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Abstract. We intend to develop part of the theoretical tools needeth®detection

of gravitational waves coming from the capture of a compéaga, 1-100M, by a
Supermassive Black Hole, up to a®l,, located at the centre of most galaxies. The
analysis of the accretion activity unveils the star popaiaaround the galactic nuclei,
and tests the physics of black holes and general relativite captured small mass
is considered a probe of the gravitational field of the ma&sbivdy, allowing a precise
measurement of the particle motion up to the final absorptidre knowledge of the
gravitational signal, stronglyfiected by the self-force - the orbital displacement due to
the captured mass and the emitted radiation - is imperativa Successful detection.
The results include a strategy for wave equations with ausargsource term for all
type of orbits. We are now tackling the evolution problenstffor radial fall in Regge-
Wheeler gauge, and later for generic orbits in the harmonideoDonder gauge for
Schwarzschild-Droste black holes. In the Extreme MassoRasipiral, the determina-
tion of the orbital evolution demands that the motion of thra mass be continuously
corrected by the self-force, i.e. the self-consistent@vmh. At each of the integra-
tion steps, the self-force must be computed over an adequatber of modes; further,

a differential-integral system of general relativistic equadids to be solved and the
outputs regularised for suppressing divergences. Firfallythe provision of the com-
putational power, parallelisation is under examination.

1. How motion of aparticle is affected by its own mass and the emitted radiation

A particle, ofz* coordinates, follows the geodesic given by

Du* du ., .,

=g U =0, 1)
wherer, bl"ffv, u® = dz*/dr are the proper time, Chridtel symbol and four-velocity
in the background (b) metrig,,, respectively. Let us now consider the same particle

moving in a perturbed metric.
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In the restricted two-body problem, Blanchet et al. (2011, particle infinitesi-
mal size implies that the perturbations diverge at the garitiself.| Detweiler & Whiting
(2003) adapted Dirac’s approach to the self-force equatiba MiSaTaQuWa equation
from[Mino et al. (1997); Quinn & Wald (1997). In flat spacetintiee radiative Green
function is obtained by subtracting the singular contidout half-advanced plus half-
retarded, from the retarded Green function. The singuldrdmes not exert any force
on the particle, upon which only the regular field acts. Invedrspacetime, the at-
tainment of the radiative Green function passes througlnttiasion of an additional,
purposely built, functiorH. This approach emphasises that the motion is a geodesic of
the full (f) metricg,, = gw+hffv wherehf}v is the radiative part of the perturbations, and
it implies two notable features: the regularity of the rad@&field and the avoidance of
any non-causal behaviour. The radiatReomponent is conceptually given by

: 1 1
R = Ret- Sing = Ret-— E[Ret+ Adv - H] = E[Ret— Adv + H] , (2)

where thead hocfunctionH is defined to agree with the advanced Green function when
the particle is in the future of the evaluation poiht £ Adv); and to the retarded Green
function when the patrticle is in the past of the evaluatiomp(H = Ret), but difers
from zero in the intermediate values of the world-line adrsihe light-cone. Thus, the
radiative component includes the state of motion at all $ifpréor to the advanced time
and it is not a representation of the physical field, but radiian dtective field. Indeed,
H goes to zero when the evaluation point coincides with thégbaiposition.

We definez® = ¥ + AZ* as the coordinates of the particle in the full metric. The
geodesic is given by

DI*  dO
o " e =0, 3

wherea2, fl"gv, 0% = d2¥/dA are the proper time, Chridiel symbol and four-velocity

in the full metric, respectively. We wish to compute théfelience between the two
geodesics, knowing that the final equation of motion of theigda in the perturbed

background is given bgota = D?2*/dr? + D?AZ* /dr?. Obviously, the gauge freedom
allows to choose a comoving coordinate frame where no aetie occurs. After

some considerable manipulation, we get

D2AZ*

— R v
e gy = g U7 (4)

—Ry5, WAL ——(g“ﬁ +udP)(2hR
| S —

Background geodesic deviation

Self-acceleration MiSaTaQuWa

Stemmed from geodesic principles, an exact geodesic dmviatjuation at first order
is obtained by subtracting the background from the pertlimpetion, equation{4).
The first right-hand side term depends on the backgroundienethile the second
depends upon the perturbations generated by the particdds maand it is the non-
trivial MiSaTaQuWa self-acceleration. Gralla & Wald (2)G8Iduce that a first order
perturbation scheme will let grow away from the exact solutat late times, and that
no different destiny will occur to a second or higher order schensvext later times.
They assert that it is preferable i) to drop searching higiheer self-force expressions;
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i) to evolve the trajectory by continuously and iterativabplying the correction given
by the second term, while disregarding the first term.

The self-force is defined in the harmonic or de Donder (dD)ggawhere the
ten metric components aren’t combined into a wave equadi®im the Regge-Wheeler
(RW) gauge. But, computation in other gauges, Barack & @@(2, it is often not pos-

sible, as the variation due to the change from dD to a new gé(BQeSngeﬁ"G) does

not admit a well defined value. One exception is constitutedhk radial trajectory,
where the two self-forces (dD and RW gauges) can be made.€ebfoalregularisation
process subtracts the diverging or singular part (repteddoy the regularisation pa-
rametersAf, B*,C%, D?, which are gauge independent, and to be computed in the dD
gauge) from the full perturbations, following

o©) _ N\ (RO _ poy _po_ oo .

Fo = > (FU&Y - AL -B" —C"/L) - D", 5)
=0

whereL = ¢ + 1, ¢ indicating the mode, and represents the two sides at the particle

coordinate. For the non-adiabatic radial fall (radial cleater and particle position in
the background;;), in RW gauge and in coordinate time, the expression cooredipg

to the self-force is given by Spallicci & Aoudia (2004)

AF;(AQZ—A‘;L—B‘*—@/L)—EQ : (6)

whereA?, B*, C*, D* are derived from equatidd 5 and the corresponding untildgel r
ularisation parameters, and

AL - [2¢+1 1 rZHiZt B MH! . f3—§H‘ 2 4 Hiz,t_MHf :
=2 47 |r—2M|2(0-2M) r-2M £Lritpo g7 R 2 I

t
+r - 2M I:ZMHg + (r _ 2M)H12Yr H[ }} s

()

r r2 2r L

beingM the black hole mass, the particle veIocityH{ , perturbations (o€° continu-
ity class) drawn by the gauge-invariant Moncrief wave fiorcty. The latter is derived
from the Regge-Wheeler-Zerilli wave equatiorf (potential,r* tortoise coordinate)

02 02
~ot2 - or+2

- vf(r)] yi(rt) = Fns (v = rp(t) + Gf(r)aﬁr(s(r —rp() . (8)

The perturbations, and thereldy, depend upomn the mass of the particle-star.
The back-action shows as a correctitmn, that isr(t) = rp(t) + Arp(t), and it obeys to
at-ODE, corresponding to equatibh 4

Ai;p = AO(g,uv, rp, rp)Arp + Al(gﬂy, rp, fp)Al’p + AZ(hyv’ I’p, rp) . (9)

The iterative approach, figuié 1, demands an accurate mgiatation of equation
[@. Firstly, for an infinitesimal time step\o andA; vanish. Secondly, th&, parameter
is to be computed on the new trajectory: inde®d, represents here theftiirence with
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Figure 1. Iteration scheme for
computation of the evolving orbit. Figure 2.  Fourth order scheme.

the trajectory computed at the previous integration sted, r®ot anymore the back-
ground trajectory at start. Thirdly, each single iteratedifoon and velocity may be
identified with the coordinates of a particle possessingstimae values and moving
on a - to be determined - geodesic. This approach sums uptétsecomputed on
successive osculating orbits, i.e. stretches of geodesics

2. Thealgorithm '

Classical finite diference methods have to be adapted to deal with the discaptofu
the wave functiony and its derivatives on the trajectory(t) due to the infinitesimal
size of the particle. Analytically derived jump conditions ¢ and derivatives are
used as guideline and reference throughout the integraiiomdia & Spallicai (2011);
RRitter et al.|(201/1). Fourth order accuracyywhas been reached to compute the metric
perturbations and their first derivatives (thereby impdythird order derivatives af)

U = Z[qu//f + > aTM™Ramy 1| + O®) (10)
i n+m<4
[Q™],= lm Q™ - lm Q"™ , (11)
r=rp(ts) r—rp(te)
ifre(t) <rpt): G =0, elsedi = ¢ , (12)

for i ={B,C...J}, Q"™(r,t) = aP.oM!(r, 1), Ti(”’m) are Taylor cofficients andg; are
constants depending on the way the particle crosses tts Egjurd 2.

3. Parallel computing

Parallelisation allows better performance, in terms obliggon and processing time,
and it is an evident aid for the computation of orbital eviolnt At this preliminary
stage though, only the non-iterative code has been workel. Uhe availability of par-
allel hardware doesn’t imply an immediate exploitationtefdapacity, as a simulation
program often needs refurbishment. The original sequeait@rithm was improved
by using loop unrolling and cache optimisation. The modifiecsion runs seven times
faster, and it is used as standard reference. The followargllel techniques have
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been investigated and tested on a machine equipped withuad-core AMD Opteron
running at 2.3GHz.

SSE instructions. The SSE (Streaming SIMD - Single Instruction, Multiple Bat
Extension) technology works with double-precision flogtpoint instructions applied
onto a single arithmetical operation simultaneously, thasbling the computational
efficiency. However, it requires to explicitly deal with the ogibons between the main
memory and the processor SSE registers, while taking cateeahemory alignment
constraints for iiciency. This implies the redesign and rewriting of the alfons for
those instructions. On one core, the SSE implementatioeeha 1.6 speedup over
the reference implementation. A speedup of 2 wasn't actiesiace the bus between
the main memory and the processor was left unaltered, andstumable to feed the
SSE registers quickly enough to reach peak performance.

SSE instructions + Multi-Threading. The exploitation of multiple processors
or cores in a shared-memory computer, requires setting ngading mechanisms to
assign the workload. In our case, this is rather straigitdiod as the elements of the
domain can be computed separately. However, a linear speealsn’t achieved, since
threads need to be synchronised at the end of each main &zafioh. Indeed, speedup
doesn’t scale linearly with the number of processors. Usiigipt processors, we get
a speedup of 4 over the reference implementation and of Z26tbe mono-core SSE
implementation.

CUDA.. GPUs (Graphic Processing Unit) are massive multi-coregssors (more
than 1500 cores in the latest cards) integrated into a siclgje CUDA (Compute
Unified Device Architecture) is a practical architecture general-purpose computing
on Nvidia GPUs. Porting our algorithm to CUDA, it requiressjoecify how to split
the work over the cores. Frequent synchronisations ard¢itignidue to the very large
number of cores. We also have to manage the data movemewsdnethe main and
the GPU memories. The CUDA implementation is currently iogoess, and thereby
not yet fully optimised. With a Nvidia GTX680 card with 1536res, the preliminary
implementation achieves a speedup of 5.6 over the referemdementation. However,
there is still room for considerable optimisation.

4. Conclusions

We have developed some theoretical and computing toolgddyisg bodies motion
under self-force, for a specific case. Generalisation terotion-adiabatic orbits are
under consideration. Details are given in published andmunyig references.
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