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Abstract. We intend to develop part of the theoretical tools needed forthe detection
of gravitational waves coming from the capture of a compact object, 1-100M⊙, by a
Supermassive Black Hole, up to a 109 M⊙, located at the centre of most galaxies. The
analysis of the accretion activity unveils the star population around the galactic nuclei,
and tests the physics of black holes and general relativity.The captured small mass
is considered a probe of the gravitational field of the massive body, allowing a precise
measurement of the particle motion up to the final absorption. The knowledge of the
gravitational signal, strongly affected by the self-force - the orbital displacement due to
the captured mass and the emitted radiation - is imperative for a successful detection.
The results include a strategy for wave equations with a singular source term for all
type of orbits. We are now tackling the evolution problem, first for radial fall in Regge-
Wheeler gauge, and later for generic orbits in the harmonic or de Donder gauge for
Schwarzschild-Droste black holes. In the Extreme Mass Ratio Inspiral, the determina-
tion of the orbital evolution demands that the motion of the small mass be continuously
corrected by the self-force, i.e. the self-consistent evolution. At each of the integra-
tion steps, the self-force must be computed over an adequatenumber of modes; further,
a differential-integral system of general relativistic equations is to be solved and the
outputs regularised for suppressing divergences. Finally, for the provision of the com-
putational power, parallelisation is under examination.

1. How motion of a particle is affected by its own mass and the emitted radiation

A particle, ofzα coordinates, follows the geodesic given by

Duα

dτ
=

duα

dτ
+

b
Γ
α
µνu

µuν = 0 , (1)

whereτ, b
Γ
α
µν, uα ≡ dzα/dτ are the proper time, Christoffel symbol and four-velocity

in the background (b) metricgµν, respectively. Let us now consider the same particle
moving in a perturbed metric.
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In the restricted two-body problem, Blanchet et al. (2011),the particle infinitesi-
mal size implies that the perturbations diverge at the particle itself. Detweiler & Whiting
(2003) adapted Dirac’s approach to the self-force equation- the MiSaTaQuWa equation
from Mino et al. (1997); Quinn & Wald (1997). In flat spacetime, the radiative Green
function is obtained by subtracting the singular contribution, half-advanced plus half-
retarded, from the retarded Green function. The singular part does not exert any force
on the particle, upon which only the regular field acts. In curved spacetime, the at-
tainment of the radiative Green function passes through theinclusion of an additional,
purposely built, functionH. This approach emphasises that the motion is a geodesic of
the full (f) metricĝµν = gµν+hR

µν wherehR
µν is the radiative part of the perturbations, and

it implies two notable features: the regularity of the radiative field and the avoidance of
any non-causal behaviour. The radiativeRcomponent is conceptually given by

R= Ret− Sing= Ret−
1
2

[Ret+ Adv − H] =
1
2

[Ret− Adv + H] , (2)

where thead hocfunctionH is defined to agree with the advanced Green function when
the particle is in the future of the evaluation point (H = Adv); and to the retarded Green
function when the particle is in the past of the evaluation point (H = Ret), but differs
from zero in the intermediate values of the world-line outside the light-cone. Thus, the
radiative component includes the state of motion at all times prior to the advanced time
and it is not a representation of the physical field, but rather of an effective field. Indeed,
H goes to zero when the evaluation point coincides with the particle position.

We define ˆzα = zα + ∆zα as the coordinates of the particle in the full metric. The
geodesic is given by

Dûα

dλ
=

dûα

dλ
+

f
Γ
α
µνû

µûν = 0 , (3)

whereλ, f
Γ
α
µν, ûα ≡ dẑα/dλ are the proper time, Christoffel symbol and four-velocity

in the full metric, respectively. We wish to compute the difference between the two
geodesics, knowing that the final equation of motion of the particle in the perturbed
background is given byatotal = D2zα/dτ2

+ D2
∆zα/dτ2. Obviously, the gauge freedom

allows to choose a comoving coordinate frame where no acceleration occurs. After
some considerable manipulation, we get

D2
∆zα

dτ2
= −Rµβν

αuµ∆zβuν
︸             ︷︷             ︸

Background geodesic deviation

−
1
2

(gαβ + uαuβ)(2hR
µβ;ν − hR

µν;β)u
µuν

︸                                        ︷︷                                        ︸

S el f−acceleration MiS aTaQuWa

. (4)

Stemmed from geodesic principles, an exact geodesic deviation equation at first order
is obtained by subtracting the background from the perturbed motion, equation (4).
The first right-hand side term depends on the background metric, while the second
depends upon the perturbations generated by the particle massm, and it is the non-
trivial MiSaTaQuWa self-acceleration. Gralla & Wald (2008) adduce that a first order
perturbation scheme will let grow away from the exact solution at late times, and that
no different destiny will occur to a second or higher order scheme ateven later times.
They assert that it is preferable i) to drop searching higherorder self-force expressions;
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ii) to evolve the trajectory by continuously and iteratively applying the correction given
by the second term, while disregarding the first term.

The self-force is defined in the harmonic or de Donder (dD) gauge, where the
ten metric components aren’t combined into a wave equation,as in the Regge-Wheeler
(RW) gauge. But, computation in other gauges, Barack & Ori (2001), it is often not pos-
sible, as the variation due to the change from dD to a new gauge(G), δF(dD→G)

sel f does
not admit a well defined value. One exception is constituted by the radial trajectory,
where the two self-forces (dD and RW gauges) can be made equal. The regularisation
process subtracts the diverging or singular part (represented by the regularisation pa-
rametersAα±, B

α,Cα,Dα, which are gauge independent, and to be computed in the dD
gauge) from the full perturbations, following

Fα(G)
self =

∞∑

ℓ=0

(

Fαℓ(G)
±full − Aα±L − Bα −Cα/L

)

− Dα , (5)

whereL = ℓ + 1, ℓ indicating the mode, and± represents the two sides at the particle
coordinate. For the non-adiabatic radial fall (radial coordinater and particle position in
the background,rp), in RW gauge and in coordinate time, the expression corresponding
to the self-force is given by Spallicci & Aoudia (2004)

Λ2 =

∞∑

ℓ=0

(

Λ
ℓ
±2 − Ãα±L − B̃α − C̃α/L

)

− D̃α , (6)

whereÃα±, B̃
α, C̃α, D̃α are derived from equation 5 and the corresponding untilded reg-

ularisation parameters, and

Λ
ℓ
±2 =

√

2ℓ + 1
4π






1
r − 2M





r2Hℓ
±2,t

2(r − 2M)
−

MHℓ
1

r − 2M
− rH ℓ

±1,r



 ṙ
3
p −

3
2

Hℓ
±2,r ṙ

2
p − 3





Hℓ
±2,t

2
−

MHℓ
1

r2



 ṙp

+
r − 2M

r





2MHℓ
2

r2
+

(r − 2M)Hℓ
±2,r

2r
− Hℓ

±1,t









, (7)

beingM the black hole mass, ˙rp the particle velocity,Hℓ
1,2 perturbations (ofC0 continu-

ity class) drawn by the gauge-invariant Moncrief wave function ψ. The latter is derived
from the Regge-Wheeler-Zerilli wave equation (Vℓ potential,r∗ tortoise coordinate)

[

−
∂2

∂t2
+

∂2

∂r∗2
− Vℓ(r)

]

ψℓ(r, t) = Fℓ(r)δ
(

r − rp(t)
)

+Gℓ(r)
∂

∂r
δ
(

r − rp(t)
)

. (8)

The perturbations, and therebyΛ2, depend uponm the mass of the particle-star.
The back-action shows as a correction∆rp, that is ˆrp(t) = rp(t) + ∆rp(t), and it obeys to
a t-ODE, corresponding to equation 4

∆r̈p = Λ0(gµν, rp, ṙp)∆ṙp + Λ1(gµν, rp, ṙp)∆rp + Λ2(hµν, rp, ṙp) . (9)

The iterative approach, figure 1, demands an accurate reinterpretation of equation
9. Firstly, for an infinitesimal time step,Λ0 andΛ1 vanish. Secondly, theΛ2 parameter
is to be computed on the new trajectory: indeed,∆rp represents here the difference with
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ψℓ(rp(t), t)

Hℓ
1
, Hℓ

2

∆rp

rnew
p = rold

p +∆rp

Λ2

1

Figure 1. Iteration scheme for
computation of the evolving orbit.
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Figure 2. Fourth order scheme.

the trajectory computed at the previous integration step, and not anymore the back-
ground trajectory at start. Thirdly, each single iterated position and velocity may be
identified with the coordinates of a particle possessing thesame values and moving
on a - to be determined - geodesic. This approach sums up the effects computed on
successive osculating orbits, i.e. stretches of geodesics.

2. The algorithm

Classical finite difference methods have to be adapted to deal with the discontinuity of
the wave functionψ and its derivatives on the trajectoryrp(t) due to the infinitesimal
size of the particle. Analytically derived jump conditionson ψ and derivatives are
used as guideline and reference throughout the integration, Aoudia & Spallicci (2011);
Ritter et al. (2011). Fourth order accuracy onψ has been reached to compute the metric
perturbations and their first derivatives (thereby implying third order derivatives ofψ)

ψℓA =
∑

i



qiψ
ℓ
i +

∑

n+m<4

q̃iT
(n,m)
i [∂n

r∗∂
m
t ψ

ℓ]σ



 + O(h5) , (10)

[Qnmℓ]σ = lim
r→r+p(tσ)

Qnmℓ − lim
r→r−p(tσ)

Qnmℓ , (11)

if r∗(ti) < r∗p(ti) : q̃i = 0 , elseq̃i = qi , (12)

for i = {B,C . . . J}, Qnmℓ(r, t) = ∂n
r∗∂

m
t ψ

ℓ(r, t), T(n,m)
i are Taylor coefficients andqi are

constants depending on the way the particle crosses the cells, Figure 2.

3. Parallel computing

Parallelisation allows better performance, in terms of resolution and processing time,
and it is an evident aid for the computation of orbital evolution. At this preliminary
stage though, only the non-iterative code has been worked upon. The availability of par-
allel hardware doesn’t imply an immediate exploitation of its capacity, as a simulation
program often needs refurbishment. The original sequential algorithm was improved
by using loop unrolling and cache optimisation. The modifiedversion runs seven times
faster, and it is used as standard reference. The following parallel techniques have
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been investigated and tested on a machine equipped with two quad-core AMD Opteron
running at 2.3GHz.

SSE instructions. The SSE (Streaming SIMD - Single Instruction, Multiple Data -
Extension) technology works with double-precision floating-point instructions applied
onto a single arithmetical operation simultaneously, thusdoubling the computational
efficiency. However, it requires to explicitly deal with the operations between the main
memory and the processor SSE registers, while taking care ofthe memory alignment
constraints for efficiency. This implies the redesign and rewriting of the algorithms for
those instructions. On one core, the SSE implementation achieves a 1.6 speedup over
the reference implementation. A speedup of 2 wasn’t achieved, since the bus between
the main memory and the processor was left unaltered, and it was unable to feed the
SSE registers quickly enough to reach peak performance.

SSE instructions + Multi-Threading. The exploitation of multiple processors
or cores in a shared-memory computer, requires setting up threading mechanisms to
assign the workload. In our case, this is rather straightforward as the elements of the
domain can be computed separately. However, a linear speedup wasn’t achieved, since
threads need to be synchronised at the end of each main loop iteration. Indeed, speedup
doesn’t scale linearly with the number of processors. Usingeight processors, we get
a speedup of 4 over the reference implementation and of 2.5 over the mono-core SSE
implementation.

CUDA. GPUs (Graphic Processing Unit) are massive multi-core processors (more
than 1500 cores in the latest cards) integrated into a singlechip. CUDA (Compute
Unified Device Architecture) is a practical architecture for general-purpose computing
on Nvidia GPUs. Porting our algorithm to CUDA, it requires tospecify how to split
the work over the cores. Frequent synchronisations are limiting, due to the very large
number of cores. We also have to manage the data movements between the main and
the GPU memories. The CUDA implementation is currently in progress, and thereby
not yet fully optimised. With a Nvidia GTX680 card with 1536 cores, the preliminary
implementation achieves a speedup of 5.6 over the referenceimplementation. However,
there is still room for considerable optimisation.

4. Conclusions

We have developed some theoretical and computing tools for studying bodies motion
under self-force, for a specific case. Generalisation to other non-adiabatic orbits are
under consideration. Details are given in published and upcoming references.

Acknowledgments. V. Allombert, A. Blanchard, A. Carteron, J. Legaux, and S.
Limet (LIFO) are acknowledged for their contribution to parallel computing.
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