K-stability and parabolic stability
Yann Rollin

To cite this version:
Yann Rollin. K-stability and parabolic stability. 20 pages. Many typos corrected in this version. 2013. <hal-00798767v3>

HAL Id: hal-00798767
https://hal.archives-ouvertes.fr/hal-00798767v3
Submitted on 29 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
K-STABILITY AND PARABOLIC STABILITY

YANN ROLLIN

ABSTRACT. Parabolic structures with rational weights encode certain iterated blowups of geometrically ruled surfaces. In this paper, we show that the three notions of parabolic polystability, K-polystability and existence of constant scalar curvature Kähler metrics on the iterated blowup are equivalent, for certain polarizations close to the boundary of the Kähler cone.

1. Introduction

The Calabi program is concerned with finding canonical metrics on Kähler manifolds. The idea is to look for critical points of the Calabi functional, i.e. the L^2-norm of the scalar curvature, within a prescribed Kähler class. Such metrics are called extremal metrics. The existence problem for extremal metrics is open, even for complex surfaces. The Donaldson-Tian-Yau conjecture roughly says that the existence of extremal metrics with integral Kähler class should be equivalent to some algebro-geometric notion of stability of the corresponding polarized complex manifold.

The Euler-Lagrange equation for an extremal metric g is equivalent to the fact that $(\bar{\partial}s)^d$ — the $(1, 0)$-component of the gradient of the scalar curvature of g — is a holomorphic vector field. If the complex manifold does not carry any nontrivial holomorphic vector field, a Kähler metric is extremal if and only if it has constant scalar curvature. It seems reasonable, at first, to focus on this “generic” case, thus limiting our study to constant scalar curvature Kähler metrics (we shall use the acronym CSCK as a shorthand).

Ruled surfaces are an excellent probing playground for the Donaldson-Tian-Yau conjecture. In this paper, we study iterated blowups of ruled surfaces encoded by parabolic structures. Our main result, stated below, shows that the Donaldson-Tian-Yau conjecture holds for such class of surfaces and certain polarizations. In addition, we prove that stability of parabolic bundles plays a fundamental role in the picture. The rest of the introduction will be devoted to explain the relevant definitions.

Theorem A. Let $\mathcal{X} \to \Sigma$ be a parabolic geometrically ruled surface with rational weights and $\tilde{\mathcal{X}} \to \mathcal{X}$ the iterated blowup encoded by the parabolic structure.

If $\tilde{\mathcal{X}}$ has no nontrivial holomorphic vector fields, the following properties are equivalent:

1. $\tilde{\mathcal{X}}$ is basically CSCK,
2. $\tilde{\mathcal{X}}$ is basically K-stable,
3. $\mathcal{X} \to \Sigma$ is parabolically stable.

Date: March 21st 2013.

2000 Mathematics Subject Classification. Primary 32Q26; Secondary 53C55, 58E11, 14J26, 14H60.
1.1. **Parabolic ruled surfaces.** A geometrically ruled surface is obtained as the projectivization $\mathcal{X} = \mathbb{P}(E)$ of some holomorphic complex vector bundle of rank 2 over a closed Riemann surface $E \to \Sigma$ and is endowed with a canonical projection $\pi_\Sigma : \mathcal{X} \to \Sigma$. More generally, a ruled surface $\hat{\mathcal{X}}$ can be described as an iterated blowup $\pi_{\hat{\mathcal{X}}} : \hat{\mathcal{X}} \to \mathcal{X}$ of a geometrically ruled surface $\pi_\Sigma : \mathcal{X} \to \Sigma$.

A parabolic structure on a geometrically ruled surface $\pi_\Sigma : \mathcal{X} \to \Sigma$ consists of the following data:

- A finite set of distinct marked points $y_1, \ldots, y_m \in \Sigma$;
- marked points $x_1, \ldots, x_m \in \mathcal{X}$ such that $\pi_\Sigma(x_j) = y_j$;
- real numbers $\alpha_1, \ldots, \alpha_m \in (0, 1)$ associated to each marked point and called the weights of the marked points.

The geometrically ruled surface together with its parabolic structure is simply called a parabolic ruled surface.

We consider smooth holomorphic curves $S \subset \mathcal{X}$ such that $\pi_\Sigma|_S : S \to \Sigma$ has degree 1, in other words, holomorphic sections of $\mathcal{X} \to \Sigma$. The parabolic slope of S is defined by the formula

$$\text{par} \mu(S) = [S]^2 + \sum_{x_j \notin S} \alpha_j - \sum_{x_j \in S} \alpha_j,$$

where $[S] \in H_2(\mathcal{X}, \mathbb{Z})$ is the homology class of S and $[S]^2$ its self-intersection. In the rest of this text, the homology class of a curve S will be denoted S as well, without using the brackets.

A parabolic ruled surface is **stable** if $\text{par} \mu(S) > 0$ for every holomorphic section S. More generally, we say that a parabolic ruled surface $\mathcal{X} \to \Sigma$ is **poly-stable**, if it is stable, or if there are two non-intersecting holomorphic sections S_- and S_+ with vanishing parabolic slope (i.e. sections such that $S_+ \cdot S_- = 0$ and $\text{par} \mu(S_{\pm}) = 0$).

Remark 1.1.1. A parabolic structure on $\mathcal{X} = \mathbb{P}(E) \to \Sigma$ gives a line $x_j \subset E_{y_j}$. This data together with the choice of a pair of weights $0 \leq \beta_1 < \beta_2 < 1$ such that $\beta_2 - \beta_1 = \alpha_j$ for each point y_j defines a parabolic structure on the vector bundle $E \to \Sigma$ in the sense of Mehta-Seshadri [13]. With our conventions we have $\text{par} \mu(S) = \text{par deg}(E) - 2 \text{par deg}(L)$, where par deg is the parabolic degree of a parabolic bundle in the sense of Mehta-Seshadri and L is the line sub-bundle corresponding to S.

By definition, the notions of parabolic stability for a parabolic ruled surface $\mathcal{X} \to \Sigma$ are equivalent to the various notions of parabolic stability in the sense of Mehta-Seshadri for the underlying parabolic vector bundle $E \to \Sigma$ (cf. [15] for more details).

1.2. **Iterated blowups of a parabolic ruled surface with rational weights.** Our main result deals with parabolic structures with rational weights. We shall use the conventions $\alpha_j = \frac{p_j}{q_j}$ where $0 < p_j < q_j$ with p_j and q_j coprime integers.

In such situation, the marked points and rational weights define an iterated blowup $\hat{\mathcal{X}} \to \mathcal{X}$ introduced in [15]. We recall the construction as it is an essential ingredient of this paper. In order to simplify the notations, we pretend that the parabolic structure on \mathcal{X} is reduced to a single point $y \in \Sigma$; let x be the corresponding point in $F = \pi^{-1}(y)$ and let $\alpha = \frac{p}{q}$ be the weight.
The first step is to blowup the point x, to get a diagram of the form

$$
\begin{array}{c}
\quad -1 \\
\quad F \\
\quad -1 \\
\quad E
\end{array}
$$

Here the edges represent rational curves, the number above each edge is the self-intersection of the curve and the hollow dots represent transverse intersections with intersection number +1. The curve \hat{F} is the proper transform of F, whereas the other component \hat{E} is the exceptional divisor of the blowup at x.

By blowing-up the intersection point of \hat{F} and \hat{E} we get the diagram

$$
\begin{array}{c}
\quad -2 \\
\quad -1 \\
\quad -2
\end{array}
$$

The -1-curve above has exactly two intersection points with the rest of the string. We can decide to blowup either one of them and we carry on with this iterative procedure, blowing-up at each step one of the two intersection point of the -1-curve. After a finite number of blowups we obtain an iterated blowup $\pi \Sigma : \hat{X} \to X$ with $\pi^{-1} \Sigma(F) = \pi^{-1} \Sigma(y) \subset X$. It turns out that there is exactly one way to perform the iterated blowup so that the integers e_j^- are given by the continued fraction expansion of α:

\begin{equation}
\alpha = \frac{p}{q} = \frac{1}{e_1^- - \frac{1}{e_2^- - \cdots}}.
\end{equation}

Then the e_j^+’s are given by the continued fraction

\begin{equation}
1 - \alpha = \frac{q - p}{q} = \frac{1}{e_1^+ - \frac{1}{e_2^+ - \cdots}}.
\end{equation}

Note that these expansions are unique since we are assuming $e_j^+ \geq 2$.

If the parabolic structure has more marked points, we perform iterated blowups in the same manner for each marked point and corresponding weight.

1.3. **From parabolic to orbifold ruled surfaces.** Contracting the strings of E_j^\pm-curves in \hat{X} gives an orbifold surface \overline{X} and $\pi_{\overline{X}} : \hat{X} \to \overline{X}$ is the minimal resolution. Replacing the marked points y_j of Σ with orbifold singularities of order q_j, we obtain an orbifold Riemann surface $\overline{\Sigma}$. It turns out that there is a holomorphic map of orbifolds $\pi_{\overline{\Sigma}} : \overline{X} \to \overline{\Sigma}$.
which gives \tilde{X} the structure of a geometrically ruled orbifold surface. All these facts are detailed in [15] where the structure of the orbifold singularities is studied precisely.

1.4. Near a boundary ray of the Kähler cone. The positive ray

$$\mathcal{R}(\Sigma) = \{ \gamma \in H^2_{orb}(\Sigma, \mathbb{R}), \gamma \cdot [\Sigma] > 0 \}$$

is by definition the entire Kähler cone of the orbifold Riemann surface Σ. For practical reasons, the image of $\mathcal{R}(\Sigma)$ under the canonical injective maps

$$H^2_{orb}(\Sigma, \mathbb{R}) \xrightarrow{\pi^*} H^2_{orb}(\tilde{X}, \mathbb{R}) \xrightarrow{\pi^*} H^2(\tilde{X}, \mathbb{R})$$

shall be denoted by $\mathcal{R}(\Sigma)$ as well. So, depending on the context, $\mathcal{R}(\Sigma)$ will represent a ray in $H^2_{orb}(\Sigma, \mathbb{R})$, $H^2_{orb}(\tilde{X}, \mathbb{R})$ or $H^2(\tilde{X}, \mathbb{R})$.

Remark 1.4.1. The notation H^k_{orb} stands for the orbifold De Rham cohomology. Here, we emphasize the fact that we like to represent cohomology classes by closed differential forms which are smooth in the orbifold sense. However, the notation is unimportant, as there is a canonical isomorphism $H^k_{orb}(\tilde{X}, \mathbb{R}) \cong H^k(\tilde{X}, \mathbb{R})$ with the standard singular cohomology. The proof of this property boils down to the fact that there is a local Poincaré lemma in the context of orbifold De Rham cohomology.

Let $K(X)$ and $K(\hat{X})$ be the Kähler cones of the orbifold X and of \hat{X}. It is well known that \hat{X} and \overline{X} are of Kähler type. These cones are therefore nonempty. The following lemma is more precise, and concerns the Kähler classes that will be relevant for our results:

Lemma 1.4.2. The ray $\mathcal{R}(\Sigma)$ is contained in the closure of $\mathcal{K}(\tilde{X}) \cap H^2(\tilde{X}, \mathbb{Q})$ in $H^2(\tilde{X}, \mathbb{R})$. In other words, for every open cone $U \subset H^2(\tilde{X}, \mathbb{R})$ such that $\mathcal{R}(\Sigma) \subset U$, the cone $\mathcal{K}(\tilde{X}) \cap H^2(\tilde{X}, \mathbb{Q}) \cap U$ is nonempty.

The fiberwise hyperplane section of $X \to \Sigma$ defines a holomorphic orbifold line bundle denoted $\mathcal{O}_X(1) \to X$ (the construction is completely similar to the case of smooth geometrically ruled surfaces).

Like in the smooth case, one can construct a Hermitian metric h on $\mathcal{O}_X(1) \to \overline{X}$ with curvature F_h, such the closed $(1,1)$ form $\omega_h = \frac{i}{2\pi} F_h$ restricted to any fiber of $X \to \Sigma$ is a Kähler form. We may even assume that the restriction of ω_h to the fibers agrees with the Fubini-Study metric on \mathbb{CP}^1. Notice that with our conventions

$$[\omega_h] = c^{orb}_1(\mathcal{O}_X(1)),$$

where $c^{orb}_1 \in H^2_{orb}(\overline{X}, \mathbb{R})$ denotes the first (orbifold) Chern class of an orbifold complex line bundle. Modulo the isomorphism $H^2_{orb}(\overline{X}, \mathbb{R}) \cong H^2(\overline{X}, \mathbb{R})$ between DeRham orbifold cohomology and singular cohomology, one can show that orbifold Chern classes are rational.

Let $\Omega_\Sigma \in \mathcal{R}(\Sigma)$ be a Kähler class on Σ represented by a Kähler metric with Kähler form ω_Σ. We shall assume that Ω_Σ is integral, which is always possible, up to multiplication by a positive constant. It is easy to check that for every constant $c > 0$ sufficiently small, the closed $(1,1)$-form

$$(1.4.3) \quad \omega^{\text{orb}}_c = \frac{i}{2\pi} \omega_\Sigma + c \omega_h$$
is definite positive on \hat{X}. Thus ω^{orb}_c defines a Kähler orbifold metric on \hat{X} with Kähler class
\[(1.4.4) \quad \Omega^{orb}_c = \pi^* \Omega_\Sigma + c \cdot c_1^{orb} (O_X(1)).\]

Assuming again that the parabolic structure has exactly one marked point, we consider $(1,1)$-cohomology class on \hat{X} given by
\[(1.4.5) \quad \Omega = \pi^* \Omega^{orb}_c + \sum_{j=1}^k c_j^- [E_j^-] + \sum_{j=1}^l c_j^+ [E_j^+],\]
where $c_j^\pm \in \mathbb{R}$ and $[E_j^\pm] \in H^2(\hat{X}, \mathbb{Z})$ denotes the Poincaré dual of $E_j^\pm \in H_2(\hat{X}, \mathbb{Z})$. Here, the constants c_j^\pm are uniquely determined by the values of $\Omega \cdot E_j^\pm$, since the intersection matrix of the E_j^\pm-curves is invertible. Then we have the following result:

Lemma 1.4.6. Given $c > 0$, there exists $\varepsilon > 0$, such that every cohomology class Ω given by (1.4.5) and satisfying $0 < \Omega \cdot E_j^\pm < \varepsilon$ is a Kähler class.

Proof. Kodaira that showed that (smooth) Kähler manifolds are stable under blowup. Kodaira’s argument can be adapted to the orbifold setting, and the proof is nearly identical. Following [2] and using the scalar-flat ALE metrics of Calderbank-Singer [5], one can construct a Kähler metric ω on \hat{X} by gluing $\pi^* \omega^{orb}_c$ and a small copy of one to the Calderbank-Singer metrics. Every Kähler class such that the areas $\Omega \cdot E_j^\pm$ are sufficiently small is obtained in this way. □

Proof of Lemma 1.4.2. An element of $\mathcal{R}(\Sigma)$ is represented by a Kähler class Ω_Σ. The constant c and $\Omega \cdot [E_j^\pm]$ that appear in the above discussion can be chosen to be rational and we may assume that we have a Kähler class $\Omega \in H^2(\hat{X}, \mathbb{Q})$. It is now obvious that Ω is arbitrarily close to the pullback of Ω_Σ for c and $\Omega \cdot [E_j^\pm]$ sufficiently small. The result follows for the case where the parabolic structure has exactly one point. The general case is an obvious generalization. □

Definition 1.4.7. If there exists an open cone U in $H^2(\hat{X}, \mathbb{R})$, containing the ray $\mathcal{R}(\Sigma)$, with the property that any Kähler class in $U \cap \mathcal{K} (\hat{X})$ can be represented by a CSCK (resp. extremal) metric, we say that the iterated blowup \hat{X} is basically CSCK (resp. extremal).

If there exists an open cone U in $H^2(\hat{X}, \mathbb{R})$, containing the ray $\mathcal{R}(\Sigma)$, with the property that any rational Kähler class in $U \cap \mathcal{K} (\hat{X})$ is K-stable, we say that the iterated blowup \hat{X} is basically K-stable.

More generally, any property $P(\Omega)$ depending on the choice of a cohomology class $\Omega \in H^2(\hat{X}, \mathbb{R})$ is said to be basically satisfied, if it holds for every Ω contained in a sufficiently small cone about the ray $\mathcal{R}(\Sigma)$. In other words, if P holds for every Ω sufficiently close to a basic class. This explains my choice of terminology; perhaps there are better choices and I am open to suggestions.

Example 1.4.8. There is no general existence theory for extremal metrics. An exciting approach for fibrations in various contexts was adopted by Hong, Fine and Brönnle [10, 7, 4]. Their idea is to construct approximate extremal metrics by making the base of the fibration huge, which is sometimes referred to as taking
an adiabatic limit. Then the extremal metric is obtained by perturbation theory. The results aforementioned show that the fibration under consideration is basically extremal in the sense of Definition 1.4.7.

Remark 1.4.9. The condition of K-stability may be defined for varieties polarized by a rational Kähler class. From a more down to earth point of view, a rational class becomes an integral Kähler class Ω after multiplication by a suitable positive integer. The class Ω defines an ample holomorphic line bundle $L_\Omega \to \hat{X}$ with $c_1(L_\Omega) = \Omega$ and the condition of K-stability for the original rational polarization is equivalent to the usual notion of K-stability for (\hat{X}, L_Ω) (cf. §3.2 for more details).

1.5. Comments and proof of Theorem A. Our main result is an attempt to solve the conjecture made in [15]. Loosely speaking, we expect a correspondence between the two classes of objects represented in the following diagram:

\[
\begin{array}{c|c}
\text{Parabolically stable ruled surfaces } X \to \Sigma & \text{CSCK metrics on the corresponding iterated blowup } \hat{X} \\
\end{array}
\]

Theorem A shows that the answer to the conjecture is positive, under some mild assumptions, provided we consider only certain Kähler classes on \hat{X} close to the boundary ray $\mathcal{R}(\Sigma)$ of the Kähler cone.

We should point out that when the parabolic structure is empty, i.e. when $\hat{X} = X = \mathbb{P}(E)$ is a geometrically ruled surface, the problem is completely understood [1]. In this case, the result of Apostolov and Tønnesen-Friedman says that $E \to \Sigma$ is a polystable holomorphic bundle if and only if $\mathbb{P}(E)$ is CSCK, for any Kähler class.

Notice that the conjecture deals with highly non generic ruled surfaces. Indeed, the complex structures of iterated blowups $\hat{X} \to X$ encoded by parabolic structures are very special. It is tempting to believe that our result could be used as the very first step toward a proof of the general Donaldson-Tian-Yau conjecture for ruled surfaces. Here, some kind of deformation theory and continuity method is needed. Important progress shall be made for completing this program, especially for dealing with the difficult compactness issue of the relevant moduli spaces.

Proof of Theorem A. (1) \Rightarrow (2) is an immediate consequence of Stoppa’s result [18].

(3) \Rightarrow (1) is essentially contained in the joint work of the author with Michael Singer [15, 17, 16] plus some slight improvements explained at §2. More precisely the result follows from point (1) in Theorem 2.1.4.

(2) \Rightarrow (3) was the missing piece of the puzzle that completes the full picture. We shall prove that if $X \to \Sigma$ is not parabolically stable, one can construct destabilizing test configuration as proved in Corollary 4.0.8. This requires a delicate computation for the Futaki invariant at §4.6.

1.6. Acknowledgements. The author would like to thank Gábor Székelyhidi for some stimulating discussions during the fall 2012, at the MACK5 conference in Rome.

2. Extremal ruled surfaces and gluing theory

2.1. Application of the Mehta-Seshadri theorem. Let $X \to \Sigma$ be a parabolic geometrically ruled surface with rational weights. If $X \to \Sigma$ is parabolically
polystable, it is a flat \mathbb{CP}^1 bundle on the complement of the fibers $\pi^{-1}_J(y_j)$ by Mehta-Seshadri theorem [13] and the monodromy of the flat connection is given by a morphism $\rho: \pi_1(\Sigma \setminus \{y_j\}) \to SU_2/\mathbb{Z}_2$. In addition, if l_j is the homotopy class of a loop in $\Sigma \setminus \{y_j\}$ winding once around y_j, then $\rho(l_j)$ is given by the matrix
\[
\begin{pmatrix}
e^{i\pi \alpha_j} & 0 \\ 0 & e^{-i\pi \alpha_j}
\end{pmatrix}
\]
up to conjugation. In particular $\rho(l_j)$ has order q_j and the morphism descends to
\[\rho: \pi_{\text{orb}}^1(\Sigma) \to SU_2/\mathbb{Z}_2,\]
as the orbifold fundamental group $\pi_{\text{orb}}^1(\Sigma)$ is just deduced from $\pi_1(\Sigma \setminus \{y_j\})$ by adding the relation $l_j^{q_j} = 1$.

Now, the orbifold Riemann surface Σ admits an orbifold metric g_Σ of constant curvature in its conformal class, unless it is a “bad” orbifold in the sense of Thurston. That is if Σ is a teardrop or a football\(^1\) with two singularities of distinct orders.

Remark 2.1.1. In fact Σ cannot be bad if $X \to \Sigma$ is polystable. Indeed, assume that $\Sigma \cong \mathbb{CP}^1$ and that the parabolic structure has exactly one marked point with weight $\alpha = p/q$. Let l be the homotopy class of a loop winding once around the parabolic point of \mathbb{CP}^1. By the Mehta-Seshadri theorem, $\rho(l)$ has order q. But l is trivial, since \mathbb{CP}^1 with one puncture is contractible. It follows that $q = 1$ which is impossible. A similar argument shows that Σ cannot be a football with two singularities of distinct orders.

Since the monodromy acts isometrically on \mathbb{CP}^1 endowed with the Fubini-Study metric, the twisted product $\Sigma \times_\rho \mathbb{CP}^1$ carries a local product deduced g_Σ and g_{FS}. Adjusting the metrics on each factor by a constant. In conclusion of the above discussion and Remark 2.1.1, we get the following lemma:

Lemma 2.1.2. If $X \to \Sigma$ is parabolically polystable, Σ and \overline{X} admit orbifold CSCK metrics in every Kähler classes.

This construction was the key argument used in [15, 17, 16] together with the Arezzo-Pacard gluing theory [2], for producing CSCK metrics on the desingularization \overline{X} of $\overline{\mathcal{X}}$. The point is that the local resolution of isolated singularity that occur in $\overline{\mathcal{X}}$ admit scalar-flat Kähler metrics deduced from the Calderbank-Singer ALE scalar-flat Kähler metrics [5].

The gluing theorem that we shall use can be stated as follows.

Theorem 2.1.3. Let $\overline{\mathcal{X}}$ be a CSCK orbifold surface with Kähler class Ω_{orb} and isolated singularities z_i modelled on \mathbb{C}^2/Γ_i, where Γ_i is a finite cyclic subgroup of $U(2)$. Let $\pi_{\overline{\mathcal{X}}}: \overline{\mathcal{X}} \to \overline{\mathcal{X}}$ be the minimal resolution. Then $\overline{\mathcal{X}}$ admits extremal metrics in every Kähler class sufficiently close to $\pi_{\overline{\mathcal{X}}}^{-1}\Omega_{\text{orb}}$.

Proof. In the case where $\overline{\mathcal{X}}$ has no nontrivial holomorphic vector field, the result is essentially an application of Arezzo-Pacard gluing theorem [2] to $\overline{\mathcal{X}}$ and the Calderbank-Singer metrics [5].

Arezzo-Pacard gluing theorem actually provides only a one parameter family of CSCK metrics, by gluing in a copy of one particular Calderbank-Singer metric\(^1\)Using the more politically correct term northern-American-football may be a safer option.
with scale ε. One can improve the Arezzo-Pacard gluing theory, working uniformly with all (a finite dimensional smoothly varying family) Calderbank-Singer metrics and the result follows.

In the case where \hat{X} admits non trivial holomorphic vector fields, one can prove the same result working with the equation of extremal metrics instead. It suffices to work modulo a maximal compact torus of the isometry group of $\hat{\mathcal{X}}$. This approach has been successfully implemented by Tipler [19]. Again one has to be extra careful to get a uniform result, not only a one parameter family. \hfill \Box

We deduce the following theorem:

Theorem 2.1.4. Suppose that $\mathcal{X} \to \Sigma$ is a parabolic ruled surface and Ω^{orb} be an orbifold Kähler class on $\hat{\mathcal{X}}$.

- If $\mathcal{X} \to \Sigma$ is parabolically polystable, then every Kähler class of $\hat{\mathcal{X}}$ sufficiently close to $\pi^* \Omega^{orb}$ contains an extremal metric.
- If $\mathcal{X} \to \Sigma$ is parabolically stable then $\hat{\mathcal{X}}$ has no nontrivial holomorphic vector fields and the extremal metric must be CSCK.

Proof. If $\mathcal{X} \to \Sigma$ is polystable, $\hat{\mathcal{X}}$ admits a CSCK metric with Kähler class Ω^{orb} by Lemma 2.1.2. The existence of extremal metrics for Kähler classes Ω sufficiently close to Ω^{orb} on $\hat{\mathcal{X}}$ follows from Theorem 2.1.3.

If $\mathcal{X} \to \Sigma$ is parabolically stable, $\pi^{orb}_1(\Sigma)$ acts with no fixed points on $\mathbb{C}P^1$ via the morphism ρ (this is a part of the Mehta-Seshadri theorem [13]). This implies that Σ is not $\mathbb{C}P^1$ with two marked points, otherwise, $\mathcal{X} \to \mathbb{C}P^1$ would be at best polystable. In particular, Σ has no nontrivial holomorphic vector field.

Following [17], we deduce that $\hat{\mathcal{X}}$ has no nontrivial holomorphic vector field either. In conclusion, every extremal metric on $\hat{\mathcal{X}}$ must be CSCK. \hfill \Box

In [16], it was proved that (under some mild technical assumptions), one can always find Kähler classes close to $\pi^* \Omega^{orb}$ which are represented by CSCK metrics, even when $\mathcal{X} \to \Sigma$ is polystable but not stable. The technique is based on a refinement of Arezzo-Pacard gluing theory in presence of obstructions [3].

A computation of the Futaki invariant (cf. §4) allows to deduce this result from Theorem 2.1.4 in a simpler way. Indeed, an extremal metric is CSCK if and only if its Futaki invariant vanishes. The following theorem also shows that there are always Kähler classes near $\pi^* \Omega^{orb}$ which are represented by non CSCK extremal metrics, when the parabolic structure is non trivial:

Theorem 2.1.5. Suppose that $\mathcal{X} \to \Sigma$ is a parabolically polystable ruled surface which is not parabolically stable. We are also assuming that the parabolic structure is not trivial and that Σ is not a football.

Then the Lie algebra of holomorphic vector field of $\hat{\mathcal{X}}$ has dimension 1 and is spanned by some vector field Ξ. In addition, there exists an open cone $U \subset H^2(\hat{\mathcal{X}}, \mathbb{R})$ such that $\mathcal{R}(\Sigma) \subset U$ with the property that the equation $\mathcal{F}(\Xi, \cdot) = 0$ cuts $U \cap \mathcal{H}(\hat{\mathcal{X}})$ along a non empty regular hypersurface containing $\mathcal{R}(\Sigma)$ in its closure.

Proof. The condition of stability implies that Σ cannot be a teardrop or a football with two singularities of distinct orders (cf. Remark 2.1.1). If Σ is a football with two singularities of the same order, $\hat{\mathcal{X}}$ and $\hat{\mathcal{X}}$ are actually toric and the Lie algebra of holomorphic vector fields is two dimensional. In all the other cases, Σ has no nontrivial holomorphic vector fields and it follows that the Lie algebra is
one dimensional (cf. [16]). The property of the Futaki invariant then follows from Lemma 4.6.4.

3. Unstable parabolic ruled surfaces and test configurations

The aim of this section of to prove the statement (2) ⇒ (3) of Theorem A. Let \(X \to \Sigma \) be a geometrically ruled surface with parabolic structure and rational weights as in Theorem A. In this section, we shall assume that \(X \) carries no nontrivial holomorphic vector fields and that \(X \to \Sigma \) is parabolically unstable. Then, there is a holomorphic section of \(X \to \Sigma \), denoted \(S \), such that par\(\mu(S) \leq 0 \).

3.1. Holomorphic sections and Extensions. By definition of a geometrically ruled surface, \(X = \mathbb{P}(E) \), where \(E \to \Sigma \) is a rank 2 holomorphic vector bundle. The section \(S \) corresponds to a holomorphic line bundle \(L_+ \subset E \) and we have an exact sequence of holomorphic vector bundles

\[
0 \to L_+ \to E \to L_- \to 0
\]

where \(L_- = E/L_+ \). The vector bundle \(E \) must be an extension bundle; more precisely, \(E \) is defined by a element \(\tau \in H^1(\Sigma, L_-^* \otimes L_+) \). Such an extension will be denoted \(E = E_\tau \).

Let \(U_j \) be an open cover of \(\Sigma \) and a cocycle \(\tau_{ij} : U_i \cap U_j \to L_-^* \otimes L_+ \) defining \(\tau \). Let \(\mathcal{L}_\pm \to \mathbb{C} \times \Sigma \) be the holomorphic line bundles obtained as the pullback of \(L_\pm \) via the canonical projection \(\mathbb{C} \times \Sigma \to \Sigma \). We introduce the extension bundle \(\mathcal{E} \to \mathbb{C} \times \Sigma \) defined as follows: the restriction of \(\mathcal{E} \) to any open set \(\mathbb{C} \times U_j \) is isomorphic to \((\mathcal{L}_+ + \mathcal{L}_-) |_{\mathbb{C} \times U_j} \) and the transition maps on \(\mathbb{C} \times (U_i \cap U_j) \) are given by

\[
(\lambda, z, l_+, l_-) \mapsto (\lambda, z) \lambda \tau_{ij}(z) \cdot l_+, l_-),
\]

where \(\lambda \in \mathbb{C}, z \in U_i \cap U_j \) and \(l_{\pm} \) belong to the fiber of \(L_{\pm} \to \Sigma \) over \(z \).

The restriction of \(\mathcal{E} \) over \(\{1\} \times \Sigma \) is canonically identified to \(E_\tau \simeq E \to \Sigma \) and the bundle \(\mathcal{E} \) sits in an exact sequence

\[
0 \to \mathcal{L}_+ \to \mathcal{E} \to \mathcal{L}_- \to 0
\]

There is an obvious \(\mathbb{C}^* \)-action defined on open sets, and given by \(u \cdot (\lambda, z, l_+, l_-) = (u\lambda, z, ul_+, l_-) \). This action lifts as an linear \(\mathbb{C}^* \)-action on \(\mathcal{E} \to \mathbb{C} \times \Sigma \). Its restriction to \(\mathcal{E} |_{\{0\} \times \Sigma} \) identified to \(L_+ + L_- \to \Sigma \) is the induced action on the fibers given by \(u \cdot (l_+, l_-) = (ul_+, l_-) \).

Passing to the projectivization \(\mathcal{M} = \mathbb{P}(\mathcal{E}) \), we obtain a ruled manifold \(\mathcal{M} \to \mathbb{C} \times \Sigma \). In particular, the line bundle \(\mathcal{L}_+ \subset \mathcal{E} \) defines a divisor \(\mathcal{I} \subset \mathcal{M} \) with the property that \(\mathcal{I} \cap M_1 \) is identified to \(S \subset X \) whereas \(\mathcal{I} \cap M_0 \) is identified to \(S_+ \subset \mathbb{P}(L_+ + L_-) \). We summarize our observations in the following lemma:

Lemma 3.1.1. Given a geometrically ruled surface \(X \to \Sigma \) and a holomorphic section \(S \), there exists a complex manifold \(\mathcal{M} \) endowed with a \(\mathbb{C}^* \)-action and a
3.2.3. The gradient of some smooth function. Then one can show the identity where the constant \overline{F} is the Green function of a test configuration, $\pi_C : \mathcal{M} \to \mathbb{C}$, with respect to the standard \mathbb{C}^*-action on \mathbb{C}, such that:

- $\mathcal{M}_1 = \pi_C^{-1}(1)$ is isomorphic to $\mathcal{X} \simeq \mathbb{P}(E)$;
- $\mathcal{M}_0 = \pi_C^{-1}(0)$ is isomorphic to $\mathbb{P}(L_+ \oplus L_-)$ with the above notations.
- In \mathcal{M}_0, the corresponding divisors S_+ and S_- are respectively the attractive and repulsive sets of fixed points in \mathcal{M} under the \mathbb{C}^*-action.
- There exists a \mathbb{C}^*-invariant section \mathcal{I} of $\mathcal{M} \to \mathbb{C} \times \Sigma$ such that $\mathcal{I} \cap \mathcal{M}_0 = S_+$ and $\mathcal{I} \cap \mathcal{M}_1 = S$.

Remark 3.2.2. As a consequence of the above lemma, the pair (\mathcal{M}_1, S) is diffeomorphic to (\mathcal{M}_0, S_+). In particular $S^2 = S^2_+$.

3.2. Test configurations and the Donaldson-Futaki invariant. The definition of K-stability involves general test configurations (cf. [6]). However regular test configuration will be sufficient for our purpose, that is:

- a complex manifold \mathcal{M} with a holomorphic \mathbb{Q}-line bundle $\mathcal{P} \to \mathcal{M}$,
- a \mathbb{C}^*-action on \mathcal{M} that lifts to a linear \mathbb{C}^*-action on $\mathcal{P} \to \mathcal{M}$,
- \mathbb{C}^*-equivariant submersive holomorphic map $\pi_C : \mathcal{M} \to \mathbb{C}$

such that $\mathcal{P} \to \mathcal{M}$ is a fiberwise polarization. In other words, \mathcal{P} restricted to $\mathcal{M}_\lambda = \pi_C^{-1}(\lambda)$ is an ample \mathbb{Q}-line bundle for every $\lambda \in \mathbb{C}$ (i.e. a polarization).

The Donaldson-Futaki invariant is defined in the following way: the \mathbb{C}^*-action of a test configuration, $\mathcal{P} \to \mathcal{M} \to \mathbb{C}$ induces a \mathbb{C}^*-action on the central fiber. The vector space of holomorphic sections $V_k = H^0(\mathcal{M}_0, \mathcal{P}_k^*)$ is also acted on by \mathbb{C}^*. The quantity $F(k) = \frac{w_k}{\exp k}$, where w_k is the weight of the action on V_k and $d_k = \dim V_k$ admits an expansion $F(k) = F_0 + k^{-1}F_1 + \mathcal{O}(k^{-2})$ and F_1 is the Donaldson-Futaki invariant of the test configuration.

A complex manifold polarized by a \mathbb{Q}-line bundle is said to be K-stable if for every test configuration $\mathcal{P} \to \mathcal{M} \to \mathbb{C}$ where it appears as the generic fiber, we have $F_1 \geq 0$ and $F_1 = 0$ if the test configuration is a product.

On the other hand, the usual Futaki invariant [9] is an object defined in a purely analytical way, on a smooth Kähler manifold \mathcal{M}_0 with Kähler class Ω. Given a holomorphic vector field Ξ of type $(1,0)$ and a Kähler metric ω on \mathcal{M}_0, the Futaki invariant is given by

$$\tilde{F}(\Xi, \Omega) = -2 \int_{\mathcal{M}_0} \Xi \cdot Gs \, d\mu$$

where $d\mu$ is the volume form, s is the scalar curvature and G is the Green function associated to the metric with Kähler form ω. It turns out that the Futaki invariant depends only on the Kähler class Ω, not on its representative ω used in the definition. If Ξ vanishes at some point, there exists a smooth function $t : \mathcal{M}_0 \to \mathbb{C}$ such that $\Xi = \partial t := (\partial t)^\sharp$ (cf. [11]). In other words, Ξ is the $(1,0)$-component of the gradient of some smooth function. Then one can show the identity

$$(3.2.1) \quad \tilde{F}(\Xi, \Omega) = \int_{\mathcal{M}_0} t(\bar{s} - s) \, d\mu$$

where the constant \bar{s} is the average of s.

Remark 3.2.2. We are using the opposite sign convention to the one used by Donaldson for the Futaki invariant (3.2.1), which explains the sign discrepancy when quoting his result at Proposition 3.2.3.
It was pointed out by Donaldson that the Donaldson-Futaki agrees with the Futaki invariants up to a constant in the regular case:

Proposition 3.2.3 ([6, Proposition 2.2.2]). For a regular test configuration $\mathcal{P} \to \mathcal{M} \to \mathbb{C}$ we have

$$F_1 = \frac{1}{4\text{vol}(\mathcal{M}_0)} \hat{\mathfrak{F}}(\Xi, \Omega)$$

where Ω is the Kähler class defined by the polarization $\mathcal{P}_0 \to \mathcal{M}_0$, $\text{vol}(\mathcal{M}_0)$ the corresponding volume and Ξ is the Euler vector field of the \mathbb{C}^*-action on \mathcal{M}_0.

In Lemma 3.1.1, we already produced a regular \mathbb{C}^*-equivariant family of deformation $\mathcal{M} \to \mathbb{C}$ of the ruled surface $\mathcal{M}_1 \simeq \mathbb{P}(\mathcal{E}) = \mathcal{M} \to \mathbb{C}$ with the property that $\mathcal{M}_0 \simeq \mathbb{P}(L_+ \oplus L_-)$. Relying on this result, we can easily construct test configurations for the iterated blowup $\hat{\mathcal{X}}$.

The manifold \mathcal{M}_0 has two divisors S_\pm determined by the line bundles L_\pm. The manifold \mathcal{M} also has a divisor $\mathcal{J}_+ \simeq \mathcal{E}$ with the property that $S_\pm = \mathcal{J}_+ \cap \mathcal{M}_0$.

The parabolic structure on $\mathcal{M}_1 \simeq \mathbb{P}(\mathcal{E}) = X \to \Sigma$ consists a finite set of marked points x_j in distinct fibers of $X \to \Sigma$. Let X_j be the closure in \mathcal{M} of the orbit of the points x_j under the \mathbb{C}^*-action. The points $x_j^\pm = X_j \cap \mathcal{M}_\lambda$ and weights α_j define a parabolic structure on each fiber of \mathcal{M}_λ. Notice that all the points of the parabolic structure induced on $\mathcal{M}_0 \to \Sigma$ must belong to S_\pm.

Remark 3.2.4. The above construction gives in particular a parabolic structure on $\mathcal{M}_0 \to \Sigma$. Using Remark 3.1.2, we have $\text{par}_\mu(S_+) = \text{par}_\mu(S)$, by definition.

Following the algorithm described at §1.2, one can make a iterated blowup of every deformation \mathcal{M}_λ simultaneously. This boils down to perform an iterated blowup of the curves X_j in \mathcal{M}. Thus, we obtain a blowup $\hat{\mathcal{M}} \to \mathcal{M}$ with the property that $\hat{\mathcal{M}}_1 \simeq \hat{\mathcal{X}}$. The \mathbb{C}^*-action lifts to a \mathbb{C}^*-action on $\hat{\mathcal{M}}$ and we actually have a \mathbb{C}^*-equivariant family of deformations $\hat{\mathcal{M}} \to \mathbb{C}$.

For a ruled surface $h^2.0 = h^0.2 = 0$, hence any class in H^2 is of type $(1,1)$. The fibration $\hat{\mathcal{M}} \to \mathbb{C}$ is smoothly trivial. So the cohomology spaces $H^2(\hat{\mathcal{M}}_\lambda, \mathbb{R})$ are all identified canonically to $H^2(\hat{\mathcal{X}}, \mathbb{R})$. We consider the cohomology class Ω^{orb}_c as a class in $H^2(\hat{\mathcal{X}}, \mathbb{R})$. We saw that for $c > 0$ sufficiently small, the class Ω^{orb}_c may be perturbed to give a Kähler class on $\hat{\mathcal{X}}$ (cf. §1.4). The same result applies to Ω^{orb}_c understood as a cohomology class on $\hat{\mathcal{M}}_0$ and we have the following result:

Lemma 3.2.5. For $c > 0$ and $\varepsilon > 0$ sufficiently small, the cohomology classes Ω in Lemma 1.4.6 define Kähler classes on $\hat{\mathcal{M}}_\lambda$ for every $\lambda \in \mathbb{C}$.

In particular, if the constants c and c^\pm_j are all chosen rational, the cohomology class Ω is rational and it defines a \mathbb{Q}-line bundle $\mathcal{P} \to \hat{\mathcal{M}}$ with the property that $c_1(\mathcal{P}) = \Omega$. We summarize our construction in the following proposition:

Proposition 3.2.6. Let $X \to \Sigma$ be a parabolic ruled surface with rational weights and S a holomorphic section. There exists a sufficiently small open cone $U \subset H^2(\hat{\mathcal{X}}, \mathbb{R})$ that contains $\hat{\mathfrak{F}}(\Sigma)$ with the property that for every rational Kähler class $\Omega \in \mathcal{K}(\hat{\mathcal{X}}) \cap U$, we can define a test configuration $\hat{\mathcal{M}} \to \mathbb{C}$, polarized by a \mathbb{Q}-line bundle $\mathcal{P} \to \mathcal{M}$ with the following property:
(1) \(\hat{\mathcal{M}} \to \mathbb{C} \times \Sigma \) is an iterated blowup encoded by the parabolic structure of the ruled manifold \(\mathcal{M} \to \mathbb{C} \times \Sigma \) given by Lemma 3.1.1, endowed with the induced \(\mathbb{C}^* \)-action.

(2) The restriction \(P|_{\hat{\mathcal{M}}_1} \to \hat{\mathcal{M}}_1 \) is identified to \(\hat{X} \) endowed with a \(\mathbb{Q} \)-line bundle of first Chern class \(\Omega \).

(3) \(\hat{\mathcal{M}}_0 \) is an iterated blowup of \(\mathcal{M}_0 \simeq \mathbb{P}(L_+ \oplus L_-) \) encoded by the induced parabolic. All the parabolic points of \(\mathcal{M}_0 \) where the blowups occur are located on the sections \(S_\pm \) corresponding to \(L_\pm \) structure.

4. On the Futaki invariant of blownup ruled surfaces

In this section, we shall prove the following proposition.

Proposition 4.0.7. Let \(\mathcal{X} \to \Sigma \) be a parabolic ruled surface with rational weights. Let \(S \) be a holomorphic section such that \(\text{par}_{\mu}(S) \leq 0 \). Then for every open cone \(U \subset H^2(\hat{\mathcal{X}}, \mathbb{R}) \) such that Proposition 3.2.6 holds, there exists a rational Kähler class \(\Omega \in K(\hat{\mathcal{X}}) \cap U \) such that corresponding test configuration \(P \to \hat{\mathcal{M}} \to \mathbb{C} \) has non-positive Donaldson-Futaki invariant.

Since \(\hat{\mathcal{X}} \) has no nontrivial holomorphic vector field and \(\hat{\mathcal{M}}_0 \) does, the test configuration must be non-trivial. Thus we get the following corollary which proves the statement (2) \(\Rightarrow \) (3) of Theorem A:

Corollary 4.0.8. If \(\mathcal{X} \to \Sigma \) is not parabolically stable and \(\hat{\mathcal{X}} \) has no nontrivial holomorphic vector fields, then \(\hat{\mathcal{X}} \) is not basically K-stable.

Proof of Proposition 4.0.7. Donaldson proved in [6] that for a regular test configuration, the Donaldson-Futaki invariant is actually given by the usual Futaki invariant of the central fiber. This is the case for the test configuration \(P \to \hat{\mathcal{M}} \to \mathbb{C} \). Computing the Futaki invariant of its central fiber is the goal of the rest of this section. In particular, the proposition follows from the Lemmas 4.6.1, 4.6.3, 4.6.4 and Remark 3.2.4. \(\square \)

4.1. Geometrically ruled surfaces with circle symmetry. From Proposition 3.2.6, we have \(\mathcal{M}_0 \simeq \mathbb{P}(L_+ \oplus L_-) \). In addition, this geometrically ruled surface is endowed with a parabolic structure deduced from the parabolic structure on \(\mathcal{M}_1 \) as explained at §3.2. In more concrete terms, we pass from a parabolic structure on \(\mathcal{M}_1 \) to a parabolic structure on \(\mathcal{M}_0 \) as follows: let \(x^1_j \) be a parabolic point in \(\mathcal{M}_1 \) such that \(\pi_\Sigma(x^1_j) = y_j \). Then, there is a parabolic point \(x^0_j \in \mathcal{M}_0 \) in the fiber of \(y_j \in \Sigma \), such that \(x^0_j \in S_+ \) if \(x^1_j \in S \), and, \(x^0_j \in S_- \) otherwise. Eventually, the parabolic weight attached to \(x^0_j \) is given by the weight of \(x^1_j \). The central fiber \(\mathcal{M}_0 \) of the test configuration given by Proposition 3.2.6 is the iterated blowup of the parabolic ruled surface \(\mathcal{M}_0 \to \Sigma \). Similarly to \(\mathcal{X} \to \Sigma \), we obtain a complex geometrically ruled orbifold surface \(\mathcal{M}_0 \to \Sigma \) by contracting the \(E^\pm_j \)-curves in \(\mathcal{M}_0 \).

By construction \(\mathcal{M}_0 \) is endowed with a \(\mathbb{C}^* \)-action coming from the \(\mathbb{C}^* \)-action on the complex manifold \(\mathcal{M} \). In fact, this action is determined by the following properties:

- the action is free on a dense open subset of \(\mathcal{M}_0 \),
- it preserves the fibers of the ruling \(\mathcal{M}_0 \to \Sigma \),
- the sections \(S_\pm \) are the fixed points of the action,
• the points of S_- are repulsive, and the points of S_+ are attractive.

As all the parabolic points of $\mathcal{M}_0 \to \Sigma$ belong to $S_- \cup S_+$, the \mathbb{C}^*-action lifts to $\hat{\mathcal{M}}_0 \to \mathcal{M}_0$. Let \hat{S}_- and \hat{S}_+ be the proper transforms of S_- and S_+ in $\hat{\mathcal{M}}_0$. Notice that the \mathbb{C}^*-action also descends via the canonical projection $\mathcal{M}_0 \to \hat{\mathcal{M}}_0$, since it must preserve holomorphic spheres of negative self-intersection.

4.2. Cremona transformations. As we noticed, any parabolic point $x \in F = \pi_\Sigma^{-1}(y) \subset \mathcal{M}_0$ belongs to S_+ or S_-. Assume $x \in S_-$. Let $\mathcal{M}'_0 \to \mathcal{M}_0$ be the blowup at x and $\hat{F} \subset \mathcal{M}'_0$ be the proper transform of F. Since \hat{F} has self-intersection -1 it can be contracted back to a point x'. The contraction is denoted $\mathcal{M}'_0 \to \mathcal{M}'_0$. Such an operation (blowing up, then contracting) is called a Cremona transformation. Notice that the proper transform $S'_+ \subset \mathcal{M}'_0$ of S_+ contains the point x'.

Furthermore, the ruled surface $\mathcal{M}'_0 \to \Sigma$ has a natural parabolic structure induced by the parabolic structure of $\mathcal{M}_0 \to \Sigma$ with the convention that x has been replaced by x' and the corresponding weight α is now replaced by $\alpha' = 1 - \alpha$. It is an easy exercise to show that the notions of parabolic stability are invariant under such Cremona transformation. In addition the iterated blowup encoded by either parabolic ruled surfaces are both $\hat{\mathcal{M}}_0$.

Therefore, we may assume that all the parabolic points of \mathcal{M}_0 belong to S_+ after performing a finite number of Cremona transformations. The condition of stability is unchanged provided the weights are modified according to the above convention.

4.3. Weights of the \mathbb{C}^*-action along special fibers. The fibers of $\hat{\mathcal{M}}_0 \to \Sigma$ are preserved by the \mathbb{C}^*-action. Generic fibers are identified to $\mathbb{C}\mathbb{P}^1$ endowed with a \mathbb{C}^*-action of weight 1, and the two fixed points correspond to the intersections of the fiber with \hat{S}_\pm. In contrast, blowup fibers have more complicated \mathbb{C}^*-action. We start from $\pi_\Sigma : \mathcal{M}_0 \to \Sigma$ and assume that there is only one parabolic point x for simplicity. By §4.2 we may also assume that $x \in S_+$. The fiber F containing x is represented by the configuration of curves

\begin{equation}
\begin{array}{c}
S_- \\
\bigcirc \bigcirc \\
0 \\
\bigcirc \\
\bigcirc \\
S_+
\end{array}
\end{equation}

Here, the black dot represents the point x in the fiber $F = \pi_\Sigma^{-1}(y)$ of self-intersection 0. The integer 1 represents the weight of the \mathbb{C}^*-action induced on F.

Then we blowup the point x and get a configuration

\begin{equation}
\begin{array}{c}
\hat{S}_- \\
\bigcirc \\
-1 \\
\bigcirc \\
\bigcirc \\
\hat{S}_+
\end{array}
\end{equation}

In the above diagram, the integer 1 represent the weights of the induced \mathbb{C}^*-actions on the proper transform \hat{F} of F and on \hat{E} the exceptional divisor of the blowup.
Using the same notation, we blow up the intersection of the -1 curve and obtain (4.3.3)

\[
\begin{array}{c}
\hat{S}_- \\
\downarrow \\
-2 & -1 & -2 & 1
\end{array}
\]

(4.3.3)

\[
\hat{S}_- \\
\downarrow \\
-\epsilon_1 & -\epsilon_2 \\
\downarrow \\
-\epsilon_{k-1} & -\epsilon_k & -1 & -\epsilon_{k-1} & -1 & -\epsilon_1 \\
\downarrow \\
\hat{S}_+
\]

The we iterate our blowup procedure in order to get a diagram of the form (4.3.4)

\[
\begin{array}{c}
\hat{S}_- \\
\downarrow \\
-\epsilon_1 & -\epsilon_2 & -\epsilon_{k-1} & -\epsilon_k & -1 & -\epsilon_{k-1} & -1 & -\epsilon_1 \\
\downarrow \\
\hat{S}_+
\end{array}
\]

The weight of the \mathbb{C}^*-action induced on the -1-curve is computed by induction, using the simple formula $w = w_k^- + w_k^+$. We shall also use the notation E_j^\pm for the curve of self-intersection $-\epsilon_j^\pm$ and E_0 for the -1-curve.

Instead of starting with the configuration (4.3.2), we can formally replace the weights with the new configuration

\[
\begin{array}{c}
\hat{S}_- \\
\downarrow \\
-1 & -1 \\
\downarrow \\
\hat{S}_+
\end{array}
\]

Using the same induction as for w_j^\pm, we construct a weight system

\[
v_1^- , \ldots , v_k^-, v, v_l^+, \ldots , v_1^+. \]

By definition of the weights and the adjunction, we have

\[
F = wE_0 + \sum_{n=1}^k w_n^- E_n^- + \sum_{n=1}^l w_n^+ E_n^+ \]

and

\[
\hat{E} = vE_0 + \sum_{n=1}^k v_n^- E_n^- + \sum_{n=1}^l v_n^+ E_n^+ ,
\]

where \hat{E} and F denote the pullback the homology classes to \hat{M}_0.

We gather the relevant results in the following lemma:

Lemma 4.3.5. Using the convention $w = w_{k+1}^- = w_{l+1}^+$, we have

\[
\sum_{n=1}^k \frac{1}{w_n^- w_{n+1}^-} = \alpha, \quad \sum_{n=1}^l \frac{1}{w_n^+ w_{n+1}^+} = 1 - \alpha.
\]

Using the notation $\alpha = p/q$, the weights introduced above satisfy

\[
w = q, \quad v = p, \quad w_i^\pm = 1, \quad v_i^+ = 1 \quad \text{and} \quad v_i^- = 0.
\]

Proof. The proof by induction is straightforward and left as an exercise for the interested reader.
4.4. Computation of the Futaki invariant. LeBrun \textit{et al} \cite{LeBrun1, LeBrun2} computed the Futaki invariant of a ruled surface endowed with a semi-free \mathbb{C}^*-action. We are going to point out what should be modified for a general action. The reader is strongly advised to refer to \cite[Section 3.3]{LeBrun2} as we are following closely their notations.

Let Ξ be the $(1, 0)$-holomorphic vector field on $\hat{\mathcal{M}}_0$ defined as the Euler vector field that generates the \mathbb{C}^*-action. We define $\xi = -2\text{Im}\Xi$ as the (real) vector field that spans the underlying circle action. Let ω be a circle-invariant Kähler form on $\hat{\mathcal{M}}_0$ with Kähler class $\Omega = [\omega]$. Since ξ is a Killing field vanishing at some point, it is automatically Hamiltonian (cf. \cite{LeBrun2}). In other words, there exists a smooth Hamiltonian function $t : \hat{\mathcal{M}}_0 \to \mathbb{R}$ such that $dt = -t\xi \omega$. Then t admits a minimum along \hat{S}_- and a maximum along \hat{S}_+. Up to adding a suitable constant, we may assume that $t : \hat{\mathcal{M}}_0 \to [-a, +a]$ is a surjective map for some $a > 0$ and $\hat{S}_\pm = t^{-1}(\pm a)$.

Again, we are assuming that \mathcal{M}_0 has only one parabolic point x to keep notations simple. Up to a Cremona transformation, we may even assume that $x \in S_+$ (cf. \S 4.2). The set of critical points of the function t on $\hat{\mathcal{M}}_0$ consists of the divisors \hat{S}_\pm where t is extremal, and isolated saddle points. The latter are given by the intersections of the \hat{E}_j^\pm and E_0-curves. These points represented by the hollow dots in Diagram (4.3.4). It will be convenient to label them $f_0, \cdots, f_k, f_{k+1}, \cdots, f_{k+l+1}$ from the left to the right. In the same spirit we shall use a notation $w_1 = w_1^-, \cdots, w_k = w_k^-, w_{k+1} = w, w_{k+1} = w_1^+, \cdots, w_{k+l+1} = w_1^+$.

Let $\mathcal{V} = \hat{\mathcal{M}}_0 \setminus (S_+ \cup S_- \cup \{f_j\})$, the regular locus of t. By definition \mathcal{V} is a Seifert manifold. Any point $z \in \mathcal{V}$ has trivial stabilizer, unless z belongs to E_0 or E_j^\pm where the stabilizer is the cyclic group respectively of order w and w_j^\pm. Hence the quotient $\mathcal{N} = \mathcal{V}/S^1$ has an orbifold structure and $\varpi : \mathcal{V} \to \mathcal{N}$ is an orbifold circle bundle. This is the main difference with the case of a semi-free action, where $\mathcal{V} \to \mathcal{N}$ is a smooth circle bundle.

The function t is invariant under the circle action, hence the fibers \mathcal{V}_c of $t : \mathcal{V} \to (-a, a)$ are endowed with a circle action and the map descends to $t : \mathcal{N} \to (-a, a)$. If c is a regular value of t, $\mathcal{N}_c = t^{-1}(c) \subset Y$ is a compact orbifold. Moreover, \mathcal{N}_c has a natural Kähler structure since it is a Kähler moment map reduction of $(\hat{\mathcal{M}}_0, \omega)$ by the Hamiltonian action of the circle. Furthermore \mathcal{N}_c is isomorphic to \mathcal{N}_d if there are no critical value in the interval $[c, d]$.

Let $t_j = t(f_j)$ be the t-coordinate of the fixed point f_j. Then the following facts hold, by definition:

(1) If $t_j < c < t_{j+1}$ for some $0 \leq j \leq k + l$, the Riemann surface \mathcal{N}_c is isomorphic to Σ, where the marked point y of the parabolic structure has been replaced by an orbifold point of order w_{j+1}. In particular $\mathcal{N}_c \simeq \Sigma$ if $j = k$.

(2) Let $S_j \subset \mathcal{N}$ be a small sphere (with orbifold singularities) centered at a point $\varpi(f_j)$, for $1 \leq j \leq k + l$. Then the orbicircle bundle $\mathcal{V}|_{S_j} \to S_j$ has orbifold degree

\begin{equation}
(4.4.1) \quad c_1(\mathcal{V}) \cdot [S_j] = \frac{1}{w_j w_{j+1}}.
\end{equation}
This readily seen as $\mathcal{Y} \to S_j$ admits a w_jw_{j+1}-fold ramified cover by the Hopf fibration $S^3 \to S^2$. This is also an essential difference with the case of a semi-free circle action [11, top of the page 315].

It is also convenient to use a rescaled Kähler class in comparison with §1.4. Here we shall assume that the Kähler class Ω satisfies the identity $\Omega \cdot F = 1$. Adapting carefully the computation of [11, p. 318-319] to this orbifold context, and relying on facts (1) and (2) above, we get the identity

$$(4.4.2) \quad \int_{\mathcal{M}_0} t \, d\mu = \frac{1}{96\pi} \left(\hat{S}_+ - \hat{S}_+ + 6\Omega \cdot (\hat{S}_+ - \hat{S}_-) - 64\pi^3 \sum_{j=1}^{k+l} \frac{t_j^3}{w_jw_{j+1}} \right)$$

where $d\mu$ is the volume form of the Kähler metric ω. We also have the modified formula

$$(4.4.3) \quad \int st \, d\mu = \Omega \cdot (\hat{S}_+ - \hat{S}_-) + 4\pi^2 \sum_{j=1}^{k+l} (w_j^{-1} - 1)(t_{j+1}^2 - t_j^2)$$

where s is the scalar curvature of the metric. By definition of the Futaki invariant $\bar{\mathfrak{f}}(\Xi, \Omega) = \int (\bar{s}^\Omega - s) t \, d\mu$ and we end up with the formula

$$\bar{\mathfrak{f}}(\Xi, \Omega) = \Omega \cdot (\hat{S}_+ - \hat{S}_-) + 4\pi^2 \sum_{j=1}^{k+l} (w_j^{-1} - 1)(t_{j+1}^2 - t_j^2)$$

$$+ \frac{\bar{s}^\Omega}{96\pi} \left(\hat{S}_+ - \hat{S}_+ + 6\Omega \cdot (\hat{S}_+ - \hat{S}_-) - 64\pi^3 \sum_{j=1}^{k+l} \frac{t_j^3}{w_jw_{j+1}} \right)$$

where

$$\bar{s}^\Omega = \int s \, d\mu = 8\pi \frac{c_1(\mathcal{M}_0) \cdot \Omega}{\Omega^2}.$$

4.5. A computation in the degenerate case. Notice that if we let Ω degenerates toward (the pullback of) an orbifold Kähler class Ω^{orb} on \mathcal{M}_0, we have $t_1 = \cdots = t_k = -a$ and $t_{k+1} = \cdots = t_{k+l} = a$. Therefore, using Lemma 4.3.5 and the fact that $4\pi a = \Omega \cdot F = 1$ (cf. [11, bottom of p. 315]), we obtain

$$\lim_{\Omega \to \Omega^{orb}} \int t \, d\mu = \frac{1}{96\pi} \left(\hat{S}_+ - \hat{S}_+ + 6\Omega \cdot (\hat{S}_+ - \hat{S}_-) + a - (1 - a) \right)$$

On the other hand $[\hat{S}_+]^2 = |S_+]^2 - 1$ and $[\hat{S}_-]^2 = |S_-|^2$ since the first blowup occurred at $x \in S_+$. It follows that

$$[\hat{S}_+]^2 + \alpha = \text{par} \mu(S_-), \quad \text{and} \quad [\hat{S}_+]^2 + 1 - \alpha = \text{par} \mu(S_+).$$

Finally $\Omega \cdot (\hat{S}_+ - \hat{S}_-) = \Omega^{orb} \cdot (S_+ - S_-)$ for a orbifold Kähler class, where $\hat{S}_+ = \pi_{\mathcal{M}_0}(S_+)$. The holomorphic sections \hat{S}_+ of $\mathcal{M}_0 \to \Sigma$ corresponds to orbifold line bundle $\hat{L}_+ \to \Sigma$. In this context, it is well known that (cf. for instance [8])

$$c_1^{orb}(\mathcal{O}_{\mathcal{M}_0}(1)) \cdot \hat{S}_+ = \text{orb} \text{deg} L_+ = \text{par} \text{deg} L_+,$$

where orb deg is the natural notion of degree for an orbifold line bundle. Hence

$$\Omega \cdot (\hat{S}_+ - \hat{S}_-) = \text{par} \text{deg} L_+ - \text{par} \text{deg} L_- = (\text{par} \text{deg} L_+ + \text{par} \text{deg} L_-) - 2\text{par} \text{deg} L_- = \text{par} \mu(S_-) = -\text{par} \mu(S_+).$$

In conclusion, we have the following result:
Lemma 4.5.1. Let $\Omega \in \mathcal{K}(\hat{M}_0)$ and $\Omega^{orb} \in \mathcal{K}(\hat{M}_0)$ considered as a class on \hat{M}_0 as well. Then
\[
\lim_{\Omega \to \Omega^{orb}} \int_{\hat{M}_0} t \, d\mu = -\frac{\text{par} \mu(S_+)}{12\pi}, \quad \lim_{\Omega \to \Omega^{orb}} \int_{\hat{M}_0} \text{st} \, d\mu = -\text{par} \mu(S_+).
\]

4.6. Sign of the Futaki invariant. We deduce the following lemma, which will be crucial for the proof of Proposition 4.0.7.

Lemma 4.6.1. Suppose that $\text{par} \mu(S_+) \neq 0$. There exists a sufficiently small open cone $U \subset H^2(\hat{M}_0, \mathbb{R})$ containing the ray $\mathcal{R}(\Sigma)$, such that for every Kähler class $\Omega \in U \cap \mathcal{K}(\hat{M}_0)$, the Futaki invariant $\mathcal{F}(\Xi, \Omega)$ does not vanish and has the same sign as $\text{par} \mu(S_+)$.\n
Proof. We start with an orbifold Kähler class $\Omega_{orb}^C = c_1^{orb}(\mathcal{O}_{\hat{M}_0}(1)) + CF$ on \hat{M}_0, where $C > 0$ is chosen very large. We use a generalization of the classical result for smooth geometrically ruled surfaces:
\[
c_1^{orb}(K_{\hat{M}_0}) = -2c_1^{orb}(\mathcal{O}_{\hat{M}_0}(1)) + (\text{par deg}(E) - \chi^{orb}(\Sigma))F,
\]
where $K_{\hat{M}_0}$ is the (orbifold) canonical line bundle of the orbifold \hat{M}_0 and $\chi^{orb}(\Sigma)$ is the orbifold Euler characteristic given by
\[
\chi^{orb}(\Sigma) = \chi(\Sigma) + \sum_{j=1}^m \left(\frac{1}{q_j} - 1 \right).
\]

It follows that $\bar{s}_{\Omega_{orb}^C} = 8\pi \frac{\text{par deg}(E) + \chi^{orb}(\Sigma) + 2C}{\text{par deg}(E) + 2C}$. In particular, we see that
\[
\lim_{C \to +\infty} \bar{s}_{\Omega_{orb}^C} = 8\pi.
\]

Using the fact that
\[
\lim_{\Omega \to \Omega_{orb}^C} s_0 = s_0^{orb} \quad \text{and} \quad \lim_{\Omega \to \Omega_{orb}^C} \Omega \cdot \bar{S}_\pm = \Omega_{orb}^{C} \cdot S_\pm,
\]
and that the corresponding values of t_j converge in the following way
\[
t_j \to -a \quad \text{for} \quad j \leq k, \quad \text{and} \quad t_j \to a \quad \text{for} \quad j \geq k + 1
\]
as $\Omega \to \Omega_{orb}^C$, we see deduce that
\[
(4.6.2) \quad \lim_{\Omega \to \Omega_{orb}^C} \mathcal{F}(\Xi, \Omega) = \left(1 - \frac{s_0^{orb}}{12\pi} \right) \text{par} \mu(S_+).
\]

For C sufficiently large, the coefficient in front of $\text{par} \mu(S_+)$ is positive since
\[
\lim_{C \to +\infty} \left(1 - \frac{s_0^{orb}}{12\pi} \right) = \frac{1}{3}
\]
and the lemma follows. \qed

Eventually, we deal with the case where the section has vanishing slope. The case of a trivial parabolic structure is slightly different and must be treated separately.
Lemma 4.6.3. With the above notations, suppose that $\text{par} \mu (S_+) = 0$ and that the parabolic structure of $\mathcal{M}_0 \to \Sigma$ is empty. Then the Futaki invariant $\mathcal{F}(\Xi, \cdot)$ vanishes for every Kähler class on $\hat{\mathcal{M}}_0 = \mathcal{M}_0$.

Proof. Here $\mathcal{M}_0 \to \Sigma$ has two non-intersecting holomorphic $S_+ \pm$ with vanishing slope. Hence $\mathcal{M}_0 \to \Sigma$ is polystable in the usual Mumford sense and $\hat{\mathcal{M}}_0 = \mathcal{M}_0$ as the parabolic structure is empty. It follows that $\mathcal{M}_0 \to \Sigma$ is a flat projective bundle by the Narasimhan-Seshadri theorem [14]. This implies that every Kähler class of \mathcal{M}_0 can be represented by a CSCK metric, obtained as a local product of metrics of constant curvature. Therefore, the Futaki invariant vanishes identically.

Lemma 4.6.4. With the above notations, suppose that $\text{par} \mu (S_+) = 0$ and that the parabolic structure is not empty. Then for every open cone U in $H^2(\hat{\mathcal{M}}_0, \mathbb{R})$ such that $\mathcal{F}(\Sigma) \subset U$, there are rational Kähler classes $\Omega \in U \cap \mathcal{M}(\mathcal{M}_0)$ such that $\mathcal{F}(\Xi, \Omega) > 0$ and such that $\mathcal{F}(\Xi, \Omega) < 0$.

In addition the equation $\mathcal{F}(\Xi, \cdot) = 0$ cuts $U \cap \mathcal{M}(\mathcal{M}_0)$ along a nonempty regular hypersurface.

Proof. By (4.6.2), we have $\lim_{\Omega \to \Omega^{\text{orb}}_C} \mathcal{F}(\Xi, \Omega) = 0$. This corresponds to the limiting value of the Futaki invariant when taking the parameters $a = t_j^+ = -t_j^-$ for $j \geq 1$. The idea to prove the Lemma is to compute the partial derivatives of the Futaki invariant at Ω^{orb}_C. In fact it will suffice to consider variations of the Kähler class corresponding to the parameters $t_j^+ = \frac{t_j^+}{t_j^+ - a}$ and $t_j^- = a - \frac{t_j^-}{t_j^- + a}$ for $j \geq 1$ for $\tau^+ > 0$ sufficiently small. By definition the corresponding (orbifold) class Ω satisfies $\Omega \cdot E^+_1 = \tau^+$ and $\Omega \cdot E^+_j = 0$ for $j > 1$. Using Lemma 4.3.5 and the fact that $\Omega \cdot F = 1$, we find $\Omega \cdot E_0 = 1 - (\tau^+ + \tau^-)$. By the adjunction formula $\hat{S}_+ = S_+ - \hat{E}$. Furthermore, in terms of Poincaré dual, $S_+ = c_1(C_{M_0}(1)) - \text{deg}(L_+) \cdot F$. Thus $\hat{S}_+ - \hat{S}_- = (\text{deg}(L_-) - \text{deg}(L_+)) \cdot F - \hat{E}$ and it follows that $\Omega \cdot (\hat{S}_+ - \hat{S}_-) = \text{deg} L_- - \text{deg} L_+ + \tau^+ - \alpha (1 - (\tau^+ + \tau^-)) = \text{par} \text{deg} L_- - \text{par} \text{deg} L_+ + \alpha \tau^+ - (\alpha - 1) \tau^+$. By assumption L_+ and L_- have the same parabolic degree, therefore

$$
\Omega \cdot (\hat{S}_+ - \hat{S}_-) = \alpha \tau^+ + (\alpha - 1) \tau^+.
$$

Finally, the formula for the Futaki invariant for a variation τ^\pm can be written

$$
\mathcal{F}(\tau^\pm) = (1 - \frac{6}{96\pi} \hat{s} \Omega)((1 - \alpha) \tau^+ - \alpha \tau^-)
$$

$$
- 64\pi^3 \frac{\hat{s} \Omega}{96\pi} \left(\sum_{j=1}^{k} \frac{(t_j^+)^3 + a^3}{w_j w_{j+1}} + \sum_{j=1}^{l} \frac{(t_j^-)^3 - a^3}{w_j w_{j+1}} \right)
$$

If Ω is a sufficiently small perturbation of Ω^{orb}_C and $C > 0$ is large enough, then $\hat{s} \Omega$ is very close to 8π. It follows that the Futaki invariant is of the form $\mathcal{F}(\tau^\pm) = C_1 f_1 + C_2 f_1$ where $C_1, C_2 > 0$, $f_1 = (1 - \alpha) \tau^+ - \alpha \tau^-$ and

$$
f_2 = - \sum_{j=1}^{k} \frac{(t_j^-)^3 + a^3}{w_j w_{j+1}} - \sum_{j=1}^{l} \frac{(t_j^+)^3 - a^3}{w_j w_{j+1}}
$$

The differential are easily computed at $\tau^\pm = 0$ and they are positive multiples of

$$
(1 - \alpha) d\tau^+ - \alpha d\tau^-.
$$
It follows that the variation of \(\frac{\partial f_j}{\partial \tau} < 0 \). In particular, \(f_j \) are negative for certain arbitrarily small values of \(\tau^\pm > 0 \). It follows that \(\mathfrak{F}(\tau^\pm) \) must be negative as well. Similarly \(\frac{\partial f_j}{\partial \tau^\pm} > 0 \) and the Futaki invariant also take positive values for certain values of \(\tau^\pm > 0 \) arbitrarily small.

By density, we can always assume that the parameters \(C \) and \(\tau^\pm \) are chosen suitably so that \(\Omega \) is rational. We can also perturb the cohomology class \(\Omega \) by higher order terms so that it is a Kähler class on \(\tilde{M}_0 \) (and not just an orbifold Kähler class). The first part of the lemma follows.

Notice that our computation shows that the Futaki invariant is a submersion vanishing at \(\Omega^\text{orb} \). So the surface given by the vanishing of the Futaki invariant is regular near \(\Omega^\text{orb} \). The fact that the partial derivatives \(\frac{\partial}{\partial \tau^\pm} \) have opposite signs insures that the surface \(\mathfrak{F}(\tau^\pm, \cdot) = 0 \) cuts the quadrant \(\tau^\pm > 0 \) along a nonempty set, hence cuts the Kähler cone and the lemma follows. \(\square \)

References

Yann Rollin, Laboratoire Jean Leray (UMR 6629), Université de Nantes
E-mail address: yann.rollin@univ-nantes.fr