C. and I. Sc-77b, IEC 61000-4-21 ? Electromagnetic Compatibility (EMC) -Part 4-21: Testing and Measurement Techniques -Reverberation Cham-ber Test Methods, International Electrotechnical Commission (IEC) International standard

C. Bruns, Three-dimensional simulation and experimental verification of a reverberation chamber, 2005.

D. Hill, Electromagnetic theory of reverberation chambers, NIST Technical note 1506

D. Hill, Electromagnetic fields in cavities: Deterministic and statistical theories [Advertisement], IEEE Antennas and Propagation Magazine, vol.56, issue.1, 2009.
DOI : 10.1109/MAP.2014.6821806

A. Cozza, The Role of Losses in the Definition of the Overmoded Condition for Reverberation Chambers and Their Statistics, IEEE Transactions on Electromagnetic Compatibility, vol.53, issue.2, pp.296-307, 2011.
DOI : 10.1109/TEMC.2010.2081993

URL : https://hal.archives-ouvertes.fr/hal-00530840

D. Hill, Plane wave integral representation for fields in reverberation chambers, IEEE Transactions on Electromagnetic Compatibility, vol.40, issue.3, pp.209-217, 1998.
DOI : 10.1109/15.709418

L. Arnaut, Operation of electromagnetic reverberation chambers with wave diffractors at relatively low frequencies, IEEE Transactions on Electromagnetic Compatibility, vol.43, issue.4, pp.637-653, 2001.
DOI : 10.1109/15.974645

O. Lundén and M. Bäckström, How to Avoid Unstirred High Frequency Components in Mode Stirred Reverberation Chambers, 2007 IEEE International Symposium on Electromagnetic Compatibility, pp.1-4, 2007.
DOI : 10.1109/ISEMC.2007.244

J. Hong and C. Huh, OPTIMIZATION OF STIRRER WITH VARIOUS PARAMETERS IN REVERBERATION CHAMBER, Progress In Electromagnetics Research, vol.104, pp.15-30, 2010.
DOI : 10.2528/PIER09121610

M. V. Berry, Regular and irregular semiclassical wavefunctions, Journal of Physics A: Mathematical and General, vol.10, issue.12, 1977.
DOI : 10.1088/0305-4470/10/12/016

O. Legrand and F. Mortessagne, Wave Chaos for the Helmholtz Equation, New Directions in Linear Acoustics and Vibration: Quantum Chaos, Random Matrix Theory, and Complexity, 2010.

M. Dennis, Gaussian RandomWavefields and the Ergodic Mode Hypothesis, New Directions in Linear Acoustics and Vibration: Quantum Chaos, Random Matrix Theory, and Complexity, 2010.

O. Bohigas, M. Giannoni, and C. Schmit, Characterization of Chaotic Quantum Spectra and Universality of Level Fluctuation Laws, Physical Review Letters, vol.52, issue.1, pp.1-4, 1984.
DOI : 10.1103/PhysRevLett.52.1

O. Bohigas and M. Giannoni, Chaotic motion and random matrix theories, Mathematical and Computational Methods in Nuclear Physics, pp.1-99, 1984.
DOI : 10.1007/3-540-13392-5_1

URL : https://hal.archives-ouvertes.fr/in2p3-00016778

H. J. Stöckmann, Quantum Chaos: An Introduction, 1999.
DOI : 10.1017/CBO9780511524622

S. Mcdonald and A. Kaufman, Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation, Physical Review A, vol.37, issue.8, pp.3067-3086, 1988.
DOI : 10.1103/PhysRevA.37.3067

J. Stein and H. Stöckmann, Experimental determination of billiard wave functions, Physical Review Letters, vol.68, issue.19, pp.2867-2870, 1992.
DOI : 10.1103/PhysRevLett.68.2867

H. Alt, H. Gräf, H. Harney, and R. Hofferbert, Superconducting billiard cavities with chaotic dynamics: An experimental test of statistical measures, Physical Review E, vol.50, issue.1, pp.1-4, 1994.
DOI : 10.1103/PhysRevE.50.R1

V. Doya, O. Legrand, F. Mortessagne, and C. Miniatura, Speckle statistics in a chaotic multimode fiber, Physical Review E, vol.65, issue.5, p.56223, 2002.
DOI : 10.1103/PhysRevE.65.056223

S. Deus, P. M. Koch, and L. Sirko, Statistical properties of the eigenfrequency distribution of three-dimensional microwave cavities, Physical Review E, vol.52, issue.1, pp.1146-1155, 1995.
DOI : 10.1103/PhysRevE.52.1146

H. Alt, C. Dembowski, H. Gräf, and R. Hofferbert, Wave Dynamical Chaos in a Superconducting Three-Dimensional Sinai Billiard, Physical Review Letters, vol.79, issue.6, pp.1026-1029, 1997.
DOI : 10.1103/PhysRevLett.79.1026

C. Dembowski, B. Dietz, H. D. Graef, A. Heine, T. Papenbrock et al., Experimental Test of a Trace Formula for a Chaotic Three-Dimensional Microwave Cavity, Physical Review Letters, vol.89, issue.6, p.206028, 2002.
DOI : 10.1103/PhysRevLett.89.064101

B. Dietz, B. Mößner, T. Papenbrock, U. Reif, and A. Richter, Bouncing ball orbits and symmetry breaking effects in a three-dimensional chaotic billiard, Physical Review E, vol.77, issue.4, 2008.
DOI : 10.1103/PhysRevE.77.046221

U. Dörr, H. Stöckmann, M. Barth, and U. , Scarred and Chaotic Field Distributions in a Three-Dimensional Sinai-Microwave Resonator, Physical Review Letters, vol.80, issue.5, pp.1030-1033, 1998.
DOI : 10.1103/PhysRevLett.80.1030

G. Orjubin, E. Richalot, O. Picon, and O. Legrand, Wave chaos techniques to analyze a modeled reverberation chamber, Comptes Rendus Physique, vol.10, issue.1, pp.42-53, 2009.
DOI : 10.1016/j.crhy.2009.01.001

URL : https://hal.archives-ouvertes.fr/hal-00692944

G. Gradoni, J. Yeh, T. M. Antonsen, S. Anlage, and E. Ott, Wave chaotic analysis of weakly coupled reverberation chambers, 2011 IEEE International Symposium on Electromagnetic Compatibility, pp.2011-202, 2011.
DOI : 10.1109/ISEMC.2011.6038310

J. Hannay and R. Mccraw, Barrier billiards-a simple pseudo-integrable system, Journal of Physics A: Mathematical and General, vol.23, issue.6, pp.887-900, 1999.
DOI : 10.1088/0305-4470/23/6/014

E. Bogomolny and C. Schmit, Structure of Wave Functions of Pseudointegrable Billiards, Physical Review Letters, vol.92, issue.24, p.244102, 2004.
DOI : 10.1103/PhysRevLett.92.244102

URL : https://hal.archives-ouvertes.fr/hal-00009237

E. Bogomolny, B. Dietz, T. Friedrich, M. Miski-oglu, A. Richter et al., First Experimental Observation of Superscars in a Pseudointegrable Barrier Billiard, Physical Review Letters, vol.97, issue.25, p.254102, 2006.
DOI : 10.1103/PhysRevLett.97.254102

URL : https://hal.archives-ouvertes.fr/hal-00123935

W. Lukosz, Electromagnetic zero-point energy shift induced by conducting closed surfaces, Zeitschrift f??r Physik A Hadrons and nuclei, vol.258, issue.2, pp.327-348, 1973.
DOI : 10.1007/BF01394569

R. Balian and B. Duplantier, Electromagnetic waves near perfect conductors. I. Multiple scattering expansions. Distribution of modes, Annals of Physics, vol.104, issue.2, pp.300-335, 1977.
DOI : 10.1016/0003-4916(77)90334-7

G. Orjubin, E. Richalot, O. Picon, and O. Legrand, Chaoticity of a Reverberation Chamber Assessed From the Analysis of Modal Distributions Obtained by FEM, IEEE Transactions on Electromagnetic Compatibility, vol.49, issue.4, pp.762-771, 2007.
DOI : 10.1109/TEMC.2007.908266

URL : https://hal.archives-ouvertes.fr/hal-01441543

G. Tanner, How chaotic is the stadium billiard? A semiclassical analysis, Journal of Physics A: Mathematical and General, vol.30, issue.8, pp.2863-2888, 1997.
DOI : 10.1088/0305-4470/30/8/028

A. Bäcker, R. Schubert, and P. Stifter, On the number of bouncing ball modes in billiards, Journal of Physics A: Mathematical and General, vol.30, issue.19, pp.6783-6795, 1997.
DOI : 10.1088/0305-4470/30/19/017

L. A. Bunimovich and J. Rehacek, On the ergodicity of many-dimensional focusing billiards, Annales de l'institut Henri Poincaré (A) Physique théorique, pp.421-448, 1998.

M. V. Berry, Regularity and chaos in classical mechanics, illustrated by three deformations of a circular 'billiard', European Journal of Physics, vol.2, issue.2, pp.91-102, 1981.
DOI : 10.1088/0143-0807/2/2/006

H. Kuttruff, Room acoustics, 2000.

P. Corona, J. Ladbury, and G. , Reverberation-chamber research-then and now: a review of early work and comparison with current understanding, Electromagnetic Compatibility, IEEE Transactions on, vol.44, issue.1, pp.87-94, 2002.

J. Wiersig, Spectral properties of quantized barrier billiards, Physical Review E, vol.65, issue.4, p.46217, 2002.
DOI : 10.1103/PhysRevE.65.046217

D. Laurent, O. Legrand, and F. Mortessagne, Diffractive orbits in the length spectrum of a two-dimensional microwave cavity with a small scatterer, Physical Review E, vol.74, issue.4, p.46219, 2006.
DOI : 10.1103/PhysRevE.74.046219

G. Dolmans, Electromagnetic Fields Inside a Large Room with Perfectly Conducting Walls, 1995.

J. Barthélemy, Chaos ondulatoire en présence de pertes: modélisation et expérience de billards micro-ondes, 2003.

J. Barthélemy, O. Legrand, and F. Mortessagne, matrix in a microwave cavity at room temperature, Physical Review E, vol.71, issue.1, p.16205, 2005.
DOI : 10.1103/PhysRevE.71.016205

C. Poli, O. Legrand, and F. Mortessagne, Statistics of resonance states in a weakly open chaotic cavity with continuously distributed losses, Physical Review E, vol.82, issue.5, p.55201, 2010.
DOI : 10.1103/PhysRevE.82.055201

D. V. Savin, O. Legrand, and F. Mortessagne, Inhomogeneous losses and complexness of wave functions in chaotic cavities, Europhysics Letters (EPL), vol.76, issue.5, pp.774-779, 2006.
DOI : 10.1209/epl/i2006-10358-3

URL : https://hal.archives-ouvertes.fr/hal-00089732

C. Poli, D. V. Savin, O. Legrand, and F. Mortessagne, Statistics of resonance states in open chaotic systems: A perturbative approach, Physical Review E, vol.80, issue.4, p.46203, 2009.
DOI : 10.1103/PhysRevE.80.046203

A. K. Mitra and T. F. Trost, Statistical simulations and measurements inside a microwave reverberation chamber, IEEE 1997, EMC, Austin Style. IEEE 1997 International Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No.97CH36113), pp.48-53, 1997.
DOI : 10.1109/ISEMC.1997.667539