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Abstract—This paper adapts a new template matching and tar-

get detection algorithm in multispectral images to a compressive

sensing strategy. That template matching algorithm found in [1]

relies on particular properties of L1 minimization algorithms

to succeed. We propose a new algorithm that is reconstructing

in a single step the location of a given signature of interest

bypassing the image reconstruction and the template matching

algorithm on that image. For that purpose, we use a modified

split Bregman algorithm with various regularizers. We conduct

numerical experiments on real-world multispectral image.

Index Terms—multispectral image, compressed sensing, tem-

plate matching, Bregman

I. INTRODUCTION

T

ARGET detection is one of the most important applica-
tions of multispectral imaging. Processing the data can

become very time consuming and complex. There are many
target detection techniques. Recently Guo and Osher proposed
an original approach relying on L1 minimization in [1]. The
data collected by multispectral sensors is modeled as a matrix
X . Each column corresponds to a channel and each row is a
pixel’s spectrum. Suppose we want to detect pixels of spectral
signature s. The following minimization in [1] is suggested:

argmin

u�0
kuk1 s.t. kXTu� sk2 < �. (1)

The pixels of spectral signature s in X are identified by the
nonzero entries in u. This can be intuitively explained as
follows. The term XTu is the linear combination of all pixels’
spectrum of X weighted by u. The regularizer used is the
L1 norm that make u sparse. As a result, the algorithm is
looking for a reduced set of pixels whose linear combination
with coefficients in u yields s. The only way to satisfy this
constraint is to have a nonzero entry in u at every pixels
of spectral signature s. That way, we would have a linear
combination of spectral signature approaching s which would
give s.

However it raises two questions:
• How can we be sure that all pixels of interest are spotted?

This raises the question of missing detection.
• A linear combination of random pixels could yield s.

How can we be sure such a combination is discarded?
This raises the question of false positive.

In the following, we will give arguments that answer these
two questions.

The outline of the paper is as follows. In section II we
review the template matching algorithm and answer questions

raised in the introduction. In section III we develop a compres-
sive template matching performing the same detection without
having the multispectral image at hand. Section IV is devoted
to numerical results applied to two different multispectral
images. We give conclusions and perpectives in section V.

II. TEMPLATE MATCHING

The first question is why is there no false negative? In other
words, why every pixel of interest has a nonzero corresponding
entry in u? This can be intuitively explained by noting that if
a solution of XTu = s minimizing the L1 norm is randomly
selected then it has with high probability the largest possible
support. Indeed, the L1-ball is a polytope: it is a bounded
intersection of half-spaces. Its boundary is composed of d-
dimensional faces. Edges are 0-dimensional faces and faces are
just (n � 1)-dimensional faces. The L1-ball has the property
that a point on its boundary and of support d is on a (d� 1)-
face. Now, the solutions of XTu = s form a affine subspace.
Those whose L1 norm is minimum belongs to the intersection
of this subspace with the boundary of a L1-ball of minimum
radius. A point chosen at random in that intersection belongs
to a face with high probability. Thus, it has the highest support.
Based on this remark we make the following assumption:

Assumption II.1. Algorithms used to solve minimization

problem like (1) converge to a solution that has the largest

L0 norm among those that have the smallest L1 norm.

We now formulate a proposition that is easily derived from
the previous assumption and shows that two different solutions
with maximal support actually have the same support.

Proposition II.1. Let u1 and u2 be two solutions of the

minimization problem (1) whose L0 norm is the largest. Then

their support are equal.

This proves that the algorithms will find the same support
and that this support will be maximal, hence no false negative.

The second question is why is there no false positive? In
other words why u has to be nonzero only for pixels of
signature s? Indeed in practice X has many more rows than
columns so XT is likely surjective. In that case, we can
imagine that u could mix very different signatures so that
XTu = s. However, even if such a combination exists, the
corresponding L1 norm of u would be likely larger than 1
and thus discarded.
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III. COMPRESSIVE TEMPLATE MATCHING

The previous template matching algorithm needs the whole
multispectral data cube to work. In this section, we propose an
new algorithm working in a compressive sensing context [2],
[3] where we only have access to a small number of linear
measurements on the multispectral image. The idea is to
directly reconstruct the vector u solution of (1) rather than
reconstructing the whole multispectral image first and then
solve the algorithm (1). A similar bypassing idea has been
exploited on a recent paper [4] which deals with unmixing of
hyperspectral data.

We introduce necessary notations here. We will assume that
the multispectral image has nP pixels and nB bands. As
a result, the matrix X has nP rows and nB columns. The
acquisition model is described as

M = FX,

where F is a sensing matrix of size m ⇥ nP and M the
measurement matrix of size m⇥nB . Suppose we only acquire
a fraction p of the overall data. We have the relation

m · nB = p · nB · nP .

so the number of rows of F is m = bp · nP c.
We now have to eliminate X from the two equations

XTu = s and M = FX . One way is to introduce a matrix
between XT and u of the from FTA so we could replace
XTFT by MT and eliminate X . This matrix should theo-
retically be equal to the identity. However that is impossible
because FTA is not invertible. Given a matrix F , we have to
find a matrix A such that FTA ⇡ InP . In the following, we
will consider two candidates for A. The first candidate come
from the observation that if F is an independent and identically
distributed (iid) Gaussian matrix, we have 1

mFTF ⇡ InP as
showed in [5]. We can then take A =

1
mF and we will refer

to this type of matrix as type 1 (T1). One other candidate for
A is obtained by solving the following minimization

argmin

A
kFTA� IkF , (2)

where k · kF is the Frobenius norm which is basically the
Euclidean norm of the vectorized matrix. This is a well know
problem involving the pseudo-inverse of A. One can show
that the solution writes A = (FFT

)

�1FT . However, that
minimization does not help us determining F . In fact, we can
show that if F is of full rank, the norm kFT

(FFT
)

�1F�IpkF
is constant and is equal to

p
nP �m. Among all matrix of full

rank F , some are obviously better than others for a sensing
matrix. For example, the matrix

�
Im 0

�
, (3)

is a very bad one because the distance to Ip is concentrated in
a few entries. We would like to have the error shared equally
by all the entries of F . Keeping (FFT

)

�1F as a possible
candidate, we are now interested in the minimization

argmin

�
k�FT

(FFT
)

�1F � Ik1. (4)

The solution is the right scaling of the candidate (FFT
)

�1F
so as to minimize the maximum error. If F is iid Gaussian, we
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Fig. 1: � minimizing maximum error

have already seen that FFT ⇡ nP Im. We have also FTF ⇡
mInP . This suggests that � =

nP
m . This is indeed what we

find in Fig. 1 where m = 30 and nP = 100, the minimum
error is at � ⇡ 3 =

nP
m .

We have two candidates. Type 1 (T1) is 1
mF and type 2

(T2) is nP
m (FFT

)

�1F . Figure 2 depicts the maximum error
for the two types of matrix A. We also try two types of sensing
matrix F : iid Gaussian and iid Gaussian circulant. Circulant
matrix are used as sensing matrix because it has been shown
to be almost as effective as the Gaussian random matrix for
CS encoding/decoding [6], [7]. Even if candidate of type 1
come from a minimization of the Frobenius norm, it is actually
performing better than type 2. Quite surprisingly, the smallest
error is obtained when F is the first m rows of a circulant
matrix generated from a iid Gaussian vector.
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Fig. 2: Maximum error selected candidate for A

From now on, we will consider matrix A of type 2. We can
now eliminate X from XTu = s and M = FX . We have

XT
(

nP

m
FT

(FTF )

�1
)Fu = s,
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and then, using M = FX , we have

MT
(FFT

)

�1Fu =

m

nP
s.

The minimization then becomes

argmin

u�0
kuk1 s.t. kMT

(FFT
)

�1Fu� m

nP
sk2 < �. (5)

IV. NUMERICAL RESULTS

In this section we illustrate compressive template matching
by solving minimization (5). We solve that minimization for
different regularizers to improve the results. For example, we
mix the total variation norm (TV ) [8] that adds a geometric
constraint that well characterize the location of the signature
and the L1 norm that promotes sparsity.

Due to their simplicity and flexibility, we use split Breg-
man algorithms [9], [10] implemented in Matlab R� to solve
these minimizations. The detailed algorithm is shown below.
The non-negativity of u is obtained by forcing intermediate
solutions to be non-negative. The Bregman parameters �1 and
�2 control the two inner Bregman iterations. The size of the

Solve: argmin

u�0
k�(u)k1 s.t. kAu� fk2 < err

Data: �, A, f,�1,�2, err
Result:
b0 := 0;
f0

:= 0;
d0 := 0;
k := 0;
Dinv := (�1ATA+ �2�T�)�1;
repeat

uk+1
:= Dinv(�1AT

(f � fk
) + �2�T

(dk + bk));
uk+1

:= max(uk+1, 0);
dk+1

:= s 1
�2
(�(uk+1

)� bk);
bk+1

:= bk + dk+1 � �(uk+1
);

fk+1
:= fk

+Auk+1 � f ;
k := k + 1;

until kAuk+1 � fk2 < err;
Algorithm 1: Constrained Split Bregman

image is limited to 64⇥64 because we choose an iid Gaussian
sensing matrix and we have to compute MT

(FFT
)

�1FT .
A solution is to store the matrix (FFT

)

�1FT once it is
computed and reuse it. Another workaround is to use a
particular structure on the matrix F so that (FFT

)

�1 is easy
to compute. For example, we can orthogonalize F before we
use it.

Another reason is that we have to first compute the matrix
Dinv. This computational problem can be overcome by using
iterative algorithms such as Gauss-Seidel [9] which avoids
inverting a huge matrix.

Algorithms are tested on two multispectral images. The first
is a 64 ⇥ 64 multispectral image of 16 bands extracted from
a multispectral image database1 of everyday objects presented

1Available at http://www2.cmp.uea.ac.uk/Research/

compvis/MultiSpectralDB.htm.

in [11]. The spectral signature s we want to detect is extracted
from Sylvester’s nose.

The second multispectral image is extracted from the Moffet
Field AVIRIS multispectral image2. We selected 16 bands
from the 224 available and extracted a 64 ⇥ 64 image of
interest.

A. Test results on the Sylvester multispectral image

Figure 3a shows the original image in false color. The result
of the template matching algorithm (1) is shown in Fig. 3b.
Here, using a L1 regularizer is sufficient to have a good
detection. In the second row of Fig. 3 we see how compressive

(a) Sylvester image in false
color

(b) Template matching on
Fig. a

(c) Compressive template
matching, 30% of data, L1
regularizer

(d) Compressive template
matching, 30% of data,
TV/L1 regularizer

Fig. 3: Signature detection on Sylvester image

template matching is performing. The measurement rate is set
to 30%. In Fig. 3c, the algorithm (5) has a poor detection.
The L1 regularizer is not sufficient. If we add a geometric
regularizer such as the TV norm, the results are improved as
we can see in Fig. 3d.

In Fig. 4, we see how the different algorithms are doing
when the image is contaminated with Gaussian noise (� =

15%).

B. Test results on AVIRIS image

We then test our algorithm on a AVIRIS image in Fig. 5a.
We would like to detect the spectral signature of buildings
which is known. We still take 30% of the overall data and
we test the same regularizers as in the previous figures. The
template matching in Fig. 5b is still doing well. The com-
pressive template matching with a L1 regularizer in Fig. 5c is
clearly insufficient here. The results are improved if we add
a TV regularizer but they are not comparable to the results

2Available at http://aviris.jpl.nasa.gov/html/aviris.

freedata.html
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(a) [Sylvester image in false
color

(b) Template matching on
Fig. a

(c) Compressive template
matching, 30% of data, L1
regularizer

(d) Compressive template
matching, 30% of data,
TV/L1 regularizer

Fig. 4: Signature detection on Sylvester image

obtained by the template matching algorithm in Fig. 5b. The
table I shows the percentage of wrong detection for different
measurement rates. A 100% measurement rate simply means
that the standard non-compressive algorithm is used.

Measurement rate (%) Wrong detection (%)
5 5.46
7 4.87

10 3.89
15 3.50
20 3.11
25 2.88
30 2.80
35 2.83
40 2.71
100 0.34

TABLE I: Percentage of wrong detection for various measure-
ment rate

V. CONCLUSION

In this paper we propose a compressed sensing scheme
for signature detection in multispectral images. Based on the
recent L1-based algorithm found in paper [1], we add a
compressed sensing part by working on measurements rather
than on the image itself. We have to carefully choose the
sensing matrix so that the approximation made is the smallest
possible. We use a slightly modified version of the split
Bregman to find non-negative solutions to our problem. Due
to the high flexibility of the split Bregman algorithms it is
easy to add other type of regularizers to improve the results.
Future work includes generalization to pattern matching. It is
in fact possible to detect the concatenation of all signatures of
the pattern.

(a) Moffet Field image in
false color

(b) Template matching on
Fig. a

(c) Compressive template
matching, 30% of data, L1
regularizer

(d) Compressive template
matching, 30% of data,
TV/L1 regularizer

Fig. 5: Detection of buildings on AVIRIS image
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