J. P. Aubin and H. Frankowska, Set-Valued Analysis, Modern Birkhäuser Classics, 2008.

C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard et al., Effective Component Tree Computation with Application to Pattern Recognition in Astronomical Imaging, 2007 IEEE International Conference on Image Processing, pp.41-44, 2007.
DOI : 10.1109/ICIP.2007.4379949

E. Carlinet and T. Géraud, A (fair?) comparison of many max-tree computation algorithms, This, 2013.

V. Caselles, E. Meinhardt, and P. Monasse, Constructing the Tree of Shapes of an Image by Fusion of the Trees of Connected Components of Upper and Lower Level Sets, Positivity, vol.12, issue.1, pp.55-73, 2008.
DOI : 10.1007/s11117-007-2150-2

V. Caselles and P. Monasse, Geometric Description of Images as Topographic Maps, Lecture Notes in Mathematics Series, vol.1984, 2009.
DOI : 10.1007/978-3-642-04611-7

URL : https://hal.archives-ouvertes.fr/hal-00654314

T. Géraud, Ruminations on Tarjan???s Union-Find Algorithm and Connected Operators, Proceedings of ISMM. CIVS, pp.105-116, 2005.
DOI : 10.1007/1-4020-3443-1_11

T. Géraud, H. Talbot, and M. Van-droogenbroeck, Mathematical Morphology?From Theory to Applications, pp.323-353, 2010.

M. Henle, A Combinatorial Introduction to Topology, 1994.

L. Latecki, U. Eckhardt, and A. Rosenfeld, Well-Composed Sets, Computer Vision and Image Understanding, vol.61, issue.1, pp.70-83, 1995.
DOI : 10.1006/cviu.1995.1006

R. Levillain, T. Géraud, and L. Najman, Why and how to design a generic and efficient image processing framework: The case of the Milena library, Proceedings of ICIP, pp.1941-1944, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00622480

R. Levillain, T. Géraud, and L. Najman, Writing reusable digital geometry algorithms in a generic image processing framework, Applications of Discrete Geometry and Mathematical Morphology, pp.96-100, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00733264

L. Mazo, N. Passat, M. Couprie, and C. Ronse, Digital Imaging: A Unified Topological Framework, Journal of Mathematical Imaging and Vision, vol.32, issue.9, pp.19-37, 2012.
DOI : 10.1007/s10851-011-0308-9

URL : https://hal.archives-ouvertes.fr/hal-00622529

A. Meijster and M. H. Wilkinson, A comparison of algorithms for connected set openings and closings, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.4, pp.484-494, 2002.
DOI : 10.1109/34.993556

E. Meinhardt-llopis, Morphological and Statistical Techniques for the Analysis of 3D Images, 2011.

F. Meyer, Un algorithme optimal de ligne de partage des eaux, Actes du 8e congrès AFCET, pp.847-859, 1991.

P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processing, vol.9, issue.5, pp.860-872, 2000.
DOI : 10.1109/83.841532

L. Najman and T. Géraud, Discrete Set-Valued Continuity and Interpolation, This, 2013.
DOI : 10.1007/978-3-642-38294-9_4

URL : https://hal.archives-ouvertes.fr/hal-00798574

Y. Song, A Topdown Algorithm for Computation of Level Line Trees, IEEE Transactions on Image Processing, vol.16, issue.8, pp.2107-2116, 2007.
DOI : 10.1109/TIP.2007.899616

R. E. Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, Journal of the ACM, vol.22, issue.2, pp.215-225, 1975.
DOI : 10.1145/321879.321884

Y. Xu, T. Géraud, and L. Najman, Context-based energy estimator: Application to object segmentation on the tree of shapes, 2012 19th IEEE International Conference on Image Processing, 2012.
DOI : 10.1109/ICIP.2012.6467175

URL : https://hal.archives-ouvertes.fr/hal-00762289

Y. Xu, T. Géraud, and L. Najman, Morphological filtering in shape spaces: Applications using tree-based image representations, Proceedings of ICPR, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00714847

Y. Xu, T. Géraud, and L. Najman, Two Applications of Shape-Based Morphology: Blood Vessels Segmentation and a Generalization of Constrained Connectivity, This, 2013.
DOI : 10.1007/978-3-642-38294-9_33

URL : https://hal.archives-ouvertes.fr/hal-00798625