure 1: Fault-free raw spectrum. The sampling frequency is 20kHz, the recording time is 10 seconds and the shaft frequency is 80Hz.

will be adressed. The defects under study are assumed to be sharp and localised in the bearing. That
produces almost periodic shocks in the vibrations received by the accelerometer. The period of these shocks
corresponds to the moments when the defect is in contact (rolling or gliding) with another surface, and is
given by the kinematics. That shocks can be modulated or randomized in amplitude and phase depending
on the position of the defects and on the loading with respect to the rolling elements due to random jitters of
the rolling elements notably.

2.2. First and second order cyclostationary analysis for fault detection

Cyclostationary signals are a special class of non-stationary signals and are particularly relevant for
rotating machines. A process is cyclostationary when its density of probability is time periodic. According
to the introduction of cyclostationnary signals of [14], one vibration x is cyclostationary at the given orders
k if it exists one period frequency such that the following quantities are not null:

First order, k = 1 : C1x ( f ) =

∫
t
E {x(t)} exp(−2πi f t)dt (1)

Purely second order, k = 2 : C2x ( f ) =

∫
t
E

{
(x(t) − E {x(t)})2

}
exp(−2πi f t)dt (2)

Ckx are related to the usual classical statistical cumulants: C1x(0) is the mean value and C2x(0) is the
variance. More generally, C1x( f ) relates to the standard Fourier spectrum and f the “standard frequencies”,
whereas C2x( f ) is the enveloppe spectrum and f the cyclic frequencies that reveals spectral correlations.
For the rest of the article, Ckx( f ) will be adressed whatever the value of k, however on should keep in
mind that the two spectral orders does not have the same physical groundations. Analysis of nothing but
the second order cyclostationary is made practically possible by removing periodic components from the
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original vibration: x(t) − E {x(t)}, [15].Two class of vibrations are investigated: periodic vibrations (first
order, k = 1) and purely quadraticaly correlated vibrations (second order, k = 2). It is possible to extand that
properties to higher orders, but those did not show any improvements in the results and associated estimators
converge slower. As explained in [13], when the time interval between two consecutive shocks is strictly
constant, the associated fault should be visible only in the first order of cyclostationarity C1x( f ). However
when that time increment fluctuates randomly around one constant value, the associated fault should be
visible only in C2x( f ).

We propose to check the presence of a fault by evaluating the first and second order of cyclostationary
content from the recorded vibrations at bearing frequencies. In the sequel of the article the mathematical
quantities and their estimator have deliberately the same notation.

2.3. Signal pre-processing

Before applying algorithms dedicaced to bearing faults detection, the vibrations need to be processed to
get ride of the speed fluctutations and parasitical frequencies which may bias the decision. The steps given
below are summarized in figure 2.

• Re-synchronization: speed fluctuations destroy spectral coherence by spreading high peaks and ran-
dom phasis tends to make the vibrations stationary. Based on the vibration itself or an additional
synchronising signal, it is possible to establish an angle/time relationship and resample the vibration
accordingly, [16]. In the following, the synchronizing signal is a magnetic teeth counter mounted on
the same shaft as the faulty bearing.

• Time synchronous average removal: since kinematical relationships are known whithin the gearbox
one can remove the related frequencies (shaft, meshing, coupling) that are parasitical for bearing
analysis using comb-filters, [17].

• Whitening: the vibration is decomposed into a random part and a predictable part. The result is the
predictable temporal equivalent of the usual spectrum C1x( f ). The implementation is made with an
autoregressive 0.5 (30× biggest frequency, [9]) second-long filter to separate the filtered signal and
the random signal as the residuals of the filter.

• Envelope computing: the random part of the vibrations also contain some of the useful information
that can be exhibited in C2x( f ). Indeed, spread patterns caused by random jitters are periodic in the
spectrum and it is possible to take advantage of that repetition using spectrum autocorrelation: com-
puting the similarity between the spectrum and its shifted version makes it possible to find the spread
patterns inside the spectrum. The Fourier transform of the squared absolute value of the analytical
random vibrations is actually the envelope spectrum C2x( f ). It means that the random second order
cyclostationary pattern can be reduced to the study of deterministic first order cyclostationary patterns.

• Minimum Entropy Deconvolution: linear filter enhancing vibration impulsivity (implementation es-
timates 10 coefficients). Such a pre-processing is particularly relevant for high speed systems with
possible overlapping between two consecutive fault pulses, [18].

One pre-processing example from in-flight condition is displayed in figure 3. Angular re-sampling (b)
performes particularly well at 350Hz. Then in step (c) the meshing frequencies at 160Hz and 350Hz are
removed and the signal is equalized.
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Raw vibrations Synchronizing signal

Resynchronising
Enhance spectral coherence

Time synchronous average removal
Remove known deterministic components

Whitening
Separate deterministic from random components

Envelope computing

Minimum Entropy Deconvolution
Enhance impulsivity

Minimum Entropy Deconvolution
Enhance impulsivity

Fourier transform
Frequencial domain

Fourier transform
Cyclic domain

Enhanced deterministic spectrum
C1x( f )

Enhanced envelope spectrum
C2x( f )

Synchronized vibrations

Residual

Deterministic vibrations

Random vibrations

Enveloppe of
the random vibrations

Enhanced deterministic vibrations Enhanced envelope vibrations

Figure 2: Pre-processing steps. The data is preprocessed to enhance fault features, remove known parasitical frequencies and separate
the deterministic and the random components. Then the enveloppe is extracted from the random part using the Hilbert transform to
avoid aliasing.

7



0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
0

0.1

0.2

0.3

0.4

(b) Synchronized signal

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
0

2 · 10−2
4 · 10−2
6 · 10−2
8 · 10−2

0.1

(c) Time synchronous removal

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
0

2 · 10−2

4 · 10−2

(d) Whitened signal

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
0
2
4
6
8

10

(a) Raw signal

Figure 3: First three steps of pre-processings. (a) raw vibration, (b) angle synchronization, (c) synchronous average removal, (d)
whitening. For readability purpose the frequency band is limited to [0Hz; 400Hz].

2.4. Application to bearing fault detection
2.4.1. Monitoring from theoretical fault frequencies
Principle. Knowing the expected fault frequencies is a key point to enhance decision accuracy and to iso-
late one particular vibrating element. In the following, the vibrations will refer without distinction to the
enhanced deterministic or random vibrations produced by the pre-processing. Cage and rolling elements
frequencies allow to find the frequencies associated with local deteriorations on the inner, outer races, rolling
elements and cage, [2]. They are computed from kinematic analysis:

fbp f i =
Nb | fo − fi|

2

[
1 +

d
D

cos(θ)
]

(3)

fbp f o =
Nb | fo − fi|

2

[
1 −

d
D

cos(θ)
]

(4)

froll =
Nb | fo − fi|

2
D
d

[
1 −

d
D

cos(θ)
]

(5)

fcage =
1
2

[
fo

(
1 +

d
D

cos(θ)
)

+ fi

(
1 −

d
D

cos(θ)
)]

(6)
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The fault frequencies are the ball passing frequencies on the inner and outer races ( fbp f i and fbp f o), the
angular frequency of each ball about its own axis ( froll) and cage’s angular frequency ( fcage). The parameters
fi and fo are the inner and outer races frequencies (in practice fi = fsha f t, fo = 0), Nb is the number of rolling
elements, d/D is the bearing and ball diameters ratio, and θ is the contact angle.
One possible strategy is to check the energy of the spectrum in the neighborhood of the theoretical frequency
associated to the rolling component to be monitored. Let αth be this theoretical frequency and [αth−∆ f ;αth +

∆ f ] be the interval about αth to be checked. One typical indicator based on the first harmonic is:

1
2∆ f

∫ αth−∆ f

αth−∆ f
|Ckx( f )|2 d f (7)

It is reminded that k equals 1 (spectrum) or 2 (enveloppe spectrum) in this article.

Limitations. Inertia or irregular load distributions or deformations are not taken in account by the kine-
matical reasoning which leads to theoretical fault frequencies. Speed and power distributions changes, that
are met in flight conditions, can distort the assumptions underlying their calculation. That is the reason
why some deviations between theoretical and experimental frequencies may appear. By example, assuming
typical conditions (Nb = 15 rolling elements, D = 30cm, d = 10cm) and the shaft rotating at 80Hz, then
the inner race frequency fault decreases from 800Hz to 753Hz when nothing but the contact angle θ moves
from 0o to 40o. This shows that the variation of only one parameter can shift strongly the value of the fault
frequency.

An in-fligth example related to figure 1 of the first harmonics for the four fault frequencies related are
showed in figure 4. The larger the interval, the more corrupted it is by high amplitude parasitical frequencies
that can lead to a wrong fault detection. In the next section, we propose to estimate the actual frequency of
an occurring fault by using the redundancy induced by the harmonics. That aims to distinguish the peaks
related to the defects of bearing from parasitical peaks, and to thus avoid an inappropriate detection.

2.4.2. Detection of the most likely fault frequency
Frequency readjustment. For the reasons detailed in section 2.4.1, the fault frequency may vary from its
theoretical value, but should remain in the neighborhood ∆ f . We need to estimate the actual fault fre-
quency.The temporal implusivity and periodicity of the fault induce redundant and high harmonics in the
spectrum C1x( f ) or in the envelope spectrum C2x( f ). This feature can be used to prevent parasitical peaks to
bias the estimation of the actual fault frequency from its theoretical value. We propose a method to estimate
the most probable fault frequency in this neighboorhood and one index to assess the level of confidence
we can have in that estimate. The theoretical/actual/estimated values of the fault frequency are respectively
noted αth / α∗ / α̂.

Let us consider the fault frequency α∗ as a random variable in [0; +∞] whose values are noted α, the
hypothesis that α∗ should be not farther of ∆ f from αth derives from experimental and theoretical knowledge.
Quantitatively, the probability for

∣∣∣α∗ − αth
∣∣∣ to be bigger than ∆ f is close to zero.

Let us note I =
{
αth,∆ f

}
the prior information. The determination of α̂ makes necessary to find the

posterior density of probability of (α|D, I), where D represents the data from the preprocessing stage detailed
in section 2.3. According to Bayes theorem:

p (α|D, I) ∝ p (D|α, I) × p (α|I) (8)

The symbol ∝ means “proportionnal to”. Moreover, let us assume that the first N harmonics of α are non-
null. Assuming that the N first harmonics of α are “independant”, then the data (D|α, I) can be decomposed
into N sets corresponding to the N harmonics: (D1|α, I) ∩ (D2|α, I) ∩ · · · ∩ (DN |α, I).
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Figure 4: Fault-free raw spectrum zoomed from figure 1 between 0 and 3kHz. The sampling frequency is 20kHz and recording time is
10 seconds. The 4 first harmonics for each bearing frequencies are drawn.

Two new issues arise now: what is the prior distribution for p (α|I) and what is the model for the proba-
bility p (Dn|α, I) ?
The answer to the prior distribution depends on additional prior knowledge. In our case, we have field feed-
backs ensuring that α is located in

[
αth − ∆ f ;αth + ∆ f

]
and is likely to be located at any frequency whithin.

Then α is distributed uniformly on this interval. For more discussion about prior distribution, one can refer to
chapter 3 of [19]. The answer to the second question depends on the model built to evaluate the probability
of (Dn|α, I). Two proposals are detailed below.

First approach: Correlation model. The density of probability p(Dn|α, I) represents the fact that in the data
the nth harmonic of α is non null. Under the asumption of a fault located at the nth harmonic α, a model of
spectrum is δnα( f ), which is the Dirac distribution located at nα. As p(Dn|α, I) measures the proximity of
the data to the model with priors. We propose to model that proximity with a correlation:

p (Dn|α, I) ∝ |< δnα|Ckx >| = |Ckx(nα)| (9)

The bigger amplitude of Ckx(nα), the bigger the density of probability p(Dn|α, I). As the prior distribution
has been chosen uniform, the resulting posterior probability is non-null only for α ∈

[
αth − ∆ f ;αth + ∆ f

]
.

That leads to:

p (α|D, I) =

∏N
n=1 |Ckx(nα)|∫ αth+∆ f

αth−∆ f

∏N
n=1 |Ckx(nβ)| dβ

(10)

Second approach: Chi-square model. Supposing that no fault is present at frequency α and that the back-

ground noise is white and gaussian, implies that |Ckx(nα)|2/
[

1
2∆ f

∫ αth+∆ f
β=αth−∆ f |Ckx(nβ)dβ|2

]
is following a chi-
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Figure 5: Spectrum synthetized according to model 3.1.1. The parameters are: αth = 500Hz, ∆ f = 30Hz, N = 4 harmonics and a
spectral rezolution of 1Hz.

square law with two degrees of freedom. In this case the density of propability will measure how far Dn is
from that model.

p(Dn|α, I) =

p such that
|Ckx(nα)|2∫ αth+∆ f

β=αth−∆ f |Ckx(nβ)dβ|2/(2∆ f )
= χ2

2;1−p

 (11)

Then p is the quantile corresponding to the probability to observe values higher than Ckx(nα) uunder the
assumption that nothing but background noise is present. The posterior distribution of α is then deduced
by multiplying equation 11 by the prior distribution in equation 8. However, because of quantization and
cross-harmonic operations the two previous solutions require to resample the spectrum contained in n ×[
αth − ∆ f ;αth + ∆ f

]
to have as much samples as in N ×

[
αth − ∆ f ;αth + ∆ f

]
. That procedure is applied here

by zero-order hold interpolation.

Estimation of the fault frequency. The estimation of the fault frequency α̂ maximizes the posterior distribu-
tion.

α̂ = arg max
α

p (α|D, I) (12)

Moreover the value of the maximum probability provides an indicator of the frequency readjustment rele-
vance. The highest p (α̂|D, I), the most likely a fault should occur at frequency α̂. Finally p (α̂|D, I) can be
used as a the confidence index.

Discussion.
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About parameters Two parameters have been introduced with this method:

• ∆ f : the tuning of this parameter is actually related to the trade-off on p (α) that concerns the false-
alarm and non-detection rate. The bigger ∆ f , the smaller the probability to miss α∗ but the bigger the
probability to catch redundant parasitical peaks and to trigger false alarms. According to theoretical
and experimental analysis, we have set: ∆ f ≈ 0.1 × αth.

• N: the finding of the number of harmonics where the fault should be visible results from experimental
analysis. On the fligth data, at least four or five harmonics are visible when a localised fault is present
on the bearing. Increasing the amount of harmonics used may improve the readjustment, but one
should remind that it may add parasitical peaks.

Extention to modulation effects It is possible to take modulation into account with the same approach.
As the inner race is linked to the rotating shaft, there is shaft modulation when an inner race fault occurs,
resulting in sidepeaks around the inner race fault harmonics. The information to be added is the presence of
modulations around the harmonics of the fault frequency.

When the frequency has been readjusted with high confidence in a given spectral window, the objective
is to find the indicator that estimates the presence of vibrations at that frequency α̂.

2.4.3. Estimation of the fault indicator at the readjusted frequency
A classical trick to enhance bearing vibrations is to find a high frequency resonance where the fault

could have been modulated. Indeed signal-to-noise ratio is often better at high frequencies. However, a
series of investigations does not permit identification of one resonance band where the vibration could have
been modulated. Moreover, at least 6 harmonics inside a frequency band are needed to catch the vibration
impulsivity and the resonance should be about 100× α̂ ([3], section 2.23). This method could not be applied
because of the low sampling frequency of the accelerometers or the lack of resonance. Some methods
make it possible to estimate simultanously frequencies, amplitudes and numbers of harmonics with level of
confidence, but these methods are too much time expensive on large amount of data [20].

Theory. Our goal is to estimated the signal-to-noise ratio at the estimated frequency α̂ to monitor the fault.
The first n = 1 . . .N harmonics are investigate for this fault bearing frequency. As discussed in section 2.3,
the study of either first order or second order cyclostationarity can be reduced to the study of a periodic
signal mixed with other components. Based on this result, let us introduce the enhanced deterministic
and envelope (in figure 2) and note it y(l). It will be modelled as one uniformly sampled additive model
mixed with other periodic vibrations and a random noise. The preprocessed vibrations contains L samples
at sampling frequency Fs.

y(l) = s(l) + p(l) + ε (l) l = 1 . . . L with ε(l) ∼ N(0, σ2) (13)

In equation 13, s is the periodic faulty component at frequency α̂ and p is the almost-periodical part of the
vibrations, that are non-multiples of α̂. The noise component ε is supposed to be a gaussian white noise with
variance σ2.
We propose to estimate the signal-to-noise γ ratio defined below:

γ
∆
=
‖s‖2

σ2 (14)
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The discrete Fourier transform of y at the nth harmonics of the fault frequency is:

Y(nα̂/Fs) = S (nα̂) + E (nα̂) (15)

Where S and E are the discrete Fourier transform of s and ε. According to Parseval’s identity and under
the Euclidian norm: ‖s‖2 = ‖S ‖2 =

∑N
n=1 |S (nα̂/Fs)|2. By construction the discrete Fourier transform of p is

negligible at the reduced frequency nα̂/Fs (n = 1 . . .N). Moreover E follows a complex gaussian process
with total variance σ2. For the real part:

< (E (nα̂)) =
1
L

L∑
l=1

ε (l) cos(2πl
nα̂
Fs

)

∼
1
L

L∑
l=1

N(0, σ2) cos(2πl
nα̂
Fs

)

∼ N

0, σ2

L2

L∑
l=1

cos(2πl
nα̂
Fs

)2

 (16)

For l→ ∞:

L∑
l=1

cos
(
2πl

n̂α
Fs

)2 1
L
≈

1
2

(17)

This formula holds for the imaginary part . Using the cyclostationary formalism, Ckx(nα̂) (for k = 1, 2) is
modelled by Y(nα̂) in equation 15. Applying the results of equations 16 and 17 allows to write:

< (Ckx(nα̂)) ∼ N
(
<(S (nα̂)),

σ2

2L

)
and = (Ckx(nα̂)) ∼ N

(
=(S (nα̂)),

σ2

2L

)
(18)

Let us consider the sum of harmonics of the fault:∑
n=1..N

|Ckx(nα̂)|2 =
∑

n=1..N

< (Ckx(nα̂))2
+ = (Ckx(nα̂))2 (19)

If presence of a fault, this quantity follows a uncentered chi-square law with a scale parameter σ2/L. The
centering parameter is |s|2. When s = 0, the law is a centered chi-square.
Remark : This quantity can be related to the one introduced in [12]. The quantity proposed in this article is
normalized by the whole energy of the vibrations, including the noise ε, the parasitical vibrations p and the
fault vibrations s. This indicator is then supposed to follow a Gamma distribution in [12] to test the absence
of a fault.
If σ2 is known, then σ−2 ∑

n=1..N |Ckx(nα̂)|2 is following a chi-square centered on γ with no scale parameter.
The following strategy takes advantage of this fact and consists of two steps. First, σ2 is estimated from
the spectrum calculated on the whole preprocessed vibration. Second, the data x are segmented into M
consecutive windows in order to estimate γ.

The variance σ2 of the noise is estimated with L samples by taking advantage of the frequencies that are
in the close neighborhood of nα̂ in the spectrum calculated on the whole data.

σ̂2 =
1
N

∑
n=1..N

1
2 × (r2 − r1)

∫
δ∈[r1;r2]

|Ckx(nα̂ + δ)|2 + |Ckx(nα̂ − δ)|2 dδ (20)
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With r1 < r2. Moreover r1 should be big enough to avoid spectral spreading around nα and r2 should be
small enough to avoid parasitical harmonics. The variance σ2 is now known and substitued by its estimate.
It permits to define the random variable Tkx:

Tkx(α̂) =

∑
n=1..N |Ckx(nα̂)|2

σ̂2
∼ χ2

2N(γ) (21)

Then γ is estimated from the M realizations of Tkx produced from the windows. These realizations are noted(
tkx,m

)
m=1...M . The density of an uncentered chi-square density is known [19]:

p
(
tkx,m(α̂)|γ

)
=

1
2

e−(tkx,m(α̂)+γ)/2
(

tkx,m(α̂)
γ

)N/2−1/2

BN−1

( √
γtkx,m(α̂)

)
(22)

Where B is the modified Bessel function of the first kind. The problem is now the estimation of the non-
centrality parameter γ of a chi-square distribution which has been adressed in [21] and more recently a more
accurate estimate estimator for small values of γ has been proposed in [22]. But in the latest reference, the
authors do not adress the problem of sample size bigger than 1.Then γ can be estimated with the maximum
likelihood based on the realizations of

(
tkx,1(α̂), . . . , tkx,M(α̂)

)
:

γ̂ = arg max
γ

p
(
γ|tkx,1(α̂), tkx,2(α̂), . . . , tkx,M(α̂)

)
(23)

= arg max
γ

p
(
tkx,1(α̂), tkx,2(α̂), . . . , tkx,M(α̂)|γ

)
× p (γ) (24)

= arg max
γ

 M∏
m=1

p
(
tkx,m(α̂)|γ

) × p (γ) (25)

Using the prior distribution for γ introduced in [23]:

p(γ) ∝ γ−1/2 (26)

Then it is possible to simplify the finding of the maximum by using the logarithm:

d log
(
p
(
γ̂ | tkx,1(α̂), tkx,2(α̂), . . . , tkx,M(α̂)

))
dγ̂

= 0 (27)

⇔1 +
1

2Mγ̂
=

1
M

M∑
m=1

√
tkx,m(α̂)
γ̂

×
BN

( √
γ̂ × tkx,m(α̂)

)
BN−1

( √
γ̂ × tkx,m(α̂)

) (28)

The term 1
2Mγ̂

comes from the prior. Furthermore it is possible to develop BN into series ad infinitum, [24].
Finally, the estimation of the signal-to-noise γ ratio is:

γ̂ =

 1
M

M∑
m=1

√
tkx,m(α̂)

2

− 2N + 1 −
1
M

+ O
(

1
γ̂

)
(29)

Dur to O
(

1
γ̂

)
, the smaller the signal-to-noise ratio, the worst the approximation of the estimation. Of course

a negative value of the signal-to-noise ratio does not make sense, the final estimator of the signal-to-noise
R(α̂) is:

R(α̂) = max


 1

M

M∑
m=1

√
tkx,m(α̂)

2

− 2N + 1 −
1
M
, 0

 (30)
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Figure 6: Readjustement and signal-to-noise estimation. The pre-processing steps described in figure 2 are assumed to be have been
applied. The theoretical frequency αth is supposed to be known.

It is highlighted that this estimation of γ has a closed form and permits easy practical implementation or can
be used as an initial point for algorithm based on iterative estimation of γ.
That estimation is applied for the first C1,x and second C2,x orders of cyclostationary.

2.4.4. Proposed algorithm
The full automated algorithm for bearing monitoring is now detailed. First, the preprocessing described

in section 2.3 and graphically in figure 2 is applied on the raw data. Enhanced deterministic and enveloppe
vibrations are produced as two outputs.f Then these two signals are separately processed in the same way.
First, the frequency readjustment method uses the theoretical fault frequencies and produces readjusted
frequencies and associated confidence indexes. Second, if the confidence index overcomes a given threshold
ρ (typically ρ = 0.5), then the indicator R(α̂) is computed to estimated the signal-to-noise ratio.

The proposed algorithm is now tested on synthetic and real data from two test-benches and one aircraft.

3. Results

3.1. Evaluation of fault frequency readjustment

3.1.1. Readjustment on synthetic data
Synthetic spectra have been generated in order to highlight the performances of the two approaches. The

synthetic spectra contain two random patterns to reproduce the spectra of fligth conditions:
Ckx( f ) = 3

n × δnα +
∑

f b f + u, where:

• Fault frequency: the amplitude of the nth harmonic is proportional to 3/n. That decrease is represen-
tative of irregular signals like periodic rectangular pulses.

• Parasitical frequencies: (b f ) for f ∈ [αth − ∆ f ;αth + ∆ f ] is an independant Bernoulli random variable
so that: P(b f = 0) = 0.9.

15



−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

0.5

1

(b)
−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30

n=1

n=2

n=3

n=4

(a)

−30 −25 −20 −15 −10 −5 0 5 10 15 20 25 30
0

0.5

1

(c)

Figure 7: Performance of the 2 readjustment’s methods on the synthetic spectrum of figure 5: (a) Extracted spectra S (n×[αth−∆ f ;αth +

∆ f ]), for n = 1..4, αth = 500Hz and ∆ f = 30Hz. The extracted spectra have been centered around αth and rescaled for readability
purpose. The real frequency is α∗ = −10 + αthHz, (b) linear probability (c) Chi-Square.

• Background noise: u ∼ U[0;0.4] is a background noise.

Realizations of this model are displayed on figure 5 for αth = 500Hz, ∆ f = 30Hz, N = 4 harmonics and
a 1Hz spectral rezolution. The procedures described in 2.4.2 require the extraction of frequencies around
each harmonics n×

[
αth − ∆ f ;αth + ∆ f

]
. However the amount of frequencies is different at each harmonic n

and so, it is necessary to resample each frequency band to have the same amount of samples in each. Figure
7 shows performances of the 2 methods proposed in section 2.4.2 on this synthetic spectrum.

The Correlation and the Chi-square approaches allow to find the real fault frequency with good proba-
bilities. The Correlation model readjusts the frequency with a better confidence than the Chi-square model:
0.78 against 0.45. In general, the performances of the Chi-square model decrease dramatically when the
overall power of the noise or the amount of paratisital harmonics increase. As the Chi-square approach takes
the background noise into account, it is more sensitive to noise increase. For example, when the background
noise raises to 0.6, the confidence index of the Chi-square model drops to 0.14 whereas the Correlation
model remains around 0.65. Actually, the Chi-square model approach tends to amplify slightly the high am-
plitude parasitical peaks, which leads to a decrease in terms of probability of the most likely fault frequency.
When the probability of parasitical frequencies reaches 0.3, then the reajusted frequenies are rigth, but the
confidence indexes associated drop under 0.3 for the Chi-square and 0.6 for the Correlation model. More
tests have been performed with synthetic data following that model, and the Correlation model approach
always demonstrated the best results. The main drawback of the Chi-square model comes probably from the
Euclidian norm which tends to amplify high parasitical peaks.
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Figure 8: Frequency readjustment for the first order analysis for test rig measurements, with the first 4 harmonics (N = 4) and
∆ f = 30Hz. (a) Extracted spectra S (n × [αth − ∆ f ;αth + ∆ f ]), (b) Correlation model, readjusted frequency is αth + 3.1Hz with 0.75
probability, (c) Chi-square model, readjusted frequency is αth + 3.1Hz with a confidence of 0.35.

3.1.2. Readjustment on test rig measurements
The two criteria are now tested on one recording with pitting in flight condition for first and second order

of cyclostationarity. One defect has been found on the outer race after inspection. Shaft is rotating about
80Hz and the theoretical frequency for the outer race fault is about 600Hz. The pre-processing steps applied
are explained in 2.3.

Exploiting spectral redundancy helps to get rid of parasitical frequencies, like the one at αth + 20Hz for
the first harmonic n = 1 in figure 8 or at αth − 16Hz for the first harmonic n = 1 in figure 9. For first and
second order of cyclostationary, the two methods manage to find the same readjusted frequency αth + 3Hz.
The point that the fault frequency is found at the two orders implies either that the separation of deterministic
from random components did not fully work, or that the vibrations from the fault are naturally present at the
first two orders. Comparing figure 8 and 9, the confidence index is higher for the first order. One can notice
that the confidence indexes are reduced by the spreading around the maximum of the probabilities. That is
particularly rigth for the Chi-square model whose maximum value is three times lower than the Correlation
model even if it corresponds to the actual fault frequency. For the second order analysis that is more noisy,
figure 9, more small parasitical peaks (like the one at αth − 23Hz for n = 3) remains with the Chi-Square
model. It highlights the lack of robustness of this method. Those results confirm that the Correlation model
provides a more sensitive readjustment than the Chi-square model. For that reason, only this approach is
used in the rest of the article.

3.2. Fault detection

As the recorded data are only related to race defects, monitoring is restrained to inner and outer race anal-
ysis for readability purpose. The graphical results consist of the shift between the readjusted and theoretical
frequencies, the associated confidence indicator and the statistical indicator. Moreover the signal-to-noise
estimation will be always computed even if the confidence in the frequency readjustment is low.
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Figure 9: Frequency readjustment for the second order analysis for test rig measurements, with the first 4 harmonics (N = 4) and
∆ f = 30Hz. (a) Extracted spectra S (n × [αth − ∆ f ;αth + ∆ f ]), (b) Correlation model, readjusted frequency is αth + 3.1Hz with 0.45
probability, (c) Chi-square model, readjusted frequency is αth + 3.1Hz with an index of 0.1.

Element Shaft BPFO BPFI Cage Roller
First experiment (loaded) [Hz] 83 810 1019 36 338
Second experiment (load free) [Hz] 83 388 536 34 248

Table 1: Main theoretical frequencies for the test rigs. BPFI and BPFO stand for ball passing frequency for the inner and outer races.

3.2.1. On test bench measurements
Data were acquired on two helicopter intermediary transmission. It is composed of one shaft transmitting

energy from the main gearbox to the tail gearbox through bevel gears. The frequencies of interest are given
in tabular 1. Sensor is a Bruel & Kjaer accelerometer mounted at the input shaft structure where the faulty
bearing is mounted. The readjustment is performed for ∆ f = 70Hz around the theoretical frequencies and
the first N = 4 harmonics.

First experiment: high radial load and outer race’s fault. The bearing of interest is mounted on the inter-
mediary shaft with high radial load and has been running for 600 minutes and 8 recordings have been made.
Pittings appeared on the outer race after several days of functioning during endurance tests. After the final
recording, the bearing has been checked and it was decided to stop the experiment after the 8th recording.
The spectrum demonstrates an excellent spectral coherence, since outer race’s fault frequency is well lo-
calized in figure 10. An interresting point is that the fault is already present at the very beginning of the
experiment. However, at the early times no alarm can be triggerred because the first and second indicators
are too low in figure 11. That fact is confirmed when looking at the spectra in figure 10. Moreover cage’s
frequency is modulated by the inner frequency for 780Hz and 853Hz. One can take advantage of these
modulations to readjust more accurately the frequency.

Results are presented in figure 11. The fault is more present at the first order, that is particularly true
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Figure 10: Power spectral density first (gray) and last (dashed black) recordings around the first harmonic of the theoretical frequency
of the outer race αth

bp f o = 810Hz. The frequency of the cage if 36.5Hz.

regarding the confidence index associated to the frequency readjustment (c) as it reaches the neighborhood of
1 for the last two recordings. It helps also to indicate fault’s progression. After the 6th recording of the outer
race frequency readjustment, the readjusted frequency does not change any longer as the graphic (outer/(a))
of figure 11 shows it. That point confirms that a right suspicious frequency has been found. The detection
of the fault pattern is performed by the frequency readjustment and its severity is assessed by the signal-to-
noise ratio indicator in (c). Indeed, the statistical indicator shows clearly fault’s presence for the last two
recordings, as the signal-to-noise ratio is much bigger than 1. Concerning the inner race, false alarms due to
important values of the signal-to-noise ratio are avoided as the confidence index remains low.

Second experiment: no radial load and inner race’s fault. The second test bench investigates tail gearbox
bearings of another helicopter with low radial load on the intermediary shaft. Five recordings are available
and an artificial outer race defect is introduced in the last two recordings (growing local pitting). Results of
first order analysis in figure 12 (square markers in graphics (b) and (c)) implies that no false fault frequency
are found for the inner race since the confidence index remains quite low and the statistical indicator remains
small. For the last two recordings, the second order analysis of the outer race meets all the requirements to
trigger an alarm: high readjustment confidence and high values for the signal-to-noise indicator.

Contrarily to the first experiment only the second order analysis makes the fault detectable, that phe-
nomenon could be related either to the kind of bearing used or more probably to the lack of radial load.
As bearings and radial load change from one location to another, the two test benches demonstrate that it is
necessary to monitor bearings with at least the first two orders of cyclostationarity.
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Figure 11: First test bench results for 8 recordings. Plain line with square markers denotes first order and plain line with crosses denotes
second order. First and second rows display resrespectively inner and outer race analysis. (a) readjusted frequency α̂ in [Hz] with the
readjustment method for αth

bp f i = 1019Hz and αth
bp f o = 810Hz, (b) p (α̂|D, I) (confidence index), (c) fault indicator R(α̂) (equation 29).
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Figure 12: Second test bench results for 5 recordings. Plain line with square markers denotes first order and plain line with crosses
denotes second order. First and second rows display resrespectively inner and outer race analysis. (a) readjusted frequency α̂ in
[Hz] with the readjustment method for αth

bp f i = 530Hz and αth
bp f o = 388Hz, (b) p (α̂|D, I) (confidence index), (c) fault indicator R(α̂)

(equation 29).
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Figure 13: Flight results for 50 recordings. Plain line with square markers denotes first order and dashed line with crosses denotes
second order. First and second lines display resrespectively inner and outer race analysis. (a) readjusted frequency α̂ in [Hz] with the
readjustment method for f th

bp f i = 1170Hz and f th
bp f o = 800Hz, (b) confidence index associated with the readjusted frequency, (c) fault

indicator R(α̂) (equation 29).

3.2.2. In flight recordings
The same approach is now tested in a rougher and more realistic context. The shaft of interest is turning

at 90Hz. The sampling frequency is 20kHz and the record time is 2.5 seconds for the 50 available data
sets. All the other information are unknown, in particular nothing is known neither about the time elapsed
between each recording nor about the maintenance actions appart that nothing has been done to repair the
faulty bearing. An inner bearing race wear has been detected by the operators at the end of the studied data
set.

The results for the inner race are presented in figure 13, the readjustment method manages to find a
frequency with a good confidence for the first order. The signal-to-noise ratio indicator makes it possible
to detect the inner race fault, the results are in the box (c) of the first line of figure 13. The erratic value
of the inner race confidence shows the influence of the unstable environement like the flight stages (hover,
turn, steady state...), however most of the values remain steadily bigger than 0.5. Moreover the statistical
indicator confirms that tendancy as it grows from 2 to 50 in 15 recordings and then remains steadily at this
value in figure 13 (c) in the last column. On the contrary outer race analysis shows that, that race has not
been significatively damaged, since the confidence index remains below 0.5.
Performances are limited by the sampling frequency that is is too low compared with bearing faults, to catch
enough bearing harmonics the demodulating band has to be at least 10kHz wide (according to [3] section
2.2.3), which is too close to the cutting frequency.

4. Conclusion

In the article, the detection of local bearing fault based on cyclostationary analysis of vibrations has been
addressed with application on in-flight helicopter health monitoring. First, general pre-processings have
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been presented to separate the fault features from the noise. Then, new readjustment methods to estimate
the fault frequencies associated with bearing defect in a spectrally noisy context have been addressed. These
methods provide readjusted fault frequencies that are associated with a confidence index. Ultimately, a
general additive model of fault with noise and interferences has been introduced. Based on that model, a
new statistical indicator has been introduced that estimates the signal-to-noise ratio of the harmonics at the
re-estimated fault frequency.

The proposed detection method has been tested on by two test-bench experiments. The frequency read-
justment method permits the finding of the real fault frequency and the statistical indicator successfully
estimated then quantitative growing of the fault. Moreover, the experiment showed that the cyclostationary
order of the fault depends on the context (radial load). Given the various operating modes and conditions of
bearings in helicopters, it implies that the monitoring of bearings needs to be performed for at least the first
two orders of cyclostationarity.

The readjustment method is significant in flight context due to all the parasitical sources and to the
variations of the flight conditions. The confidence associated to the frequency readjustment and the presented
indicator managed to detect the fault and make trend analysis unnecessary. Further developments will deal
with testing these method on a broader data set.
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