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Abstract
We are interested in nonlinear diffusions in which the own law inter-

venes in the drift. This kind of diffusions corresponds to the hydrodynam-
ical limit of some particle system. One also talks about propagation of
chaos. It is well-known, for McKean-Vlasov diffusions, that such a propa-
gation of chaos holds on finite-time interval. However, it has been proven
that the lack of convexity of the external force implies that there is no
uniform propagation of chaos if the diffusion coefficient is small enough.
We here aim to establish a uniform propagation of chaos even if the ex-
ternal force is not convex, with a diffusion coefficient sufficiently large.
The idea consists in combining the propagation of chaos on a finite-time
interval with a functional inequality, already used by Bolley, Gentil and
Guillin, see [BGG12a, BGG12b]. Here, we also deal with a case in which
the system at time t = 0 is not chaotic and we show under easily checked
assumptions that the system becomes chaotic as the number of particles
goes to infinity together with the time. This yields the first result of this
type for mean field particle diffusion models as far as we know.

Introduction
We are interested in some nonlinear processes in Rd defined by an equation in
which the own law of the process intervenes in the drift. An example of such
diffusion is the McKean-Vlasov one:

Xt = X0 + σBt −
∫ t

0

∇V (Xs) ds−
∫ t

0

(
∇F ∗ L (Xs)

)
(Xs)ds , (I)

where V and F respectively are called the confinement and the interaction
potentials and {Bt ; t ≥ 0} is a d-dimensional Wiener process. The notation ∗
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is used for denoting the convolution.
The infinitesimal generator of Diffusion (I) therefore is

Aµ :=
σ2

2
∆µ−∇. {[∇V +∇F ∗ µ]µ} .

The associated semi-group is denoted by (Pt)t≥0. In other words, one has µt =
µ0Pt where µt := L (Xt). We notice that Xt, µt, Pt and A depend on σ. We do
not write it for simplifying the reading.
This equation is nonlinear in the sense of McKean, see [McK67, McK66].
It is well-known, see [McK67], that the law L (Xt) is absolutely continuous
with respect to the Lebesgue measure for all t > 0, provided some regularity
hypotheses on V and F . Moreover, its density, which is denoted by ut, satisfies
the so-called granular media equation,

∂

∂t
ut = ∇.

{
σ2

2
∇ut + (∇V +∇F ∗ ut)ut

}
.

The setting of this work is restricted to the McKean-Vlasov case. However,
we could apply to more general hypotheses. Let us notice that we do not
assume any global convex properties on the confinement potential nor on the
interaction one. Under easily checked assumptions, Diffusion (I) corresponds to
the hydrodynamical limit of the following particle system

Xi
t = Xi

0 + σBit −
∫ t

0

∇V (Xi
s

)
+

N∑
j=1

1

N
∇F

(
Xi
s −Xj

s

) ds , (II)

{
Bit ; t ≥ 0

}
being N independent d-dimensional Wiener processes. We also as-

sume that
{
Xi

0 ; i ∈ N∗
}
is a family of independent random variables, identically

distributed with common law L (X0) (and independent from the Brownian mo-
tions). The particles therefore are exchangeable. We notice that X1

t , · · · , XN
t

depend on N and on σ. We do not write it for simplifying the reading. We here
focus on the first diffusion. By µ1,N

t , we denote the law at time t of the diffusion
X1.
One says, in this work, that simple propagation of chaos holds on interval [0;T ]
with T > 0 if we have the limit

lim
N→+∞

sup
0≤t≤T

W2

(
µ1,N
t ; µ0Pt

)
= lim
N→+∞

sup
0≤t≤T

W2

(
µ1,N
t ; µt

)
= 0 ,

W2 standing for the Wasserstein distance . This means that X1 is a good
approximation of Diffusion (I) as N goes to infinity.

A consequence of the uniform propagation of chaos for the nonlinear diffusion
is the uniqueness of the invariant probability µσ and the weak convergence
toward this measure. However, without global convex properties, it is proven in
[HT10, Tug13c, Tug12] that there is non-uniqueness of the invariant probabilities
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under simple assumptions, provided that the diffusion coefficient σ is sufficiently
small.
But, as pointed out in [Tug13c], if σ is large enough, we have a unique invariant
probability. The question thus is: does uniform propagation of chaos hold if σ
is sufficiently large? Also, can we reciprocally use the convergence toward the
unique invariant probability to obtain this uniform propagation of chaos?
We positively answer to the two questions by using the simple propagation of
chaos and a so-called WJ-inequality already used in [BGG12b].

The analysis of interaction jump particle models clearly differs from the more
traditional coupling analysis of the McKean-Vlasov diffusion models developed
in the present article. The common feature is to enter the stability properties of
the limiting nonlinear semigroup into the estimation of the propagation of chaos
properties of the finite particle systems, to deduce Lp-mean error estimates of
order 1/

√
N
δ
, for any 0 < δ < 1 (cf. for instance theorem 2.11 in [DMM00], at

the level of the empirical processes). In our context using these techniques, we
obtain a variance and a W 2

2 -estimate of order 1/N δ, for some 0 ≤ δ < 1. We
underline that in the context of Feynman-Kac particle models, the order 1/N
can be obtained under stronger mixing conditions, using backward semigroup
techniques. Thus, we conjecture that this decay rate is also met in our context.

The other subject of the paper is the creation of chaos. We show that under
suitable assumptions, there is creation of chaos then propagation of this chaos
for a mean-field system of particles without assuming that the initial random
variables are independent. In other words, the particles become independent as
the time t goes to infinity if the number of particles is large.

The existence problem of a solution to (I) is not investigated here. However,
we take assumptions which ensure that there exists a unique strong solution
(Xt)t≥0. The method consists in applying a fixed-point theorem, see [BRTV98,
HIP08].

In a first section, we give the assumptions of the paper and its main results.
The second section is devoted to the framework of the WJ-inequality and we
establish some functional inequalities based on the work in [BGG12a, BGG12b].
In Section 3, we provide some results on the simple propagation of chaos. In
Section 4, we prove the main results about the uniform propagation of chaos
when the coefficient diffusion is sufficiently large. Section 5 is devoted to the
proofs of the results about the creation of chaos.

1 Hypotheses and main results
We now present the exact assumptions of the paper on the potentials V and F
and on the initial measure of probability, µ0. First, we give the hypotheses on
the confining potential V .

Assumption (A-1): V is a C2-continuous function.
Assumption (A-2): For all λ > 0, there exists Rλ > 0 such that ∇2V (x) > λ,

3



for any ||x|| ≥ Rλ.
We can observe that under assumptions (A-1) and (A-2), there exist a convex
potential V0 and θ ∈ R such that V (x) = V0(x)− θ

2 ||x||
2.

Assumption (A-3) The gradient ∇V is slowly increasing: there exist m ∈ N∗

and C > 0 such that ||∇V (x)|| ≤ C
(

1 + ||x||2m−1
)
, for all x ∈ R.

This assumption together with the same kind of assumptions on F ensure us
that there is a global solution if some moments of µ0 are finite.

Let us present now the assumptions on the interaction potential F :
Assumption (A-4): There exists a function G from R+ to R such that F (x) =
G (||x||).
Assumption (A-5): G is an even polynomial function such that deg(G) =:
2n ≥ 2 and G(0) = 0.
This hypothesis is used for simplifying the study of the invariant probabilities.
Indeed, see [HT10, Tug13c, Tug12], the research of an invariant probability is
equivalent to a fixed-point problem in infinite dimension. Nevertheless, under
Assumption (A-5), it reduces to a fixed-point problem in finite dimension.
Assumption (A-6): And, lim

r→+∞
G′′(r) = +∞.

Immediately, we deduce the existence of an even polynomial and convex func-
tion G0 such that F (x) = G0(||x||)− α

2 ||x||
2, α being a real constant.

Assumption (A-7) there exist a strictly convex function Θ such that Θ(y) >
Θ(0) = 0 for all y ∈ Rd and p ∈ N such that the following limit holds for any

y ∈ Rd: lim
r→+∞

V (ry)

r2p
= Θ(y).

Assumption (A-8) the following inequality holds: p > 2n.

We also need hypotheses on the initial measure µ0:
Assumption (A-9) the 8q2th moment of the measure µ0 is finite with q :=
max {m,n}.
Assumption (A-10) the measure µ0 admits a C∞-continuous density u0 with
respect to the Lebesgue measure. And, the entropy −

∫
Rd u0(x) log(u0(x))dx is

finite.
The last two hypotheses concern the law µ0. Hypothesis (A-9) is required to
prove the existence of a solution to the nonlinear stochastic differential equation
(I), see [HIP08, BRTV98, CGM08]. And, Hypothesis (A-10) is necessary to ap-
ply the result in [AGS08] which characterizes the dissipation of the Wasserstein
distance. This hypothesis was also assumed in order to get the weak conver-
gence of the law of Xt as t goes to infinity, see [Tug13a].
One says that the set of Assumptions (A) is satisfied if Hypotheses (A-1)–(A-10)
are assumed.

Under Assumptions (A-1)–(A-10), Equation (I) admits a unique strong so-
lution. Indeed, the assumptions of Theorem 2.13 in [HIP08] are satisfied: ∇V
and ∇F are locally Lipschitz, G′ is odd, ∇F grows polynomially, ∇V is contin-
uously differentiable and there exists a compact K such that ∇2V is uniformly
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positive on Kc. Moreover, we have the following inequality for a positive M0:

max
1≤j≤8q2

sup
t∈R+

E
[
||Xt||j

]
≤M0 . (1.1)

In the following, we use the long-time convergence of the measure µt toward an
invariant probability µ and the rate of convergence. We need a complementary
hypothesis:
Assumption (B) Diffusion (I) admits a unique invariant probability µ. More-
over, there exists Cσ > 0 such that

W2 (µt;µ) ≤ e−CσtW2 (µ0;µ)

for any initial measure µ0 which is absolutely continuous with respect to the
Lebesgue measure and with finite entropy.
Under the Hypotheses (A)-(B), the probability measure µt converges exponen-
tially for Wasserstein distance to the unique invariant probability µ as soon as
the initial measure µ0 is absolutely continuous with respect to the Lebesgue
measure and with finite entropy.
Let us briefly justify why we can extend this inequality by starting from a Dirac
measure: µ0 = δx0

with x0 ∈ R. To do so, we consider a sequence of probabil-
ity measures with finite entropy

(
µ
(n)
0

)
n≥1

which converges for the Wasserstein

distance to µ0. By µt (respectively µ
(n)
t ), we denote the law at time t of the

McKean-Vlasov diffusion starting from the law µ0 (respectively the law µ
(n)
0 ).

Then, we have :

W2 (µt;µ) ≤W2

(
µt;µ

(n)
t

)
+ W2

(
µ
(n)
t ;µ

)
.

By applying the inequality in Hypothesis (B) to µ(n)
t , we get

W2 (µt;µ) ≤W2

(
µt;µ

(n)
t

)
+ e−CσtW2

(
µ
(n)
0 ;µ

)
.

By making a coupling, one can easily show that the quantity W2

(
µt;µ

(n)
t

)
converges to 0. Finally, since W2

(
µ
(n)
0 ;µ0

)
goes to 0 as n tends to infinity, we

obtain the formula
W2 (µt;µ) ≤ e−CσtW2 (µ0;µ) .

Consequently, µt goes to µ as t goes to infinity.
We now give the main results of the paper.

Theorem A: We assume that V , F and µ0 satisfy the set of Hypotheses (A).
Thus, there exists σc > 0 such that σ > σc implies Diffusion (I) admits a
unique invariant probability µσ. Moreover, we have the following convergence
with exponential decay if σ > σc:

W2 (µt ; µσ) ≤ exp [−C(σ)t]W2 (µ0 ; µσ) ,
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C(σ) being a positive constant such that C(σ) ≥ |α|+ |θ|.
Proposition B: We assume that V , F and µ0 satisfy the set of Hypotheses (A).
Let X1

0 , · · · , XN
0 be N random variables with common law µ0. We do not assume

these variables to be independent but they are exchangeable. We consider the
two following particle systems:

Xi
t = Xi

0 + σBit −
∫ t

0

∇V
(
Xi
s

)
ds−

∫ t

0

∇F ∗ ηNs
(
Xi
s

)
ds ,

where ηNs :=
(

1
N

∑N
j=1 δXj0

)
Ps and

Zit = Xi
0 + σBit −

∫ t

0

∇V
(
Zis
)
ds− 1

N

N∑
j=1

∫ t

0

∇F
(
Zis − Zjs

)
ds ,

B1, · · · , BN being N independent Brownian motions (and independent from the
initial random variables). Then, for any T > 0, we have the following inequality:

sup
t∈[0;T ]

E
{∣∣∣∣Xi

t − Zit
∣∣∣∣2} ≤ C(µ0)

(θ + 2α)
2
N

exp [2 (θ + 2α)T ] ,

where C(µ0) is a positive function of
∫
Rd ||x||

8q2
µ0(dx).

Theorem C: We assume that V , F and µ0 satisfy the set of Hypotheses (A).
Also, we assume that the initial random variables are independent. If σ >
σc (where σc is defined in Theorem A) and if −α > θ, we have the uniform
propagation of chaos. In other words, we have the limit

lim
N→+∞

sup
t≥0

W2

(
µt ; µ1,N

t

)
= 0 . (1.2)

Moreover, we can compute the rate of convergence by dealing with ψ(t), where
ψ is defined by

sup
t∈[0;T ]

E
{∣∣∣∣Xi

t − Zit
∣∣∣∣2} ≤ (exp [ψ(T )]√

N

)2

.

In the previous inequality, we are dealing with the notations Xi
t and Zit of Propo-

sition (B).
First case: The quantity C(σ)t

ψ(t) goes to λ ∈ R∗+
⋃
{+∞} as t goes to infinity.

Thus, for all 0 < δ < 1, we have:

lim
N→+∞

N
1

2(1+1/λ)
−δ sup

t≥0
W2

(
µt ; µ1,N

t

)
= 0 . (1.3)

Second case: The quantity C(σ)t
ψ(t) goes to 0 as t goes to infinity. Thus, for all

δ ∈]0; 1[, we have:

lim sup
N→+∞

exp

{
C(σ)ψ−1

[
1

2
(1− δ) log(N)

]}
sup
t≥0

W2

(
µt ; µ1,N

t

)
<∞ . (1.4)
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Let us point out that the assumption −α > θ is purely technical. We also point
out that it has been used in previous work (like in [CMV03]). However, this
was used jointly with the assumption that the center of mass is fixed. And, we
do not know any case in which this last hypothesis is satisfied except if both V ,
F and µ0 are symmetric, which is a very strong restriction.
Let us give a corollary of Theorem C.
Corollary D: Let us assume that V , F and µ0 satisfy the set of Assumptions
(A) and that max {α ; θ} ≤ 0. Let X1

0 , · · · , XN
0 be N random variables with

common law µ0. We do not assume these variables to be independent but they
are exchangeable. For any σ > 0, we have the following uniform propagation of
chaos result:

lim
N→∞

N1−δ sup
t≥0

W2
2

(
µt ; µ1,N

t

)
= 0

for any 0 < δ < 1.

We now give the main results concerning the creation of chaos, when X1
0 =

· · · = XN
0 = x0 ∈ R.

Theorem E: Let f1 and f2 be two Lipschitz-continuous functions. Under the
sets of Assumptions (A) and (B), for all ε > 0, for all T > 0, there exist t0(ε)
and N0(ε) such that

sup
N≥N0(ε)

sup
t∈[t0(ε);t0(ε)+T ]

∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
We can remark that a small covariance implies a phenomenon of chaos. Con-

sequently, we have creation of chaos after time t0(ε). And, there is propagation
of this chaos on an interval of length T .
Theorem F: Let f1 and f2 be two Lipschitz-continuous functions. Under the
sets of Assumptions (A) and (B), if moreover, V and F are convex then, for
all ε > 0, there exist t0(ε) and N0(ε) such that

sup
N≥N0(ε)

sup
t≥t0(ε)

∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
Here, we have a uniform propagation of chaos after the creation of chaos. Let
us remark that, in Theorem E and in Theorem F, we consider only two particles
but we have the same result with any integer k.

We also have results about the empirical measure of the system. In case of
chaos, this measure is close to a measure of the form ν⊗N .
Theorem G: Let f1 and f2 be two Lipschitz-continuous functions. Under the
sets of Assumptions (A) and (B), for all ε > 0, for all T > 0, there exist t1(ε)
and N1(ε) such that

sup
N≥N1(ε)

sup
t∈[t1(ε);t1(ε)+T ]

∣∣Cov
[
ηNt (f1) ; ηNt (f2)

]∣∣ ≤ ε
with ηNt (f) := 1

N

∑N
i=1 fi

(
Xi,N
t

)
. If, moreover, both V and F are convex, we
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have
sup

N≥N1(ε)

sup
t≥t1(ε)

∣∣Cov
[
ηNt (f1) ; ηNt (f2)

]∣∣ ≤ ε
We conjecture that, by using the same technics, one should be able to ob-

tain creation of chaos for more general mean-field models providing that the
hydrodynamical limit is stable in long-time.

2 Functional inequality
Let us give the framework (definitions and basic propositions) of the current
work. For any probability measures on Rd, µ and ν, the Wasserstein distance
between µ and ν is

W2 (µ ; ν) :=

√
inf E

{
||X − Y ||2

}
,

where the infimum is taken over the random variables X and Y with law µ and
ν respectively. The Wasserstein distance can be characterized in the following
way, thanks to Brenier’s theorem, see [Bre91].

Let µ and ν be two probability measures which admit a finite second moment
on Rd. If µ is absolutely continuous with respect to the Lebesgue measure, there
exists a convex function τ from Rd to R such that the following equality occurs
for every bounded test function g:∫

Rd
g(x)ν(dx) =

∫
Rd
g (∇τ(x))µ(dx) .

Then, we write
ν = ∇τ#µ ,

and we have the following equality

W2 (µ ; ν) =

√∫
Rd
||x−∇τ(x)||2 µ(dx) .

The key-idea of the paper is a so-calledWJV,F -inequality. Let us present the ex-
pression that we denote by JV,F (ν | µ) if µ is absolutely continuous with respect
to the Lebesgue measure:

JV,F (ν | µ) :=
σ2

2

∫
Rd

(
∆τ(x) + ∆τ∗ (∇τ(x))− 2d

)
µ(dx) (2.1)

+

∫
Rd
〈∇V (∇τ(x))−∇V (x) ; ∇τ(x)− x〉µ(dx)

+
1

2

∫∫
R2d

〈∇F (Z(x, y))−∇F (x− y) ; Z(x, y)− (x− y)〉µ(dx)µ(dy) ,

with Z(x, y) := ∇τ(x) − ∇τ(y) and where τ∗ denotes the Legendre transform
of τ . Here, we have ν = ∇τ#µ. We now present the transportation inequality,
already used in [BGG12a, BGG12b], on which the article is based.
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Definition 2.1. Let µ be a probability measure on Rd absolutely continuous
with respect to the Lebesgue measure and C > 0. We say that µ satisfies a
WJV,F (C)-inequality if the inequality

CW2
2 (ν ; µ) ≤ JV,F (ν | µ) (2.2)

holds for any probability measure ν on Rd.

In the following, we aim to establish a WJV,F -inequality for an invariant
probability µσ of Diffusion (I). However, it is well known that µσ is absolutely
continuous with respect to the Lebesgue measure. Consequently, we can apply
Brenier’s theorem. So, the WJV,F -inequality consists in obtaining an inequality
on the convex function τ from Rd to R.
We now give a result which explains why a WJV,F -inequality has consequences
on the long-time behavior of McKean-Vlasov diffusions (I). It is similar to
[BGG12b, Proposition 1.1].

Proposition 2.2. Let V and F be two functions satisfying Hypotheses (A-1)–
(A-8). Let µ0 and ν0 be two probability measures on Rd absolutely continuous
with respect to the Lebesgue measure. Set (Xt)t∈R+

and (Yt)t∈R+
two McKean-

Vlasov diffusions (I) starting with law µ0 and ν0. By µt (respectively νt), we
denote the law of Xt (respectively Yt).
Therefore, we have the inequality

1

2

d

dt
W2

2 (µt ; νt) ≤ −JV,F (νt | µt) . (2.3)

Consequently, if µσ is an invariant probability of Diffusion (I) and if µσ
satisfies a WJV,F (C)-inequality, by combining Ineq. (2.2) and Ineq. (2.3), we
obtain

1

2

d

dt
W2

2 (µt ; µσ) ≤ −JV,F (µt | µσ) ≤ −CW2
2 (µt ; µσ) ,

for any µ0 absolutely continuous with respect to the Lebesgue measure. Hence,
by integration in time, W2 (µt;µ

σ) ≤ e−CtW2 (µ0;µσ).
In [BGG12b], Bolley, Gentil and Guillin suggested a method to obtain aWJV,F -
inequality in the non-convex case. But, we proceed in a slightly different way.
We first use their result which provides a WJV0,0 (Cσ)-inequality. Then, we
prove that Cσ goes to infinity as σ goes to infinity. Finally, we remark that
JV,F (µ | µσ) ≥ JV0,0 (µ | µσ)− (max {α ; 0}+ θ)W2

2 (µ ;µσ) for any measure µ.
In the following, µσ denotes an invariant probability of Diffusion (I). We know
that such a measure exists, see [Tug12, Proposition 2.1]. Moreover, the measure
satisfies the following implicit equation

µσ(dx) :=
exp

{
− 2
σ2W

σ(x)
}∫

Rd exp
{
− 2
σ2Wσ(y)

}
dy

dx

with Wσ(x) := V (x) + F ∗ µσ(x). Let us now give a WJV0,0-inequality on the
measure µσ.
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Proposition 2.3. We assume that V , F and µ0 satisfy the set of Hypotheses
(A). Thus, the measure µσ satisfies a WJV0,0 (Cσ)-inequality where the constant
Cσ is defined by

Cσ := max
R>0

Cσ(R) > 0

with Cσ(R) := min

{
K(R)

3
;

σ2

72R2
e−

2
σ2
S(R) ;

K(R)

3

3d − 2d

2d
e

2
σ2

(I(R)−S(R))

}
,

K(R) := inf
||x||≥R

∇2V0(x) , I(R) := inf
||x||≤2R

Wσ(x) and S(R) := sup
||x||≤3R

Wσ(x) .

The proof is left to the reader and consists in a simple adaptation of the proof
of [BGG12a, Proposition 3.4] that is to say [BGG12a, Section 5]. Let us mention
that we do not need to apply the whole set of assumptions. Indeed, to prove this
result, we simply use Hypotheses (A-1)-(A-2)-(A-5). More precisely, we need
the potential Wσ to be C1-continuous (which is an immediate consequence of
(A-1) and (A-5)). We also need the function V0 to be convex at infinity, which
is proven by (A-2).

Corollary 2.4. We assume that V , F and µ satisfy the set of Hypotheses (A).
Therefore, we have the following inequality:

(Cσ −max {α ; 0} − θ)W2
2 (µ ; µσ) ≤ JV,F (µ | µσ) . (2.4)

Particularly, if Cσ−max {α ; 0}−θ > 0, Diffusion (I) admits a unique invariant
probability µσ and for any µ0 satisfying (A-9)-(A-10), we have

W2 (µt ; µσ) ≤ exp [− (Cσ −max {α ; 0} − θ) t]W2 (µ0 ; µσ) , (2.5)

for any t ≥ 0.

Like with Proposition 2.3, we do not need the whole set of assumptions. We
assume V and F to verify (A-1)-(A-2)-(A-5). And, in order to apply Proposition
2.2, we assume that the initial law µ0 satisfy (A-9)-(A-10).

Proof. By Proposition 2.3, we have

CσW2
2 (µ ; µσ) ≤ JV0,0 (µ | µσ) . (2.6)

However, by definition, the quantity JV,F (µ | µσ) is equal to

JV,F (µ | µσ) = JV0,0 (µ | µσ)− θ
∫
Rd
||∇τ(x)− x||2 µσ(dx)

− α

2

∫∫
Rd×Rd

||(∇τ(x)−∇τ(y))− (x− y)||2 µσ(dx)µσ(dy)

+
1

2

∫∫
R2d

〈∇F0 (Z(x, y))−∇F0(x− y) ; Z(x, y)− (x− y)〉µ(dx)µ(dy) ,
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with Z(x, y) := ∇τ(x)−∇τ(y). However, F0 is a convex function. Consequently,
we have

JV,F (µ | µσ) ≥ JV0,0 (µ | µσ)− (max {α ; 0}+ θ)

∫
Rd
||∇τ(x)− x||2 µσ(dx) .

By Brenier’s theorem, we obtain

JV,F (µ | µσ) ≥ JV0,0 (µ | µσ)− (max {α ; 0}+ θ)W2
2 (µ ; µσ) ,

which with (2.6) gives (2.4). Here, the convex function τ is defined by µ =:
∇τ#µσ. The uniqueness of the stationary measure if Cσ − α − θ > 0 and the
exponential decay in (2.5) are consequences of Proposition 2.2.

Let us note that the inequality

sup
Rd
−∇2V < inf

Rd
∇2F < 0

implies the uniqueness of the stationary measure µσ and the exponential con-
vergence toward µσ for any σ > 0. Such a result has already been proven in
[CMV03].

We now give the proof of Theorem A.

Proof. In order to prove it, we first admit the following limit

lim
σ→+∞

1

σ2

∫
Rd
||x||2n µσ(dx) = 0 , (2.7)

for any family {µσ ; σ ≥ 1} of invariant probabilities of Diffusion (I). In a first
step, we prove that Limit (2.7) implies the statement of Theorem A. In a second
step, we prove (2.7).
Step 1. We admit the limit (2.7). We remind the reader the following equality

Wσ(x) = V (x) + F ∗ µσ(x) .

Moreover, Hypothesis (A-5) on F implies

|F ∗ µσ(x)| ≤ C
(

1 + ||x||2n
)(

1 +

∫
Rd
||y||2n µσ(dy)

)
so that, for any R > 0, we have the limit

lim
σ→+∞

1

σ2
sup
||x||≤3R

||Wσ(x)|| = 0 ,

thanks to Limit (2.7). Therefore, for any R > 0, the quantities exp
[
− 2
σ2S(R)

]
and exp

[
2
σ2 (I(R)− S(R))

]
go to 1 as σ goes to infinity. We remind the reader

11



that I(R) and S(R) are defined in Proposition 2.3. We obtain the following
limit for any R > 0:

lim
σ→∞

Cσ(R) =
K(R)

3
min

{
1 ;

3d − 2d

2d

}
,

where K(R) := inf
||x||≥R

∇2V0(x). By Assumption (A-2), the quantity K(R) goes

to infinity as R goes to infinity. We take R0 such that

K(R0)

3
min

{
1 ;

3d − 2d

2d

}
> 4(|α|+ |θ|) .

Then, we take σc large enough such that Cσ(R0) > 1
2 lim
ξ→∞

Cξ(R0) for any σ ≥ σc.
Thus, we have the inequality

Cσ −max{α; 0} − θ ≥ Cσ(R0)−max{α; 0} − θ > |α|+ |θ|

for any σ ≥ σc. Consequently, if Limit (2.7) is satisfied, the statement of the
theorem is proven.
Step 2. We now achieve the proof by establishing Limit (2.7). It is in this step
that we use the hypothesis p > 2n. We proceed a reducto ad absurdum. Let
us assume the existence of a positive constant C and an increasing sequence
(σk)k∈N which goes to infinity such that for any k ∈ N, Diffusion (I) admits an
invariant probability µσk satisfying

η2n(k) :=

∫
Rd
||x||2n µσk(dx) ≥ Cσ2

k .

In particular, we deduce that the sequence (η2n(k))k∈N goes to infinity as k goes
to infinity. Since µσk is an invariant probability, we have

η2n(k) =

∫
Rd ||x||

2n
exp

{
− 2
σ2
k

[V (x) + F ∗ µσk(x)]
}
dx∫

Rd exp
{
− 2
σ2
k

[V (x) + F ∗ µσk(x)]
}
dx

.

By making the transformation x := (η2n(k))
1
2n y, we obtain

1 =

∫
Rd ||y||

2n
exp

{
− 2
σ̂k

2

[
V
(
(η2n(k))

1
2n y

)
(η2n(k))

p
n

+
F∗µσk

(
(η2n(k))

1
2n y

)
(η2n(k))

p
n

]}
dy

∫
Rd exp

{
− 2
σ̂k

2

[
V
(
(η2n(k))

1
2n y

)
(η2n(k))

p
n

+
F∗µσk

(
(η2n(k))

1
2n y

)
(η2n(k))

p
n

]}
dy

, (2.8)

with σ̂k := σk√
η2n(k)

(η2n(k))
− p−n2n ≤ 1√

C
(η2n(k))

− p−n2n → 0 as k goes to infinity.

For any y ∈ Rd, Hypothesis (A-8) implies

lim
k→+∞

F ∗ µσk
(

(η2n(k))
1
2n y

)
(η2n(k))

p
n

= 0 .

12



And, Assumption (A-7) yields

lim
k→+∞

V
(

(η2n(k))
1
2n y

)
(η2n(k))

p
n

= Θ(y) ,

the function Θ being strictly convex and such that Θ(y) > Θ(0) = 0 for any
y 6= 0. Consequently, by applying [Tug12, Lemma A.2], the right hand term in
(2.8) goes to 0 as k goes to infinity. Nevertheless, the left hand term is equal to
1. The initial assumption of Step 2 is absurd. This achieves the proof.

Let us remark that Theorem A goes further than the results in [Tug13c]
concerning the uniqueness of the invariant probability for sufficiently large σ.
Moreover, it could provide, with Corollary 2.4 a method for simulating a lower-
bound of the critical value above which there is a unique invariant probabil-
ity. Nevertheless, this method needs more computation than those described in
[Tug13c] and is not really tractable.
Let us mention that the difference with the results obtained in [BGG12b] is that
the confinement potential V is not assumed to be convex.

3 Propagation of chaos
We now give the proof of Proposition B. This result is not the classical prop-
agation of chaos because the initial random variables are not supposed to be
independent. However, we have the same inequality and this is one of the main
tools of the proof of the main theorem.

Proof. By µt, we denote the law L
(
X1
t

)
= · · · = L

(
XN
t

)
. By definition, for

any 1 ≤ i ≤ N , we have

Zit −Xi
t = −

∫ t

0

∇V (Zis)−∇V (Xi
s) +

N∑
j=1

1

N
∇F (Zis − Zjs)−∇F ∗ ηNs (Xi

s)

 ds .

We apply Itô formula to Zit − Xi
t with the function x 7→ ||x||2. By using the

notation ξi(t) :=
∣∣∣∣Zit −Xi

t

∣∣∣∣2, we obtain

dξi(t) = −2
〈
Zit −Xi

t ; ∇V (Zit)−∇V
(
Xi
t

)〉
− 2

N

〈
Zit −Xi

t ;

N∑
j=1

[
∇F (Zit − Z

j
t )−∇F ∗ ηNt

(
Xi
t

)]〉
.
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By taking the sum on the integer i running between 1 and N , we get

d

N∑
i=1

ξi(t) = −2

N∑
i=1

〈
Zit −Xi

t ; ∇V (Zit)−∇V
(
Xi
t

)〉
dt

− 2

N

N∑
i=1

N∑
j=1

(
∆2(i, j, t) + ∆3(i, j, t)

)
dt

with ∆2(i, j, t) :=
〈
∇F (Zit − Z

j
t )−∇F (Xi

t −X
j
t ) ; Zit −Xi

t

〉
and ∆3(i, j, t) :=

〈
∇F (Xi

t −X
j
t )−∇F ∗ ηNt

(
Xi
t

)
; Zit −Xi

t

〉
.

According to the definition of the function F0 in Hypothesis (A-6), it is convex.
This implies 〈x− y ; ∇F0(x− y)〉 ≥ 0 for any x, y ∈ Rd. This inequality yields

E

− 2

N

N∑
i=1

N∑
j=1

∆2(i, j, t)

 ≤ 4α

N∑
i=1

∣∣∣∣Zit −Xi
t

∣∣∣∣2 . (3.1)

By definition of θ, for any x, y ∈ Rd we have 〈∇V (x)−∇V (y) ; x− y〉 ≥
−θ ||x− y||2. This implies

−2

N∑
i=1

〈
Zit −Xi

t ; ∇V (Zit)−∇V
(
Xi
t

)〉
≤ 2θ

N∑
i=1

ξi(t) . (3.2)

We now deal with the sum containing ∆3(i, j, t). We apply Cauchy-Schwarz
inequality:

−E

 N∑
j=1

∆3(i, j, t)

 ≤ {E [∣∣∣∣Zit −Xi
t

∣∣∣∣2]} 1
2


N∑
j=1

N∑
k=1

E
[〈
ρij(t) ; ρik(t)

〉]
1
2

with ρij(t) := ∇F (Xi
t −X

j
t )−∇F ∗ ηNt

(
Xi
t

)
.

The idea now is to prove an inequality of the form

N∑
j=1

N∑
k=1

E
[〈
ρij(t) ; ρik(t)

〉]
≤ CN ,

where C is a positive constant. We use the following conditioning:

E
[〈
ρij(t) ; ρik(t)

〉]
= E

{
E
[〈
ρij(t) ; ρik(t)

〉
| X1

0 , · · · , Xi
0, · · · , XN

0 , X
i
t

]}
.

The particlesXr, 1 ≤ r ≤ N , are not independent but they are independent con-
ditionally to the knowledge of the initial random variables X1

0 , · · · , Xi
0, · · · , XN

0 .
Therefore, we have the equality

E
[〈
ρij(t) ; ρik(t)

〉]
= E

{〈
E
[
ρij(t) | X1

0 , · · · , Xi
0, · · · , XN

0 , X
i
t

]
; E
[
ρik(t) | X1

0 , · · · , Xi
0, · · · , XN

0 , X
i
t

]〉}
,
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if j 6= k. Consequently, for any 1 ≤ j ≤ N , we have
N∑
k=1

E
[〈
ρij(t) ; ρik(t)

〉]
=E

{〈
E
[
ρij(t) | X1

0 , · · · , Xi
0, · · · , XN

0 , X
i
t

]
; E

[
N∑
k=1

ρik(t) | X1
0 , · · · , Xi

0, · · · , XN
0 , X

i
t

]〉}
+ E

[∣∣∣∣ρij(t)∣∣∣∣2]− E
{∣∣∣∣E [ρij(t) | X1

0 , · · · , Xi
0, · · · , XN

0 , X
i
t

]∣∣∣∣2}
≤E

{〈
E
[
ρij(t) | X1

0 , · · · , Xi
0, · · · , XN

0 , X
i
t

]
; E

[
N∑
k=1

ρik(t) | X1
0 , · · · , Xi

0, · · · , XN
0 , X

i
t

]〉}
+ E

[∣∣∣∣ρij(t)∣∣∣∣2] .
We now take the sum over j:
N∑
j=1

N∑
k=1

E
[〈
ρij(t) ; ρik(t)

〉]
≤

N∑
j=1

E
[∣∣∣∣ρij(t)∣∣∣∣2]

+ E


∣∣∣∣∣
∣∣∣∣∣E
[
N∑
k=1

ρik(t) | X1
0 , · · · , Xi

0, · · · , XN
0 , X

i
t

]∣∣∣∣∣
∣∣∣∣∣
2
 .

Now, we will prove that

E

[
N∑
k=1

ρik(t) | X1
0 , · · · , Xi

0, · · · , XN
0 , X

i
t

]

is equal to −∇F ∗ ν
Xi0,

1
N

∑N
l=1 δXl0

t

(
Xi
t

)
where νx0,µ0

t is the law of the diffusion

Yt := x0 + σBt −
∫ t

0

∇V (Ys) ds−
∫ t

0

(∇F ∗ µ0Ps) (Ys) ds .

Indeed, for any 1 ≤ k ≤ N with k 6= i, we have

E
[
∇F (Xi

t −Xk
t ) | X1

0 , · · · , XN
0 , X

i
t

]
= ∇F ∗ ν

Xk0 ,
1
N

∑N
l=1 δXl0

t

(
Xi
t

)
,

We remark that

1

N

N∑
k=1

ν
Xk0 ,

1
N

∑N
l=1 δXl0

t =

(
1

N

N∑
l=1

δXl0

)
Pt .

The right-hand side of the previous equality being ηNt , we consequently get

E

[
N∑
k=1

∇F (Xi
t −Xk

t ) | X1
0 , · · · , Xi

0, · · · , XN
0 , X

i
t

]

= N∇F ∗ ηNt
(
Xi
t

)
−∇F ∗ ν

Xi0,
1
N

∑N
l=1 δXl0

t

(
Xi
t

)
.
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Let us remark that the term for k = i is equal to zero in the left-hand side of
the previous equality. This yields

E

[
N∑
k=1

ρik(t) | X1
0 , · · · , Xi

0, · · · , XN
0 , X

i
t

]
= −∇F ∗ ν

Xi0,
1
N

∑N
l=1 δXl0

t

(
Xi
t

)
.

We obtain immediately:

N∑
j=1

N∑
k=1

E
[〈
ρij(t) ; ρik(t)

〉]
≤

N∑
j=1

E
[∣∣∣∣ρij(t)∣∣∣∣2]+E

{∣∣∣∣∣∣∣∣∇F ∗ νXi0, 1
N

∑N
l=1 δXl0

t

(
Xi
t

)∣∣∣∣∣∣∣∣2
}
.

Let us now compute E
[∣∣∣∣ρij(t)∣∣∣∣2]. The diffusions Xi and Xj are not inde-

pendent but they are independent conditionally to the initial random variables.
However, according to Hypothesis (A-5), we have F (x) = G (||x||) where G is a
polynomial function of degree 2n, we have the following inequality:

E
[∣∣∣∣∣∣∇F (Xi

t −X
j
t )−∇F ∗ ηNt (Xi

t) | X1
0 , · · · , XN

0

∣∣∣∣∣∣2]
≤ C

(
1 + E

[∣∣∣∣Xi
t

∣∣∣∣4n−2 | X1
0 , · · · , Xi

0, · · · , XN
0

]
+ E

[∣∣∣∣∣∣Xj
t

∣∣∣∣∣∣4n−2 | X1
0 , · · · , Xi

0, · · · , XN
0

])
.

Then, we use the control of the moments obtained in [HIP08, Theorem 2.13]
and we obtain the following majoration:

sup
t≥0

E
[∣∣∣∣∣∣∇F (Xi

t −X
j
t )−∇F ∗ ηNt (Xi

t)
∣∣∣∣∣∣2 | X1

0 , · · · , Xi
0, · · · , XN

0

]

≤ K

(
1 +

1

N

N∑
k=1

∣∣∣∣Xk
0

∣∣∣∣8q2) ,

K being a positive constant. Consequently, we have

sup
t≥0

E
[∣∣∣∣∣∣∇F (Xi

t −X
j
t )−∇F ∗ ηNt (Xi

t)
∣∣∣∣∣∣2] ≤ K (1 +

∫
Rd
||x||8q

2

µ0(dx)

)
.

We have a similar control on E

{∣∣∣∣∣∣∣∣∇F ∗ νXi0, 1
N

∑N
l=1 δXl0

t

(
Xi
t

)∣∣∣∣∣∣∣∣2
}
. Therefore,

we deduce the following inequality:

−E

 N∑
j=1

∆3(i, j, t)

 ≤
√
C(µ0)

√
NE [ξi(t)] . (3.3)

By combining (3.1), (3.2) and (3.3), we obtain

d

dt

N∑
i=1

E [ξi(t)] ≤ 2

N∑
i=1

{
(θ + 2α)E [ξi(t)] +

√
C(µ0)√
N

√
E [ξi(t)]

}
. (3.4)
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However, the particles are exchangeable. Consequently, for any 1 ≤ i ≤ N , we
have

d

dt
E {ξi(t)} ≤ 2 (θ + 2α)E {ξi(t)}+

2
√
C(µ0)√
N

√
E [ξi(t)] .

By introducing τi(t) :=
√
E {ξi(t)}, we obtain

τ ′i(t) ≤ (θ + 2α)

{
τi(t) +

√
C(µ0)

(θ + 2α)
√
N

}
.

The application of Grönwall lemma yields

E
{∣∣∣∣Zit −Xi

t

∣∣∣∣2} ≤ C(µ0)

N (θ + 2α)
2 exp [2 (θ + 2α) t] .

We obtain the statement of Proposition B by taking the supremum for t running
between 0 and T .

4 Uniform propagation of chaos
In this paragraph, we prove that there is uniform (with respect to the time)
propagation of chaos with sufficiently large σ, that is Theorem C. In all this
section, we assume the inequality of simple propagation of chaos.

We consider an additional hypothesis, that is we are in the synchronized
case:

inf
x∈R

G′′(x) = α0 > 0 and α0 − θ > 0 ,

θ being defined between Assumption (A-2) and Assumption (A-3).
Before giving the proof of the main theorem, we give the following result to

control the moments.

Proposition 4.1. We assume that the potentials V and F and the probability
measure µ0 satisfy the set of Assumptions (A). Let Z1

0 , · · · , ZN0 be N i.i.d. ran-
dom variables with common law µ0. We consider the following particle system:

Zit = Zi0 + σBit −
∫ t

0

∇V
(
Zis
)
ds− 1

N

N∑
j=1

∫ t

0

∇F
(
Zis − Zjs

)
ds , (4.1)

B1, · · · , BN being N independent Brownian motions (and independent from the
initial random variables). Then, there exists a constant M(µ0) such that

max
1≤k≤8q2

sup
t≥0

E
{∣∣∣∣Zit ∣∣∣∣k} ≤M(µ0) , (4.2)

for any N ∈ N.
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The proof is classical and can be adapted from [CGM08, Section 2.1] so it is
left to the reader. Let us just mention that the only hypotheses that we need
on the potentials V and F are (A-1), (A-2), (A-4) and (A-6) and the law to
satisfy assumption (A-9). Indeed, these hypotheses are sufficient to ensure the
convexity at infinity of the drift V +F ∗ µt. We now give the proof of Theorem
C.

Proof. Step 1. Let t be a positive real. The idea is to consider a nonlinear
diffusion. Let T be a positive real.
Step 2. The triangular inequality implies

W2

(
µT+t ; µ1,N

T+t

)
≤W2 (µT+t ; µσ) + W2

(
µσ ; ρNT,t

)
+ W2

(
ρNT,t ; ηNT,t

)
+ W2

(
ηNT,t ; µ1,N

T+t

)
,

where ηNT,t is the law at time T of the diffusion

Zi,Ns;t = Xi,N
t + σ

(
Bit+s −Bit

)
−
∫ s

0

[
∇V +∇F ∗ νNu

] (
Zi,Nu;t

)
du ,

where νNu :=
(

1
N

∑N
i=1 δXi,Nt

)
Pu, and ρNT,t is the law of the diffusion

Ys = Y0 + σ (Bt+s −Bt)−
∫ s

0

(∇V +∇F ∗ L (Yu)) (Yu)du ,

where Y0 follows the law 1
N

∑N
j=1 δXj,Nt

. More precisely, we put Y0(ω) :=

X
ζ(ω),N
t where ζ is a random variable which follows the equiprobability on the

set {1, · · · , N}. We also assume that ζ is independent from Xi,N
t and Bi for

any 1 ≤ i ≤ N .
Step 3. Let us bound each of the four terms.
Step 3.1. We can bound easily the last term. By definition and by assumption,
we have:

W2

(
ηNT,t ; µ1,N

T+t

)
≤ exp [ψ(T )]√

N
.

Indeed, we remark that

W2

(
ηNT,t ; µ1,N

T+t

)2
≤ E

{∣∣∣∣∣∣Zi,NT ;t −X
i
T+t

∣∣∣∣∣∣2} ≤ exp [2ψ(T )]

N
,

by Proposition B.
Step 3.2. The first term can be bounded like so:

W2 (µT+t ; µσ) ≤ e−C(σ)(T+t)W2 (µ0 ; µσ) .

Step 3.3. We proceed in a similar way with the second term. We introduce
the McKean-Vlasov diffusion starting from the law 1

N

∑N
j=1 δxj0

. We have

W2

(
µσ ; ρNT,t

)2
= inf E

{
||Xσ −X2||2

}
18



where the infimum runs for Xσ which follows the law µσ and for X2 which has
the same law as the diffusion Yt. We can write

W2

(
µσ ; ηNT,t

)2 ≤ E

W2

µσ ;

 1

N

N∑
j=1

δXj,Nt

PT

2
 . (4.3)

Indeed, the application µ 7→ W2
2 (µσ, µ) is convex so that we obtain (4.3)

since ρNT,t is the expectation of the random measure
(

1
N

∑N
j=1 δXj,Nt

)
PT . We

deduce immediately:

W2

(
µσ ; ρNT,t

)2
≤ E

e−2C(σ)TW2

µσ ;
1

N

N∑
j=1

δXj,Nt

2


≤ 2e−2C(σ)TW2

(
µσ ; µ1,N

t

)2
+ E

2e−2C(σ)TW2

µ1,N
t ;

1

N

N∑
j=1

δXj,Nt

2


≤ 2e−2C(σ)TW2

(
µσ ; µ1,N

t

)2
+Me−2C(σ)T .

Here, M is a positive constant which depends on the supremum of the second
moment of µ1,N

t . We thus have:

W2

(
µσ ; ρNT,t

)
≤ 2e−C(σ)TW2

(
µσ ; µ1,N

t

)
+Me−C(σ)T

≤ 2e−C(σ)T
(
W2 (µσ ; µt) + W2

(
µt ; µ1,N

t

))
+Me−C(σ)T

≤ 2e−C(σ)(T+t)W2 (µσ ; µ0) + 2e−C(σ)TW2

(
µt ; µ1,N

t

)
+Me−C(σ)T .

Step 3.4 We now bound easily the term W2

(
ρNT,t ; ηNT,t

)
. Indeed, since we are

in the synchronized case, we know that ∇2 (V + F ∗ µ) ≥ α − θ > 0. So, if we
take the same Brownian motion for Y and for Z1,N

.;t , we obtain:

d

dt

∣∣∣∣∣∣Z1,N
t − Yt

∣∣∣∣∣∣2 ≤ − (α− θ)
∣∣∣∣∣∣Z1,N

t − Yt
∣∣∣∣∣∣2 .

As a consequence, we have:

W2

(
ρNT,t ; ηNT,t

)
≤ e−(α−θ)TW2

(
ρN0,t ; ηN0,t

)
.

By proceeding like in the Step 3.3, we can prove that there exists a constant
M which depend on the supremum of the second moment of µ1,N

t such that
W2

(
ρNT,t ; ηNT,t

)
≤Me−(α−θ)T .
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Step 4. Consequently, we have:

W2

(
µT+t ; µ1,N

T+t

)
≤2e−C(σ)TW2

(
µt ; µ1,N

t

)
+ 3e−C(σ)(T+t)W2 (µ0 ; µσ)

+
exp [ψ(T )]√

N
+Me−C(σ)T +Me−(α−θ)T .

We now consider the quantity min {α− θ;C(σ)}. Without any loss of generality,
we denote this quantity by C(σ). We deduce that

W2

(
µT+t ; µ1,N

T+t

)
≤2e−C(σ)TW2

(
µt ; µ1,N

t

)
+ 3e−C(σ)(T+t)W2 (µ0 ; µσ)

+
exp [ψ(T )]√

N
+Me−C(σ)T .

where the constant M in the above displayed formula corresponds to two times
the previous constant M . We now take the supremum for t running between
(k − 1)T and kT , we denote λk(T ) := sup

kT≤t≤(k+1)T

W2

(
µt ; µ1,N

t

)
and γ :=

3W2 (µ0 ; µσ) +M . We obtain:

λk(T ) ≤ 2e−C(σ)Tλk−1(T ) + γe−C(σ)T +
exp [ψ(T )]√

N
.

Step 5. By elementary computations, we have:

λk(T ) ≤ 1

1− 2e−C(σ)T

exp [ψ(T )]√
N

+
(

2e−C(σ)T
)k exp [ψ(T )]√

N
e−C(σ)T+γ

e−C(σ)T

1− 2e−C(σ)T
.

This follows from the bound λ0(T ) ≤ eψ(T )
√
N

which is a consequence of classical
coupling between the system of particles and the McKean-Vlasov diffusion.

By taking T large enough, we deduce

sup
t≥0

W2

(
µt ; µ1,N

t

)
= sup

k≥0
λk(T ) ≤ exp [ψ(T )]

1− 2e−C(σ)T

2√
N

+ 2γe−C(σ)T . (4.4)

Let ε > 0 be arbitrarily small. We take T > 1
C log

(
4γ
ε

)
so that 2γe−C(σ)T < ε

2 .
Then, by taking N large enough, we have exp[ψ(T )]

1−2e−C(σ)T
2√
N
< ε

2 . This implies

sup
t≥0

W2

(
µt ; µ1,N

t

)
< ε if N is large enough. This proves Limit (1.2).

Step 6. We now prove the rate of convergence result. Let δ > 0 be arbitrarily
small.
Step 6.1. We look at the first case. Inequality (4.4) holds for any T > 0. We
take TN := 1

C(σ)
1

2(1+1/λ) log(N). We immediately deduce 1
1−2e−C(σ)TN

≤ 2 for N

large enough. For N large enough, the quantity ψ(TN )
C(σ)TN

is less than 1
λ+δ

(
1 + 1

λ

)
so that the quantity exp[ψ(TN )]√

N
is less than N−(

1
2(1+1/λ)

− δ2 ). We deduce

N
1

2(1+1/λ)
−δ exp [ψ (TN )]

1− e−ϕ(TN )

1√
N
≤ 2N−

δ
2 −→ 0 ,
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as N goes to infinity. The second term, γe−C(σ)TN , is equal to γN−
1

2(1+1/λ) so

N
1

2(1+1/λ)
−δγe−C(σ)TN = γN−δ −→ 0 ,

as N goes to infinity. This achieves the proof of Limit (1.3).
Step 6.2. We now look at the second case. Here, we obtain

sup
t≥0

W2

(
µt ; µ1,N

t

)
≤ N−

δ
2

1− 2e−C(σ)TN
+ γe−C(σ)ψ−1( 1

2 (1−δ) log(N)) ,

by taking TN := ψ−1
(
1
2 (1− δ) log(N)

)
. This implies Limit (1.4).

The second case, that is to say when lim
t→+∞

ψ(t)

t
= 0, does not hold with

McKean-Vlasov diffusion. However, the current work aims to be applied for
more general diffusions.

In [CGM08, Theorem 3.2], the authors obtain a uniform propagation of chaos
of the form

sup
t≥0

E
{∣∣∣∣Xt −X1

t

∣∣∣∣2} ≤ K

N−(1−ρ)
,

with 0 < ρ < 1. However, by using a method similar to the one of the proof of
Theorem C, we obtain a better inequality with the Wasserstein distance. This
is Corollary D, that we now give the proof.

Proof. By proceeding exactly like in [BRTV98, Lemma 5.4], there exists K > 0
such that the following inequality holds:

sup
0≤t≤T

E
{∣∣∣∣Xt −X1

t

∣∣∣∣2} ≤ KT 2

N
(4.5)

for any T > 0. Here, there are two differences with the proof in [BRTV98]. First,
here, there is the presence of a confinement potential but since this potential
is convex, we can proceed similarly. And, in [BRTV98], the initial random
variables are assumed to be independent. However, we need here to relax this
independence hypothesis (like in the proof of Theorem C). We use the same
technic than the one in Proposition B by conditioning with respect to the initial
random variables and we have the result. Inequality (4.5) implies

sup
0≤t≤T

W2

(
µt ; ηNt

)
≤ exp [ψ(T )]√

N

with ψ(T ) := 1
2 log(K) + log(T ).

Now, since α ≤ 0 and θ ≤ 0, any invariant probability µσ satisfies a WJV,F -
inequality with a constant C(σ) > 0. Consequently, we have

lim
t→+∞

C(σ)t

ψ(t)
= +∞ .

We apply Theorem C and we obtain the statement for any δ > 0.
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5 Creation of chaos
From now on, X1

0 = · · · = XN
0 = X0.

5.1 Creation of chaos in the hydrodynamical limit
In the following, we look at the quantity E

{
f1
(
X1
t

)
f2
(
X2
t

)}
. We remark that

E
{
f1
(
X1
t

)
f2
(
X2
t

)}
= E

{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0 ,
(
B1
s

)
0≤s≤t

]}
= E

{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0

]}
.

Consequently, to study the long-time behaviour of E
{
f1
(
X1
t

)
f2
(
X2
t

)}
requires

to study E
[
f2
(
X2
t

)
| X1

0

]
. Since X1

0 and X2
0 are not independent, we do not

have E
[
f2
(
X2
t

)
| X1

0

]
= E

[
f2
(
X2
t

)]
.

According to previous results, see [BCCP98, BGG12b, BRV98, CGM08, CMV03]
for the convex case and [Tug13a, Tug13b] for the general case, we know that the
measure µt converges weakly to µ as t goes to infinity, under the assumptions
of the article. However, we do not know anything about the convergence of
E
[
f2
(
X2
t

)
| X1

0

]
as t goes to infinity. This is the purpose of next proposition.

Proposition 5.1. Let f be a Lipschitz function from R to itself. Under the
sets of assumptions (A) and (B), we have:

E
{
f2
(
X2
t

)
| X1

0

}
−→

∫
R
f2(x)µ(dx) , (5.1)

and the convergence holds almost surely, as t goes to infinity.

Proof. For any x0, we can write

E
{
f
(
X2
t

)
| X0

}
1{X0=x0} = E {f (Y x0

t )}1{X0=x0}

Consequently, for any random variable X which follows the law µ, we have∣∣E{f (X2
t

)
| X0

}
1{X0=x0} − E {f (X)}1{X0=x0}

∣∣
≤ E {|f (Y x0

t )− f (X)|}1{X0=x0} ≤ CE {|Y
x0
t −X|}1{X0=x0} .

By taking X which minimizes W2 (L (Y x0
t ) ;µ), we find∣∣∣∣E{f (X2

t

)
| X0

}
1{X0=x0} −

∫
f(x)µ(dx)1{X0=x0}

∣∣∣∣
≤ CW2 (L (Y x0

t ) ;µ)1{X0=x0}

≤ Ce−CσtW2 (δx0
;µ)1{X0=x0}

≤ Ce−Cσt
√∫

R
(x− x0)

2
µ(dx)1{X0=x0} .

This tends to 0 as t goes to infinity which achieves the proof.
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Let us remark that we have obtained better: the convergence is exponential.
Now, we can prove that, as time t goes to infinity, the law of the couple

(X1
t , X

2
t ) becomes the tensorial product of the marginal laws.

Proposition 5.2. Let f1 and f2 be two Lipschitz functions from R to itself.
Under the sets of assumptions (A) and (B), we have:

E
{
f1
(
X1
t

)
f2
(
X2
t

)}
−→

(∫
R
f1(x)µ(dx)

)(∫
R
f2(x)µ(dx)

)
. (5.2)

The convergence holds as t goes to infinity.

Proof. We observe that

E
{
f1
(
X1
t

)
f2
(
X2
t

)}
= E

{
f1
(
X1
t

)
E
[
f2
(
X2
t

)
| X1

0

]}
=

(∫
R
f2(x)µ(dx)

)
E
{
f1
(
X1
t

)}
+ E

{
f1
(
X1
t

)
At
}
,

with
At := E

{
f2
(
X2
t

)
| X1

0

}
−
∫
R
f2(x)µ(dx) .

The limit in (5.1) gives us the convergence almost surely of the random variable
At to 0 as t goes to infinity.

Furthermore, since f2 is Lipschitz-continuous and according to the boundedness
of the moments of X2

t , we have the following inequality:

E
(
||At||2

)
≤ 2E

[∣∣∣∣f2 (X2
t

)∣∣∣∣2]+ 2

(∫
R
f2(x)µ(dx)

)2

≤ C
{

1 + E
[∣∣∣∣X2

t

∣∣∣∣2]} ≤ Cσ .
By Lebesgue theorem, we deduce the following limit:

lim
t→∞

E
{
f1
(
X1
t

)
At
}

= 0 .

Moreover, due to the set of assumptions on the initial random variable, we have
the following convergence as t goes to infinity:

E
[
f1
(
X1
t

)]
−→

∫
R
f1(x)µ(dx) .

This achieves the proof.

Let us remark that the convergence is exponential.

In fact, we could have obtained a more general result by proceeding similarly.

Remark 5.1. Let f1, · · · , fk be k functions Lipschitz-continuous. Then, under
the hypotheses of Proposition 5.2, we have the convergence almost surely of

E

{
k∏
i=1

fi
(
Xi
t

)}
toward

k∏
i=1

∫
R
fi(x)µ(dx) .
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By observing that
∏k
i=1 E

[
fi
(
Xi
t

)]
converges to

∏k
i=1

∫
R fi(x)µ(dx), we im-

mediately obtain the following theorem.

Theorem 5.3. Let f1 and f2 be two Lipschitz functions from R to itself. Under
the sets of assumptions (A) and (B), we have:

Cov
(
f1
(
X1
t

)
; f2

(
X2
t

))
−→ 0 , (5.3)

as t goes to infinity.

More generally, let any k ≥ 2 and let f1, · · · , fk be k Lipschitz-continuous func-
tions. Thus, we have the following convergence almost surely as t goes to infinity:

E

{
k∏
i=1

fi
(
Xi
t

)}
−

k∏
i=1

E
{
fi
(
Xi
t

)}
−→ 0 .

Let us point out that to obtain this result, we only use the convergence in
long-time. We do not need to know anything about the rate of convergence.

However, we know that this convergence is exponential.

5.2 Creation of chaos in the mean-field system
We first provide a coupling result.

Proposition 5.4. We assume that V , F and µ0 satisfy the set of Hypotheses
(A) and (B). Let X0 be a random variable which follows the law µ0. Then, for
any T > 0, we have the following inequality:

sup
t∈[0;T ]

E
{∣∣∣∣∣∣Xi

t −X
i,N
t

∣∣∣∣∣∣2} ≤ C(µ0)

N
exp [2CT ] , (5.4)

where C(µ0) is a positive function of
∫
R ||x||

8q2
µ0(dx) and C is a positive con-

stant.

Proof. The proof is an adaptation of the proof of Proposition B. By νX0
t , we

denote the solution of the granular media equation starting from δX0
. By defi-

nition, for any 1 ≤ i ≤ N , we have

Xi,N
t −Xi

t = −
∫ t

0

{
∇V (Xi,N

s )−∇V (Xi
s)
}
ds−

∫ t

0

 1

N

N∑
j=1

∇F (Xi,N
s −Xj,N

s )−∇F ∗ νX0
s (Xi

s)

 ds .

We apply Itô formula to Xi,N
t −Xi

t with the function x 7→ ||x||2. By introducing

the notation ξi(t) :=
∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2 and by taking the sum on the integer i
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running between 1 and N , we get

d

N∑
i=1

ξi(t) = −2∆1(t)dt− 2

N

N∑
i=1

N∑
j=1

(
∆2(i, j, t) + ∆3(i, j, t)

)
dt

with ∆1(t) :=

N∑
i=1

∆1(i, t) ,

∆2(i, j, t) :=
〈
∇F (Xi,N

t −Xj,N
t )−∇F (Xi

t −X
j
t ) ; Xi,N

t −Xi
t

〉
and ∆3(i, j, t) :=

〈
∇F (Xi

t −X
j
t )−∇F ∗ νX0

t

(
Xi
t

)
; Xi,N

t −Xi
t

〉
.

According to the definition of the function F0 in Hypothesis (A-6), it is convex.
This implies 〈x− y ; ∇F0(x− y)〉 ≥ 0 for any x, y ∈ R. This inequality yields

1

N

N∑
i=1

N∑
j=1

(∆2(i, j, t) + ∆2(j, i, t)) ≥ −4α

N∑
i=1

∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2 .
Consequently, we have

E

− 2

N

N∑
i=1

N∑
j=1

∆2(i, j, t)

 =
1

2
E

− 2

N

N∑
1≤i,j≤N

(
∆2(i, j, t) + ∆2(j, i, t)

) ≤ 4α

N∑
i=1

∣∣∣∣∣∣Xi,N
t −Xi

t

∣∣∣∣∣∣2 .
(5.5)

By definition of θ, for any x, y ∈ R we have the inequality 〈∇V (x)−∇V (y) ; x− y〉 ≥
−θ ||x− y||2. This implies

−2

N∑
i=1

∆1(i, t) ≤ 2θ

N∑
i=1

ξi(t) . (5.6)

We conclude as in the proof of Proposition B:

E
{〈
ρij(t) ; ρik(t)

〉}
= 0 ,

for any j 6= k. And, if j = k, we have

E
{∣∣∣∣ρij(t)∣∣∣∣2} = E

{∣∣∣∣∣∣∇F (Xi
t −X

j
t

)
−∇F ∗ νX0

t

(
Xi
t

)∣∣∣∣∣∣2} .

The diffusions Xi and Xj are not independent but they are independent con-
ditionally to the initial random variables. However, according to Hypothesis
(A-4) and (A-5), we have F (x) = G (||x||) where G is a polynomial function of
degree 2n, we have the following inequality:

E
[∣∣∣∣∣∣∇F (Xt − Yt)−∇F ∗ νX0

t (Xt)
∣∣∣∣∣∣2] ≤ C (1 + E

[
||Xt||4n−2

])
,
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Xt and Yt being two independent random variables with common law µt and
C is a positive constant. Then, we use the control of the moments obtained in
[HIP08, Theorem 2.13] and we obtain the following majoration:

sup
t≥0

E
[
||∇F (Xt − Yt)−∇F ∗ µt(Xt)||2

]
≤ C(µ0) ,

C(µ0) being a function of the 8q2 moment of the law µ0. Consequently, we have

E
{∣∣∣∣ρij(t)∣∣∣∣2 | X0

}
≤ C(µ0) ,

for any 1 ≤ i, j ≤ N . By taking the expectation, we obtain

E
{∣∣∣∣ρij(t)∣∣∣∣2} ≤ C(µ0) ,

for any 1 ≤ i, j ≤ N . Therefore, we deduce the following inequality:

−E

 N∑
j=1

∆3(i, j, t)

 ≤
√
C(µ0)

√
NE [ξi(t)] . (5.7)

By combining (5.5), (5.6) and (5.7), we obtain

d

dt

N∑
i=1

E [ξi(t)] ≤ 2

N∑
i=1

{
(θ + 2α)E [ξi(t)] +

√
C(µ0)√
N

√
E [ξi(t)]

}
.

However, the particles are exchangeable. Consequently, for any 1 ≤ i ≤ N , we
have

d

dt
E {ξi(t)} ≤ 2 (θ + 2α)E {ξi(t)}+

2
√
C(µ0)√
N

√
E [ξi(t)] .

By introducing τi(t) :=
√
E {ξi(t)}, we obtain

τ ′i(t) ≤ (θ + 2α)

{
τi(t) +

√
C(µ0)

(θ + 2α)
√
N

}

The application of Grönwall lemma yields

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣2} ≤ C(µ0)

N (θ + 2α)
2 exp [2 (θ + 2α) t] .

We obtain (5.4) by taking the supremum for t running between 0 and T .

5.2.1 Decorrelation for two particles

We now are able to provide the proof of Theorem E.
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Proof. Let T and ε be any positive reals. Set 0 ≤ t.
Step 1. We use the following decomposition

Cov
(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))
= E

{
f1

(
X1,N
t

) [
f2

(
X2,N
t

)
− f2

(
X2
t

)]}
+ E

{
f2
(
X2
t

) [
f1

(
X1,N
t

)
− f1

(
X1
t

)]}
+ Cov

(
f1
(
X1
t

)
; f2

(
X2
t

))
+ E

{
f1
(
X1
t

)} [
E
(
f2
(
X2
t

))
− E

(
f2

(
X2,N
t

))]
+ E

{
f2

(
X2,N
t

)} [
E
(
f1
(
X1
t

))
− E

(
f1

(
X1,N
t

))]
=:T1 + T2 + T3 + T4 + T5 .

Step 2. We can control T1 in the following way.

|T1| ≤

√
E
{∣∣∣∣∣∣f1 (X1,N

t

)∣∣∣∣∣∣2}√E
{∣∣∣∣∣∣f2 (X2,N

t

)
− f2 (X2

t )
∣∣∣∣∣∣2}

by Cauchy-Schwarz inequality. The triangular inequality provides us:∣∣∣∣∣∣f1 (X1,N
t

)∣∣∣∣∣∣2 ≤ 3 ||f1(0)||2+3
∣∣∣∣f1 (X1

t

)
− f1(0)

∣∣∣∣2+3
∣∣∣∣∣∣f1 (X1,N

t

)
− f1

(
X1
t

)∣∣∣∣∣∣2
Since f1 is a Lipschitz-continuous function, there exists ρ > 0 such that∣∣∣∣∣∣f1 (X1,N

t

)∣∣∣∣∣∣2 ≤ 3 ||f1(0)||2 + 3ρ2
∣∣∣∣X1

t

∣∣∣∣2 + 3ρ2
∣∣∣∣∣∣X1,N

t −X1
t

∣∣∣∣∣∣2 .
Due to the inequalities (1.1) and (5.4), we have

E
{∣∣∣∣∣∣f1 (X1,N

t

)∣∣∣∣∣∣2} ≤ 3ρ2
(
M0 + ||f1(0)||2 +K2 e

2Ct

N

)
Still by using the coupling result (5.4), we have

E
{∣∣∣∣∣∣f2 (X2,N

t

)
− f2

(
X2
t

)∣∣∣∣∣∣2} ≤ ρ2K2 e
2Ct

N
,

so that the term T1 is bounded like so

|T1| ≤ 2ρ

√
M0 + ||f1(0)||2 +K2

e2Ct

N
ρK

eCt√
N
≤ 2ρ2K

√
K0 +K2

e2Ct

N

eCt√
N
.

Step 3. By proceeding similarly, we have the following boundedness of the fifth
term.

|T5| ≤ 2ρ2K

√
K0 +K2

e2Ct

N

eCt√
N
.

Step 4. By using the uniform boundedness of the moments (1.1), Jensen’s
inequality and the coupling result (5.4), we obtain the following control:

max {|T2| ; |T4|} ≤ ρ2K
√
M0

eCt√
N
.
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Step 5. Finally, the limit (5.3) provides us the existence of a decreasing function
ϕ which limit at infinity is 0 such that

|T3| ≤ ϕ(t) .

Step 6. Let t0(ε) be a positive real such that ϕ(t0(ε)) < ε
2 . Then, we take

N0(ε) large enough such that we have |T1|+ |T2|+ |T4|+ |T5| ≤ ε
2 . We deduce

that for any t ∈ [t0(ε); t0(ε) + T ], for any N ≥ N0(ε), we have∣∣∣Cov
[
f1

(
X1,N
t

)
; f2

(
X2,N
t

)]∣∣∣ ≤ ε .
This theorem means that, for a time and a number of particles sufficiently

large, two particles are as independent as we desire. Moreover, the convergence
in time is exponential.
We do not need neither V nor F to be convex. Nevertheless, if both potentials
V and F are convex, we know that we have a uniform coupling between the
particles and the inequality (5.4) becomes

sup
t≥0

E
{∣∣∣∣∣∣Xi,N

t −Xi
t

∣∣∣∣∣∣} ≤ K(µ0)2

N
, (5.8)

so that the four terms T1, T2, T4 and T5 (defined in the proof of Theorem E)
are bounded like so

sup
t≥0

max {|T1|; |T2|; |T4|; |T5|} ≤
λ

4
√
N
.

In the previous (uniform) inequality, λ is a positive constant. Immediately, we
have the majoration:∣∣∣Cov

(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))∣∣∣ ≤ ϕ(t) + λ
1√
N
.

Taking t and N sufficiently large yields∣∣∣Cov
(
f1

(
X1,N
t

)
; f2

(
X2,N
t

))∣∣∣ ≤ ε ,
since the function ϕ is decreasing. This ends the proof of Theorem C.

5.2.2 Creation of chaos for the empirical measure

When the initial random variables X1
0 , · · · , XN

0 are independent, the empirical
measure ηNt := 1

N

∑N
j=1 δXj,Nt

converges as N goes to infinity toward the deter-
ministic measure µt (the law at time t of the McKean-Vlasov diffusion).
However, due to Theorem E, we have the Theorem G.
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Proof. By definition of ηNt (f), we have

Cov
(
ηNt (f1) ; ηNt (f2)

)
=

1

N2

∑
1≤i,j≤N

Cov
(
f1

(
Xi,N
t

)
; f2

(
Xj,N
t

))
.

Consequently, if N ≥ N0(ε) (where the integer N0(ε) has been defined in The-
orem E), we have by triangular inequality:

sup
t∈[t0(ε);t0(ε)+T ]

∣∣Cov
(
ηNt (f1) ; ηNt (f2)

)∣∣
≤
(

1− 1

N0(ε)

)
ε+

1

N2

N∑
i=1

∣∣∣Cov
(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))∣∣∣ .
Nevertheless, due to the hypotheses, we have the convergence of the quantity

Cov
(
f1
(
Xi
t

)
; f2

(
Xi
t

))
to ∫

R
f1(x)f2(x)µ(dx)−

(∫
R
f1(x)µ(dx)

)(∫
R
f2(x)µ(dx)

)
,

as t goes to infinity. Then, since f1 and f2 are Lipschitz-continuous functions,
thanks to the coupling inequality (5.4), we obtain that for all ε > 0, the quantity∣∣∣∣Cov

(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))
−
[∫

R
f1f2µ−

(∫
R
f1µ

)(∫
R
f2µ

)]∣∣∣∣
is less than ε if t and N are large enough. Particularly, we deduce the bound-
edness of

∣∣∣Cov
(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))∣∣∣:
sup
N≥1

sup
t≥0

∣∣∣Cov
(
f1

(
Xi,N
t

)
; f2

(
Xi,N
t

))∣∣∣ ≤M ,

M being a positive constant.

Taking N1(ε) := max
{
N0(ε) ; MN0(ε)

ε

}
yields

sup
t∈[t0(ε);t0(ε)+T ]

∣∣Cov
(
ηNt (f1) ; ηNt (f2)

)∣∣ ≤ ε
The second part of the theorem can be proved in a similar way so it is left to
the reader.
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