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biphased media

Raphaël Lachièze-Rey

March 12, 2013

Abstract

This paper concerns the second order marginals of biphased random media. We give
discriminating necessary conditions for a bivariate function to be such a valid marginal,
and illustrate our study with two practical applications: (1) the spherical variograms
are valid indicator variograms if and only if they are multiplied by a sufficiently small
constant, which upper bound is estimated, and (2) not every covariance/indicator
variogram can be obtained with a Gaussian level set. The theoretical results backing
this study are contained in a companion paper.

1 Introduction

A random geometric structure is sometimes modelled as a bi-phased medium in the euclidean
space. Its low order characteristics, such as fraction volume, variogram, or covariance, al-
though far from containing a total description of the model, provide interesting features on
the microscopic regularity of the set boundary, as well as on its long range dependency. Char-
acterising the class of second order marginals is an old problem going back to the 50’s, with
applications in telecommunications, materials sciences, geostatistics, and marginal problems
in general are present under different occurrences in fields as various as quantum mechanics,
computer science, game theory; see the surveys [20] or [4] . Experts from these fields have
contributed valuable necessary or sufficient conditions for a function to be admissible, still a
deep understanding of the problem is unavailable. Our purpose is to provide improvements
to the existing methods for checking the admissibility of a second-order characteristic, and
illustrate it with practical examples. Related theoretical results are proved in [9].

The two point covering function of a random set X contained in an ambient space E is
defined as

pXx,y = P(x, y ∈ X), x, y ∈ E.

If E = R
d and X is stationary, meaning its law is invariant under the action of translations,

the covariance can be factorized

pXx,y =: p̄Xx−y = P(0, x− y ∈ X), x, y ∈ E.
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The precise notion of a random set, evasive in most of the applied literature, is of no
importance in this paper because we are only interested in combinatorial properties of the
marginals, and leave aside regularity issues. Thus we call random set here a Borel random
element of the subsets of E, endowed with the pointwise convergence topology. Most of the
study is conducted in a discrete, or even finite, ambient set E. The indicator function of
a random set is a {0, 1}-valued random field, sometimes referred to as a binary field. Any
other sufficiently rich framework (e.g. random closed sets, see [17], or random measurable
sets, see for instance [6]), would do.

The central question here is the inverse realisability problem, given a bivariate function
{px,y} in the class FE of symmetric functions on E, whether it can be realised by some
random set X ( i.e. p = pX), or the equivalent problem if one is interested in another second
order marginal, such as the covariance, the geometric variogram, the indicator variogram, or
the unit covariance (see below); it is for instance necessary that p is semi-definite positive,
but insufficient. Since pXx,y = E1{x∈X}1{y∈X}, the problems of characterising covariances and
two point covering functions are closely related, therefore both these problems are referred
to as the covariance realisability problem. The problem is also called the S2 problem in ma-
terials science. This study can serve many purposes, especially in modelisation; one needs to
know admissibility conditions to propose and use new models of covariances. In reconstruc-
tion and estimation, one should test whether the estimated/reconstructed covariance indeed
corresponds to a random structure (see [8]).

The realisability problem seems to have deep combinatorial roots, which substance re-
mains elusive after several decades. In a recent paper [10] and the forthcoming paper [7],
it is made clear that this problem can be uncoupled in two independent problems, referred
to as the positivity problem, and the regularity problem. The regularity problem, treated for
random sets in [7], is not addressed here. The positivity problem, central in this paper, is
about the compatibility of a candidate p with the algebraic properties of a set covariance,
and is of combinatorial nature.

This problem has been posed by McMillan [16] in the field of telecommunications. It is
more or less implicit in many articles, and has been to the author’s knowledge first addressed
directly by Shepp [19], and more recently by Quintanilla [18]. A series of works by Torquato
and his coauthors (see [8] and [20, Sec. 2.2] and references therein), in the field of materials
science, gather known necessary conditions and illustrate them in many 2D and 3D theoret-
ical models. This question was developed alongside in the field of geostatistics; Matheron
[15] has found via arithmetic considerations a wide class of necessary conditions, that he has
proven to be sufficient if E has cardinality less or equal to 5, and he has conjectured these
conditions to be sufficient for any finite E. This conjecture is disproved in the companion
paper [9]. Other authors do not attack frontally this question, but address the realisability
problem within some particular classes of models, e.g. Gaussian, mosaic, or boolean model
(see [1, 3, 11, 14]).
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Depending on the community, the problem has different formulations, in function of the
second order marginal of interest. Section 2 recalls the relations between those marginals.
Section 3 focuses on the mathematical problem of testing a candidate second order marginal,
giving an algorithm able to efficiently discard non-valid marginals. The method is illustrated
in Section 4 with the Gaussian model and the spherical variograms.

2 Formulations of the problem

Let E be a set and endow the class of its subsets with the σ-algebra generated by the
mappings A ⊂ E 7→ 1{x∈A}, x ∈ E. An important part of the paper focuses on finite

E = [N ] = {1, . . . , N} for some N ≥ 1. Denote by X̃ : x 7→ 1{x∈X} the random indicator
function of X . The two point covering function pX of X is also defined as

pXx,y = EX̃xX̃y.

Function pX lives in the space FE of symmetric functions on E. Call CE = {pX ;X ⊆
E random set} ⊂ FE the class of realisable functions.

Remark 2.1. It is clear, as pX is the two point covering function of a random process, that
CE ⊂ PE ⊂ FE , where PE is the convex cone of semi-definite positive functions, meaning

q
∑

i,j=1

pXxi,xj
hihj ≥ 0

for every q ≥ 1, q−tuple of points (x1, . . . , xq) of E, and vector h ∈ R
q. Thus an example of

a necessary condition for a function px,y to be realisable is its semi-definite positiveness.

2.1 Second order marginals

Other second order characteristics of random sets can be found in the literature. With the
same notation define for x, y ∈ E

γX
x,y =

1

2
E(X̃x − X̃y)

2 =
1

2
P(X̃x 6= X̃y) the indicator variogram of X,

ρXx,y = 1− 4γX
x,y the unit covariance of X. (2.1)

The function ρX takes on a special combinatorial interest because, if one defines the random
field

Y X
x =

{

1 if x ∈ X,

−1 if x /∈ X,
= 2X̃x − 1,

ρXx,y = EY X
x Y X

y . Defining F c
E = {f ∈ F : f(x, x) = c; x ∈ E} for c = 0 or 1, the

class VE of realisable variograms is contained in F 0
E, the class UE of realisable unit covari-

ances is contained in F 1
E . An alternative definition of UE is as the class of the covariances
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of random functions taking values in {−1, 1}; it implies that UE , like CE , is contained in PE .

The two problems are fundamentally the same, and some geostatisticians seek to de-
termine which functions {γx} are valid models of indicator variograms. The “unit field
formulation” is preferred in [15, 18, 19]. The natural symmetry of the set {−1, 1} confers to
this version a more handy combinatorial structure, and is exploited in the companion paper
[9] to give theoretical realisability results, transferred in this paper to other marginals.

Remark 2.2 (centred marginals). Other versions of these functionals where the first order
marginal is subtracted are also used, such as the proper covariance E(X̃x−EX̃x)(X̃y−EX̃y),
but they only complicate the already difficult realisability problem, and our findings can be
passed on to centred marginals.

In the light of (2.1), the class of indicator variograms can be paired up with that of
unit covariances, while two point covering functions, covariances and geometric variograms
(see Sec. 4) form another group in the literature treating of second order marginals. The
relations between these two families are precised below. There is a one-to-one mapping

ΦV →U : F
0
E 7→ F

1
E

γ 7→ ρ = 1− 4γ

that maps indicator variograms to unit covariances. The relation with the covariances is
more subtle. Since for a random set X , ρXx,y = EYxYy where Y = 2X̃ − 1, it is clear that the
two point covering function of X and its unit covariance are related through

ρXx,y = 4pXx,y − 2(pXx,x + pXyy) + 1.

It is on the converse not possible to pass directly from ρX to pX . This can be understood by
noting that ρX = ρX

c
but pX 6= pX

c
where Xc is the complementary of X , thus a given unit

covariance might correspond to different covariances. There is no canonical way to pass from
two point covering functions to unit covariances, so we give below the method proposed in
[15]. We introduce an exterior point x0 /∈ E and put E ′ = E ∪ {x0}.

Let X be a random set, and pX ∈ CE its two point covering function. Define X ′ =
{x0} ∪X . The unit covariance ρX

′

of X ′ is

ρX
′

x,y = ΦC→U (pX)x,y :=











4pXx,y − 2(pXx,x + pXy,y) + 1 if x, y 6= x0

2pXyy − 1, if x = x0, y ∈ E

1 if x = y = x0.

(2.2)

Let reciprocally ρX
′

be the unit covariance of a random set X ′ ⊆ E ′. Defining

X ′′ =

{

X ′ if x0 ∈ X ′

(X ′)c if x0 /∈ X ′
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yields ρX
′′

= ρX
′

, thus we can assume without loss of generality that x0 ∈ X ′ a.s. Define
X = X ′ ∩ E = X ′ \ {x0}. Then the two point covering function of X can be obtained by
reversing (2.2), explicitly for all x, y ∈ E,

pXx,y =
1

4
(ρX

′

x,y + 1 + ρX
′

x0,y
+ ρX

′

x0,x
) = (Φ−1

C→U
(ρX

′

))xy.

Remark 2.3. The bijection between UE′ and CE corresponds to the transformation X ′ =
X ∪ {x0}. There are many other ways to pass from covariances to unit covariances, one can
for instance impose that the law of X̃ ′

x0
is that of a Bernoulli variable with parameter p for

every p ∈ [0, 1], but the construction is slightly more complicated.

Proposition 2.4. We have the following relations between CE ,UE and VE. Assume that
x0 is a fixed point external to E, and E ′ = E ∪ {x0}. We have

UE = ΦV →U (VE), VE = ΦU →V (UE),

UE′ = ΦC→U (CE), CE = ΦU →C (UE′)

where ΦV →U : F 1
E 7→ F 0

E and ΦC→U : FE 7→ F 1
E′ are the one-to-one affine mappings

described above, and ΦU →V = Φ−1
V →U

,ΦU →C = Φ−1
C→U

. If E = [N ] for N ≥ 1, identify
E ′ = [N + 1].

For u, v two real functions on E, denote by (u ⊗ v)x,y = uxvy, x, y ∈ E, their tensor
product. Marginals of central theoretic importance are the deterministic ones, namely the
pA = Ã ⊗ Ã for A ⊆ E deterministic, and the corresponding deterministic unit covari-
ances ρA = (2Ã − 1)⊗ (2Ã− 1). The deterministic variograms are the γA = ΦU →V (ρ

A) =
1
4
(1− ρA) ∈ VE, A ⊂ E.

The following theorem unveils the convex structure of the class of valid second order
marginals.

Theorem 2.5. (i)CE (resp. VE) is a convex subset of FE which extreme points are the
deterministic two point covering functions pA for A ⊂ E (resp. the deterministic variograms

γA, A ⊂ E). (ii) If E = [N ], N ≥ 1, call dN = N(N+1)
2

. Then VE has inner dimension dN ,
and CE has inner dimension dN+1. Every valid variogram (resp. valid two point covering
function) can be realised by a random set taking at most dN + 1 (resp. dN+1 + 1) different
values.

Proof. It is proved in the companion paper [9] that UE is convex, that its extreme points
are the u ⊗ u for u ∈ {−1, 1}E, and that furthermore if card(E) = N ≥ 1 there are exactly
2N−1 extreme points and UN has inner dimension dN . The isomorphisms ΦU →V and ΦU →C

yield the announced conclusions for VE and CE .
Similarly, the last statement is a direct consequence of Prop. 1.4 in [9], itself an applica-

tion of the Minkowski-Carathéodory Theorem.
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Remark 2.6. Algorithms yielding a simplex of dN + 1 points containing a realisable unit
covariance ρ provide a reconstruction algorithm for a structure with given unit covariance ρ,
see [22] Sec. 1.6 and references therein. Still the obtained model completely lacks structure
and geometrical meaning, and such a naive approach is probably useless for applications.

Still it is proved in the forthcoming paper [7] that one can control the mean perimeter of
the obtained set via its second order marginals, giving a geometric substance to the model,
therefore such a constrained reconstruction algorithm could be fruitful.

If E is finite with cardinal N ≥ 1, a function px,y is sometimes identified with the N ×N
matrix (pxi,xj

)1≤i,j≤N , {xi; 1 ≤ i ≤ N} being an enumeration of E. The following theorem
enlightens the way the realisability problem should be posed in a discrete setting.

Theorem 2.7. Let N ≥ 1. Given a N×N matrix Σ with only 0’s on the diagonal, for s > 0
sufficiently small, I + sΣ ∈ UN is realisable in E = [N ] as a unit covariance, and −sΣ ∈ VN

is realisable as a variogram. Calling sc(Σ) > 0 the critical value such that I + sΣ ∈ UN and
−s
4
Σ ∈ VN if and only if s ≤ sc(Σ), we have sc(Σ) ≥ 2

π
‖Σ‖−1

2 , where ‖ · ‖2 is the Euclidean
norm for matrices.

Proof. It is proved in Prop. 4.2 that if Λ is a semi-definite positive matrix with 1’s on the
diagonal and entries in [−1, 1],

ρx,y =
2

π
arcsin(Λx,y), x, y ∈ E

is a realisable unit covariance (realised by the 0 level set of a centred Gaussian process on E
with covariance Λ). Given Σ semi-definite positive, the strategy here is to write

I + sΣ =
2

π
arcsin(Λ)

for some such Λ, hence verifying for x, y ∈ E,

Λx,y =

{

1 if x = y

sin(π
2
sΣx,y) otherwise.

Let us prove that for s small, Λ so defined is semi-definite positive. We have for any
vector h = (hx)x∈E

∑

x,y∈E
Λx,yhxhy =

∑

x∈E
h2
x +

∑

x 6=y

Λx,yhxhy ≥
∑

x∈E
h2
x −

√

∑

x 6=y

Λ2
x,y

√

∑

x 6=y

h2
xh

2
y

≥
∑

x∈E
h2
x −

√

∑

x 6=y

sin
(π

2
sΣx,y

)2∑

x∈E
h2
x ≥

∑

x∈E
h2
x



1− s
π

2

√

∑

x 6=y

Σ2
x,y





by the Cauchy-Schwarz inequality. Hence if s ≤ 2
π
‖Σ‖−1

2 , Λ is semi-definite positive, and
therefore I + sΣ is a valid unit covariance, and in virtue of (2.1), 1

4
(I − (I + sΣ)) = −s

4
Σ is

a valid indicator variogram.
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Finding precisely this value is not possible in general because one cannot characterise
completely UN , but we give in Section 3 a heuristic procedure to estimate it, and illustrate
it in Section 4 on the spherical variograms.

2.2 Stationarity and Isotropy

In most of the literature about random structures, models are assumed to be stationary
and/or isotropic. If X is a random subset of Rd, X is said to be stationary - or homogeneous
- if its law is invariant under translations, and isotropic it its law is invariant under rotations.
A second order marginal {αX

x,y} of X (covariance, indicator variogram, or two point covering
function) then factorizes to a simpler form denoted ᾱX on a smaller space H :

αX
x = αX

0,x, x ∈ H = R
d, if X is stationary, with αX

x,y = αX
x−y, (2.3)

αX
r = αX

0,ru, r ∈ H = R+, if X is stationary and isotropic, with αx,y = α‖x−y‖,

where u is some unit vector of Rd. The realisability problem is therefore posed in this terms
for ᾱ.

Theorem 2.8. A function α onH is the reduced covariance of a stationary (and/or isotropic)
random set if and only if α defined by (2.3) is realisable.

The proof of Th. 2.8, as well as more general statements, can be derived from Th. 2.13
in [10]. Under this form, the problem of characterising numerically stationary covariances
is the same without stationarity. Nevertheless it might be possible to take advantage of
the special Toeplitz form of stationary field covariances to make efficient computations, for
instance by imbedding it in a circulant matrix, as it has been made in [21, 2]. For the same
reasons, the numerical complexity of the problem reduces since the dimension of the space
where live stationary covariances is smaller, but the combinatorial symmetry is lost, thus
there is no gain on the theoretical point of view.

3 Checking realisability numerically and Matheron’s

conjecture

3.1 A heuristic for checking Matheron’s conditions

Matheron formulated necessary conditions for an indicator variogram γ on E to be admissi-
ble, namely γ must satisfy

q
∑

i,j=1

εiεjγxi,xj
≤ 0 (3.1)

for every ε ∈ {−1, 0, 1}N such that
∑

i εi = 1, and x1, . . . , xq ∈ E. It is acknowledged in
the literature that they are hard to check in practice (see [8] for a heuristic approach). The
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unique condition used in practice for proving the non-validity of some indicator variogram
is the so-called triangular inequality

γx,z ≤ γx,y + γy,z, x, y, z ∈ E,

that arises from (3.1) by specialising for q = 3, (x1, x2, x3) = (x, y, z), ε = (1,−1, 1). See
Markov [13] for a discussion of this inequality and its consequences. This condition implies
for instance that a valid variogram in a continuous medium must have a cusp at the origin
(see [11, 8]). Authors have been able to discard for instance the Gaussian variogram γx,y =
1 − exp(−‖x − y‖2) ([11] p. 27) as a valid indicator variogram. We claim here that in
a discrete setting it is more convenient to characterise realisability in terms of the unit
covariance ρ = 1 − 4γ. Assume that N = card(E) < ∞ and call unitary vector some
e ∈ Z

N such that there exists u ∈ {−1, 1}N satisfying
∑

i eiui = 1. Call EN the class of
unitary vectors. It is proved in the companion paper (with numeric computations) that the
conditions

∑

i,j

ρxi,xj
eiej ≥ 1 e ∈ EN , (3.2)

are necessary for the realisability of ρ (and hence of γ), and sufficient if N ≤ 6. The
advantage of using instead the conditions (3.2) is twofold:

1. Due to spectral considerations, it is easier to check than (3.1) (see Th. 3.1 and the
heuristic below).

2. Conditions (3.2) are more discriminant. Indeed, conditions (3.1) only characterise
the positive convex cone generated by 0 in VN , while (3.1) delimit a compact convex
set. The new conditions involve the e such that

∑

i uiei = 1 for unitary e such that
∑

i ei 6= 1.

Theorem 3.1. Take ρ ∈ F 1
N a non-singular symmetric matrix. If ρ is not definite positive,

then it is not realisable. Otherwise, call λ > 0 its smallest eigenvalue. Then ρ verifies (3.2)
for every e ∈ EN if and only if it satisfies them only for e ∈ EN such that

∑

i

e
2
i < λ−1. (3.3)

Proof. For any e ∈ Z
N , we have

∑

ij

ρijeiej ≥ λ‖e‖22.

Thus (3.2) is automatically fulfilled if ‖e‖2 ≥ λ−1.

At this stage the number of conditions to effectively check in (3.2) for a non-singular
symmetric matrix is finite, even though the number depends on the smallest eigenvalue λ of
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ρ. Still if λ is very small, this number might explode. The heuristic procedure below can
help find e more likely to fail (3.2). Real data more often concerns non-singular matrices;
still the singular case is treated in Th. 3.2 .

Theorem 3.2. Assume ρ ∈ F 1
N has rank r < N , and let σ ∈ F 1

r and I ⊆ [N ] with
card(I) = r be such that σ = (ρij)ij∈I is non-singular. Then for k /∈ I, the k-th line Lk of ρ
can be written as a linear combination

Lk =
∑

i∈I
αk
i Li

of the lines Li, i ∈ I. Then ρ satisfies conditions (3.2) if and only if σ satisfies them with
N = r and for i, j ∈ [N ]

ρij =
∑

k,q∈I
αi
kα

j
qρkq. (3.4)

where αi
k := δk=i if k ∈ I.

Proof. Assume that ρ is realisable by a random field Y ∈ {−1, 1}N . Then σ is realisable as
the covariance of the unit field YI = {Yi; i ∈ I} that furthermore satisfies for k /∈ I, j ∈ [N ],

EYj(Yk −
∑

i∈I
αk
i Yi) = ρkj −

∑

i∈I
αk
i ρij = 0,

summing up with the proper coefficients yields

E(Yk −
∑

i∈I
αk
i Yi)

2 = 0

and Yk =
∑N

i=1 α
k
i Yi a.s., k /∈ I. Condition (3.4) follows easily.

If conversely σ is realisable by a unit field YI ∈ {−1, 1}I , then if one defines

Yk =
∑

i∈I
αi
kYi

for k /∈ I, ρkj defined by (3.4) satisfies ρkj = EYkYj for k, j ∈ [N ].

3.2 Heuristic algorithm

The following algorithm can be used to apply (3.2) to a potential unit covariance ρ. Its com-
plexity explodes quickly with N , the strategy used in Section 4 is to test the realisability of
a bidimensional data by sampling a low dimensional restriction ρ and applying the following
procedure.

1. If ρ is not singular, extract a singular matrix σ of ρ with maximal rank r and check
that ρ and σ satisfy the assumptions of Th. 3.2. Then continue the algorithm with
N = r, ρ = σ.
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2. Define a cut-off value µ > 0 and compute the q smallest eigenvalues λ = λ1 ≤ · · · ≤
λq ≤ µ.

3. Introduce the q-dimensional space Vµ spanned by eigenvectors associated to λ1, . . . , λq.
Find by optimisation procedures the unitary vectors e ∈ EN as close of Vλ as possible,
and such that

∑

i e
2
i is small (at least smaller than λ−1).

4. If one of those e fails (3.2), then ρ is not realisable.

We know that for v ∈ Vµ, we have

λ1 ≤
vρvT

‖v‖22
≤ µ.

In view of (3.3), the cut-off value µ need not be taken larger than 1/4 because
∑

i e
2
i < 4

implies that e ∈ EN has at most three non-zero components; in this case (3.2) is reduced to
the triangular inequality, which can be checked by other means (see for instance [13]). This
heuristic is illustrated in Section 4 to study the realisability of the circular variogram.

4 Spherical variograms and Gaussian level sets

This section focuses on two particular models widely used in the literature; the Gaussian level
sets and the spherical variograms. We apply the work of the previous sections to establish
two facts: (1) the circular and spherical variograms are not valid indicator variograms if
multiplied by a too large constant, for which we give an upper bound, and (2) some admissible
covariances and indicator variograms cannot be realised by Gaussian models.

4.1 Spherical variograms

Spherical variograms are among the most popular models used to fit experimental samples
of geostatistical data. It is a recurrent question to know wether such a variogram can be
used as a valid indicator variogram for a stationary model (see [11], p. 28). Emery [3]
proved that indicator variograms of the most popular families of geometric models (boolean
models, Gaussian models, Poisson mosaics) do not in general provide an indicator variogram
under the spherical form. It does not discard a priori the spherical variograms as admis-
sible variograms. Our study is not model-dependant as we estimate the critical value of
the constant by which one can multiply a spherical variogram so that it is realisable at all.
Our computations rely on the realisability conditions of Th. 3.1 and the subsequent heuristic.

For d ≥ 1, denote by Kd(r) the geometric spherical covariogram,

Kd(r) = ℓ(Bd ∩ (Bd + ru)), 0 ≤ r ≤ 1.

where Bd is a ball of Rd with diameter 1, and u is some unitary vector of Rd. For instance
for d = 2,

10



K2(r) =
1

2
(arccos(r)− r

√
1− r2).

Define the spherical variogram by

γ̄d
r =

Kd(0)−Kd(r)

Kd(0)
.

For d = 1, γ̄d is called the triangular variogram, for d = 2 the circular variogram, and for
d = 3 the spherical variogram. Their expressions can be found in [1] pp. 81-82.

A recurring question in geostatistics [11, 1, 3] is the admissibility of γ̄d, up to some
multiplicative constant, as the (reduced) indicator variogramof a (stationary) random set.
Does there exists a random binary field X̃ ⊆ R

d such that

sγ̄d
r = P (X̃0 6= X̃ru), r ∈ [0, 1]

for every unitary u in R
d, and some constant s ∈ [0, 1] called the sill? As is usual in this

paper we prefer to study the corresponding unit covariance

ρ̄dr = 1− 2sγ̄d
r ∈ [−1, 1].

We call sc,d ≥ 0 the critical sill such that ρ̄d is realisable if and only if s ≤ sc,d. We have for
r ∈ [0, 1]

ρ̄1r = 1− 2sr

ρ̄2r = 1− 4s

π

(π

2
− arccos(r) + r

√
1− r2

)

ρ̄3r = 1− s
(

3r − r3
)

.

The case of the triangular variogram is quickly settled as for s = 1, sin(πρ1(r)/2) =
cos(πr) is a semi-definite positive function. It follows by (4.4) that the triangular vari-
ogram is the indicator variogram of the centred stationary Gaussian field W with covariance
EWxWy = cos(π|x− y|) thresholded at the level 0. Therefore sc,1 = 1.

For higher dimensions, to study numerically the realisability of ρd, we study for N ≥ 1
the realisability of its Nd ×Nd restriction matrix

ρd,Ni,j = ρ̄d‖xi−xj‖, i ∈ [N ]d, j ∈ [N ]d

where

xi = ((i1 − 1)/N, . . . , (iN − 1)/N), i ∈ [N ]d.

If d = 2 the heuristic described at Section 3 gave the following results.
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1. For s = 0.72, with N = 3, and

v = [1 0 1 0 − 1 0 1 0 1],

we have

vρd,NvT =

N
∑

i,j=1

ρi,jvivj < 0, 987 < 1,

contradicting (3.2). It implies that ρ2,N , and thus ρ̄2, is not a valid indicator variogram.

2. for s = 0.7 and N = 3, the smallest eigenvalue is λ ∼ 0.2370, meaning finding e ∈ Z
N

with odd sum such that
∑

i e
2
i ≤ [1/λ] = 4 not satisfying (3.2) might turn up difficult.

Thus we have sc,2 < 0.72 and point 2. might lead us to think that sc,2 should not be far
from 0.7. At this stage, the only possible way to ensure realisability is to provide directly a
model realising ρ.

Remark 4.1. The uniform sampling scheme {xi; i ∈ [N ]d} is arbitrary. Even though the
efficiency of the method should increase as the smallest eigenvalue of ρN decreases (letting
theoretically the possibility for more vectors e ∈ EN to be tested), choosing the xi,j more
concentrated instead of equally spaced did not give good results.

For d = 3, ρ3,8 is not of positive type for s > 0.58, thus Theorem (3.1) enables us to say
that sc,3 ≤ 0.58.

4.2 Gaussian level sets covariances

When confronted to a symmetric function p that might be the second order characteristic of
some random set, the default strategy is sometimes to associate it with a Gaussian structure,
in general a Gaussian process thresholded at a given value (see [3, 11, 20]). This approach
might not be successful, therefore a legitimate question is whether it is realisable at all. In
other words, are there realisable second-order characteristics that cannot be realised by a
Gaussian level set? The aim of this section is to prove that the answer is yes unless E is
pathologically small.

A standard Gaussian field on E is a collection of random variables {Wx; x ∈ E} any
linear combination of which is Gaussian and such that EWx = 0 and EW 2

x = 1 for x ∈ E
(see [11] or [12] for more details on Gaussian fields) . The covariance function of W

Σx,y = EWxWy, x, y ∈ E

is semi-definite positive. Bochner’s theorem states that conversely, given Σ ∈ F 1
E ∩ P of

positive type, there exists a unique (in law) standard Gaussian field WΣ with covariance Σ.
In this section we consider the random set obtained by thresholding WΣ at some level z ∈ R

XΣ,z = {x ∈ E : WΣ
x ≥ z}. (4.1)

The second order marginals of XΣ,z can be found in the literature, see for instance [11].
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Proposition 4.2. Let Σ ∈ P ∩ F 1
E , z ∈ R. The indicator variogram of XΣ,z is

γΣ,z
x,y :=

1

2π

∫ 1

Σx,y

1√
1− r2

exp

(

− z2

1 + r

)

dr, x, y ∈ E, (4.2)

The two point covering function of XΣ,z is

pΣ,z
x,y := Φ(z)2 +

1

2π

∫ Σx,y

0

1√
1− r2

exp

(

− z2

1 + r

)

dr, x, y ∈ E, (4.3)

where Φ(z) =
∫ −∞
z

e−r2/2dr√
2π

is the Gaussian tail function.

We have in particular a compact expression of the unit covariance if z = 0:

ρΣ,0
x,y := 1− 4γΣ,0

x,y =
2

π
arcsin(Σx,y), x, y ∈ E. (4.4)

Proof. Let us call fr(u, v), u, v ∈ R
2 the density of a Gaussian vector of R2 with covariance

r ∈ [−1, 1]. Direct computations yield

∂fr(u, v)

∂r
=

∂2fr(u, v)

∂u∂v
.

We have

γΣ,z
x,y = P(W (x) ≥ z,W (y) ≤ z) =

∫ ∞

z

∫ z

−∞
fΣx,y(u, v)dudv

=

∫ ∞

z

∫ z

−∞

(

f1(u, v) +

∫ 1

Σx,y

∂fr(u, v)

∂r
dr

)

dudv = 0 +

∫ 1

Σx,y

∫ ∞

z

∫ z

−∞

∂2fr(u, v)

∂u∂v
dudvdr

=

∫ 1

Σx,y

fr(z, z)dr,

which proves relation (4.2). (4.3) is obtained in an exactly similar fashion and can also
be found as Prop. 16.1.1 in [11]. One can also note that pΣ,z

x,y = P(x, y ∈ XΣ,z) − γΣ,z
x,y =

Φ(z)− γΣ,z
x,y .

Theorem 4.3. If card(E) ≥ 4, there exists p ∈ CN that cannot be obtained by thresholding
a standard Gaussian field, i.e. that is not under the form (4.3) for some definite positive
function {Σx,y} and some level z ∈ R.

Proof. The strategy is to prove that the class of all Gaussian two point covering functions
for card(E) = N = 4 is not convex, and therefore does not coincide with CE . The result
follows with a restriction argument for E with a larger cardinality. Take Σ0 6= Σ1 ∈ F 1

E ∩P

the covariances of two standard Gaussian fields, resp. W 0,W 1, and consider the random
fields X̃0 := X̃Σ0,0 and X̃1 := X̃Σ1,0 obtained by thresholding resp. W 0 and W 1 at the level
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0. Call pi the two point covering function of the binary field X̃i, for i = 1, 2. We claim that
if Σ0 and Σ1 have been chosen judiciously, the two point covering function

p :=
1

2
(p1 + p2) (4.5)

is not the two point covering function of a Gaussian level set of the form (4.1). On the other
hand, it is the two point covering function of a random set because UE is convex. If X is a
random set such that p = pX , then px,x = p0x,x = p1x,x = 1/2. Thus px,y = 1/4+ 1

2π
arcsin(Σx,y)

for some semi-definite positive matrix Σ. (4.5) imposes also

arcsin(Σx,y) =
1

2

(

arcsin(Σ0
x,y) + arcsin(Σ1

x,y)
)

.

The conclusion follows directly from the following lemma:

Lemma 4.4. It is possible to choose Σ0,Σ1 ∈ P ∩ F 1
4 such that

Σx,y = sin

(

1

2
(arcsin(Σ0

x,y) + arcsin(Σ1
x,y))

)

, x, y ∈ E,

is not semi-definite positive.

Proof. Defining the Toeplitz matrices

Σ0 =









1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1









Σ1 =











1
√
3
2

1
2

0√
3
2

1
√
3
2

1
2

1
2

√
3
2

1
√
3
2

0 1
2

√
3
2

1











gives

Σ =









1 1
2

−1
2

0
1
2

1 1
2

−1
2

−1
2

1
2

1 1
2

0 −1
2

1
2

1









.

which is not of positive type (counter example provided by the user Robert Israel on the
mathematical forum mathoverflow.com ).

Thus Σ cannot be the covariance of a Gaussian field.

For variograms and unit covariances, one does not have direct access to the first order
marginal through the diagonal elements, thus the situation is more subtle but the result still
holds if we enlarge E with two elements.
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Theorem 4.5. For N ≥ 6, there exists γ ∈ VN such that γ is not the indicator variogram
of any Gaussian field thresholded at some level z ∈ R.

Proof. Consider two block-matrices covariances of the form

Λ0 =





1 −1 0
−1 1 0
0 0 Σ1



 , Λ1 =





1 −1 0
−1 1 0
0 0 Σ2





where Σi are given by lemma 4.4, and put γi = γΛi,0. Then 1
2
(γ0 + γ1) is the variogram

of a binary field X such that X̃1 6= X̃2 a.s.. If X was the level set of a standard Gaussian
field W = WΣ at a level z ∈ R, we would have Wx > z if and only if Wy < z with
probability 1, whence necessarily Σ1,2 = −1 and z = 0. Then Λx,y = sin((1/2)(arcsin(Λ1

x,y)+
arcsin(Λ2

x,y))), x, y ∈ E, is not semi-definite positive but still it is the covariance matrix of
Σ. Contradiction.

A similar result holds of course for unit covariances.
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1993, Fontainebleau, pages 107–113, 1993.

[16] B. McMillan. History of a problem. J. Soc. Ind. Appl. Math., 3(3):119–128, 1955.

[17] I. Molchanov. Theory of random sets. Springer, 2005.

[18] J. A. Quintanilla. Necessary and sufficient conditions for the two-point probability
function of two-phase random media. Proc. R. Soc. A, 464:1761–1779, 2008.

[19] L. A. Shepp. On positive definite functions associated with certain stochastic processes.
Technical report, Bell Laboratories, Murray Hill, 1963.

[20] S. Torquato. Random Heterogeneous Materials. Springer, New York, 2002.

[21] A. T. A. Wood and G. Chan. Simulation of stationary gaussian processes in [0, 1]d. J.
Comp. Graph. Stat., 3(4):409–432, 2009.

[22] G. M. Ziegler. Lectures on polytopes. Springer, 1995.

16


	Introduction
	Formulations of the problem
	Second order marginals
	Stationarity and Isotropy

	Checking realisability numerically and Matheron's conjecture
	A heuristic for checking Matheron's conditions
	Heuristic algorithm

	Spherical variograms and Gaussian level sets
	Spherical variograms
	Gaussian level sets covariances


