Improving Supervised Classification of Activities of Daily Living Using Prior Knowledge

Abstract : Constant growing of the mean age of the population and bottleneck created at the entry of institutions makes telemedicine for elderly people an actual challenge largely explored. It requires recognizing the behavior and actions of a person inside his home with non-intrusive sensors and to process data to check his evolution. This paper presents the results of the study of prior introduction, in Support Vector Machine, to improve this automatic recognition of Activities of Daily Living. From a set of activity performed in a smart home in Grenoble, we obtained models for seven activities of Daily Living and test the performances of this classification and the introduction of spatial and temporal priors. Finally, we discuss the different results.
Type de document :
Article dans une revue
International Journal of E-Health and Medical Communications (IJEHMC), IGI, 2011, 2 (1), pp.17-34
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00800408
Contributeur : Anthony Fleury <>
Soumis le : mercredi 13 mars 2013 - 16:19:33
Dernière modification le : samedi 27 octobre 2018 - 01:30:52
Document(s) archivé(s) le : dimanche 2 avril 2017 - 12:37:25

Fichier

Improving_ADL_Classification_w...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00800408, version 1

Citation

Anthony Fleury, Norbert Noury, Michel Vacher. Improving Supervised Classification of Activities of Daily Living Using Prior Knowledge. International Journal of E-Health and Medical Communications (IJEHMC), IGI, 2011, 2 (1), pp.17-34. 〈hal-00800408〉

Partager

Métriques

Consultations de la notice

430

Téléchargements de fichiers

415