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Reduced-Basis Output Bound Methods for

Parametrized Partial Differential Equations
C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera, and G. Turinici

Abstract— We present a technique for the rapid and reli-
able prediction of linear—functional outputs of elliptic (and
parabolic) partial differential equations with affine param-
eter dependence. The essential components are (i) (prov-
ably) rapidly convergent global reduced—basis approxima-
tions — Galerkin projection onto a space Wy spanned by
solutions of the governing partial differential equation at N
selected points in parameter space; (i) a posteriori error es-
timation — relaxations of the error—residual equation that
provide inexpensive yet sharp and rigorous bounds for the
error in the outputs of interest; and (i) off-line/on—line
computational procedures — methods which decouple the
generation and projection stages of the approximation pro-
cess. The operation count for the on—line stage — in which,
given a new parameter value, we calculate the output of
interest and associated error bound — depends only on N
(typically very small) and the parametric complexity of the
problem; the method is thus ideally suited for the repeated
and rapid evaluations required in the context of parameter
estimation, design, optimization, and real-time control.

Keywords— reduced—basis, a posteriori error estimation,
output bounds, partial differential equations

I. INTRODUCTION

The optimization, control, and characterization of an
engineering component or system requires the prediction
of certain “quantities of interest,” or performance met-
rics, which we shall denote outputs — for example de-
flections, maximum stresses, maximum temperatures, heat
transfer rates, flowrates, or lift and drags. These outputs
are typically expressed as functionals of field variables as-
sociated with a parametrized partial differential equation
which describes the physical behavior of the component
or system. The parameters, which we shall denote in-
puts, serve to identify a particular “configuration” of the
component: these inputs may represent design or decision
variables, such as geometry — for example, in optimiza-
tion studies; control variables, such as actuator power —
for example, in real-time applications; or characterization
variables, such as physical properties — for example, in in-
verse problems. We thus arrive at an implicit input—output
relationship, evaluation of which demands solution of the
underlying partial differential equation.

Our goal is the development of computational methods
that permit rapid and reliable evaluation of this partial-
differential-equation-induced input-output relationship in
the limit of many queries — that is, in the design, optimiza-
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tion, control, and characterization contexts. The “many
query” limit has certainly received considerable attention:
from “fast loads” or multiple right-hand side notions (e.g.,
[1], [2]) to matrix perturbation theories (e.g., [3], [4]) to
continuation methods (e.g., [5], [6]). Our particular ap-
proach is based upon the reduced—basis method, first in-
troduced in the late 1970s for nonlinear structural analy-
sis [7], [8], and subsequently developed more broadly in the
1980s and 1990s [9], [10], [11], [12], [13]. The reduced—basis
method recognizes that the field variable is not, in fact,
some arbitrary member of the infinite-dimensional space
associated with the partial differential equation; rather, it
resides, or “evolves,” on a much lower—dimensional mani-
fold induced by the parametric dependence.

The reduced—basis approach as earlier articulated is lo-
cal in parameter space in both practice and theory. To
wit, Lagrangian or Taylor approximation spaces for the
low—dimensional manifold are typically defined relative to
a particular parameter point; and the associated a priori
convergence theory relies on asymptotic arguments in suf-
ficiently small neighborhoods [10]. As a result, the com-
putational improvements — relative to conventional (say)
finite element approximation — are quite modest [12]. Our
work differs from these earlier efforts in several important
ways: first, we develop (in some cases, provably) global ap-
proximation spaces; second, we introduce rigorous a poste-
riori error estimators; and third, we exploit affine param-
eter dependence and associated off-line/on—line computa-
tional decompositions (see [14] for an earlier application
of this strategy within the reduced—basis context). These
three ingredients allow us — for a restricted but important
class of problems — to reliably decouple the generation and
projection stages of reduced—basis approximation, thereby
effecting computational economies of several orders of mag-
nitude.

In this brief paper we describe our approach for the par-
ticularly simple case of coercive symmetric operators and
“compliant” outputs. In Section I we introduce an abstract
problem formulation and illustrative instantiation; in Sec-
tion II we describe our reduced-basis approximation; and
in Section III we present the a posteriori error estimation
procedure. Extension of the method to noncompliant out-
puts, nonsymmetric and noncoercive operators, eigenvalue
problems, and parabolic equations may be found in [15],
[16], [17], [18], [19]. See also [20], [18] for a description
of the network system architecture in which our numerical
objects reside.



II. PROBLEM STATEMENT
A. Abstract Formulation

We consider a suitably regular domain Q@ ¢ R%,d =1, 2,
or 3, and associated function space X C H'(Q), where
HY(Q) = {v € L?(Q), Vv € (L%(Q))4}, and L%(Q) is
the space of square integrable functions over 2. The inner
product and norm associated with X are given by (-, - )x
and || - ||x = (-, -)/?, respectively. We also define a pa-
rameter set D € R?, a particular point in which will be
denoted p. Note that Q does not depend on the parameter.

We then introduce a “bilinear” form a: X x X xD — IR,
and linear forms f: X -+ R, £: X — R. We shall assume
that a is continuous, a(w,v;p) < ~(p) |lwllx |v|x <
Y |lwllx l|vllx, Vp € D; that a is coercive,

a(w, w; p)
llwll%

; (1)

inf

0<ap < a(ﬂ)zwex

V u € D; and that a is symmetric, a(w,v; u) = a(v, w; ),
Ywv € X,Vu € D. We also require that our linear
forms f and £ be bounded; and for simplicity, we assume a
“compliant” output, £(v) = f(v), Vv € X.

We shall also make certain assumptions on the paramet-
ric dependence of a, f, and £. In particular, we shall sup-
pose that, for some finite (preferably small) integer @, a
may be expressed as

a(w,v;p) = Y o%(p) a’(w,v), 2)

g=1

YV wov € X, Vu € D, for some ¢7: D — R and
al: X xX —- R, g = 1,...,Q. This “separability,”
or “affine,” assumption on the parameter dependence is
crucial to computational efficiency; however, certain relax-
ations are possible [18], [21]. For simplicity of exposition,
we assume that f and £ do not depend on u; in actual
practice, affine dependence is readily admitted.

Our abstract problem statement is then: for any p € D,
find u(p) € X such that

a(u(p),v;p) = f(v),
and s(u) € R given by

VoveX; (3)

(4)

In the language of the introduction, a is our partial differ-
ential equation (in weak form), y is our parameter, u(u) is
our field variable, and s(u) is our output.

B. A Particular Instantiation: Thermal Fin

In this example we consider the two- and three-dimensional
thermal fins shown in Figure 1; these examples may be (in-
teractively) accessed on our Web site!. The fins consist of
a vertical central “post” of conductivity ko and four hor-
izontal “subfins” of conductivity &%, i = 1,...,4; the fins

IFIN2D: http://augustine.mit.edu/fin2d /fin2d.pdf and
FIN3D: http://augustine.mit.edu/fin3d_1/fin3d_1.pdf
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Fig. 1. Two- and Three-Dimensional Thermal Fins.

conduct heat from a prescribed uniform flux source, §”,
at the root, I'yoot, through the post and large-surface-area
subfins to the surrounding flowing air; the latter is char-
acterized by a sink temperature %o, and prescribed heat
transfer coefficient h. The physical model is simple con-
duction: the temperature field in the fin, 4, satisfies

4
Z/ lé'ﬁa-WJr/ h (@ — o)
i=0 V% 0

O\Froot
:ﬁ "o, VoeX=H'(Q), ()
Troot

where €); is that part of the domain with conductivity &,
and 9 denotes the boundary of .

We now (i) nondimensionalize the weak equations (5),
and (i7) apply a continuous piecewise-affine transforma-
tion to map Q to a fixed reference domain Q [16]. The
abstract problem statement (3) is then recovered [22] for
p = {k', k2, k%, k% Bi, L, t}, D = [0.1,10.0]* x
[0.01,1.0] x [2.0,3.0] x [0.1x0.5), and P = 7; here k*,. .., k*
are the thermal conductivities of the “subfins” (see Fig-
ure 1) relative to the thermal conductivity of the fin base;
Bi is a nondimensional form of the heat transfer coefficient;



and, L, t are the length and thickness of each of the “sub-
fins” relative to the length of the fin root Lroot. It is readily
verified that a is continuous, coercive, and symmetric; and
that the “affine” assumption (2) obtains for ) = 16 (two-
dimensional case) and @ = 25 (three-dimensional case).
Note that the geometric variations are reflected, via the
mapping, in the a?(u).

For our output of interest, s(u), we consider the average
temperature of the root of the fin nondimensionalized rel-
ative to ¢, k°, and the length of the fin root. This output
is calculated as s(u) = f(u(p)), where f(v) = [ .

III. REDUCED-BASIS APPROACH
A. Reduced—-Basis Approximation

We first introduce a sample in parameter space, Sy =
{p1,...,un}, where y; € D, i =1,..., N; see Section III.B
for a brief discussion of point distribution. We then define
our Lagrangian [12] reduced—basis approximation space as
Wx = span {{, = u(un), n = 1,..., N}, where u(u,) €
X is the solution to (3) for p = p,. In actual practice,
u(uy) is replaced by a finite element approximation on a
suitably fine truth mesh; we shall discuss the associated
computational implications in Section III.C. Our reduced—
basis approximation is then: for any pu € D, find un(u) €
W such that

f(v)J

we then evaluate sy(u) = f(un(w))-

a(un (p),v;p) = VveWy; (6)

B. A Priori Convergence Theory
B.1 Optimality

We consider here the convergence rate of un(u) — u(u)
and sy(p) = s(u) as N — oo. To begin, it is standard to
demonstrate optimality of ux(u) in the sense that

M inf

a(p) wnewn llu(p) —wnllx . (7)

llu(p) — un (W)llx <

(We note that, in the coercive case, stability of our (“con-
forming”) discrete approximation is not an issue; the non-
coercive case is decidedly more delicate [17].) Furthermore,
for our compliance output,

s(n) = sn(u)+£l(u—un)

= sn(p) +a(u,u —un; p) (8)
= sn(p)+a(u—un,u—un;p)

from symmetry and Galerkin orthogonality. It follows that
s(u) — sy (p) converges as the square of the error in the
best approximation and, from coercivity, that sy(u) is a
lower bound for s(p).

B.2 Best Approximation

It now remains to bound the dependence of the error in
the best approximation as a function of N. At present,

the theory is restricted to the case in which P =1, D =
[0, max], and

a(w,v;,u) = ao(w,v) + ual(w,v), (9)

where qg is continuous, coercive, and symmetric, and a; is
continuous, positive semi-definite (a;(w,w) > 0, Vw € X),
and symmetric. This model problem (9) is rather broadly
relevant, for example to variable orthotropic conductivity,
variable rectilinear geometry, variable piecewise-constant
conductivity, and variable Robin boundary conditions.

We now suppose that the p,, n =1,..., N, are logarith-
mically distributed in the sense that

n—1
N -1

In (Mn +X‘1) =\ '+ In (X ftmax +1),  (10)
forn =1,...,N, where X is an upper bound for the max-
imum eigenvalue of a; relative to ag. (Note A is perforce
bounded thanks to our assumptions of continuity and co-
ercivity; the possibility of a continuous spectrum does not,
in practice, pose any problems.) We can then prove [23]
that, for N > Ngi = 14 eIn(X pimax + 1),

inf [lu(k) —wn(Wllx

wN

< (14 fimar M) (0 1x exp{ﬂ}, (1)

(Ncrit -1

VY 1 € D. We observe exponential convergence, uniformly
(globally) for all 4 in D, with only very weak (logarithmic)
dependence on the range of the parameter (pmax). (Note
the constants in (11) are for the particular case (-,-)x =
aO(': ))

The proof exploits a parameter—space (non-polynomial)
interpolant as a surrogate for the Galerkin approxima-
tion. As a result, the bound is not “sharp”: we observe
many cases in which the Galerkin projection is consider-
ably better than the associated interpolant; optimality (7)
may choose to “illuminate” only certain points p,, auto-
matically selecting a best “sub—approximation” amongst
all possibilities. We thus see why reduced-basis state-
space approximation of s(u) via u(u) is preferred to sim-
ple parameter-space interpolation of s(u) (“connecting the
dots”) via (un, s(un)) pairs. Nevertheless, the logarithmic
point distribution (10) suggested by our interpolant—based
argument is not simply an artifact of the proof: the log-
arithmic distribution performs considerably (and in many
cases, provably) better than other obvious candidates [24],
in particular for large ranges of the parameter.

The result (11) is certainly tied to the particular form (9)
and associated regularity of u(u). However, we do ob-
serve similar exponental behavior for more general op-
erators; and, most importantly, the exponential conver-
gence rate degrades only very slowly with increasing pa-
rameter dimension, P. We present in Table I the error
|s(p) —sn(p)|/s(1) as a function of N, at a particular rep-
resentative point u in D, for the two-dimensional thermal
fin problem (P = 7) of Section II.B. Since tensor-product
grids are prohibitively profligate as P increases, the u,



N | [s(p) —sn()l/s() | An(u)/s(u) | nn (1)
10 1.29 x 10~2 8.60x 1072 | 2.85
20 1.29 x 10—3 9.36 x 1073 | 2.76
30 5.37 x 10% 425 x 1073 | 2.68
40 8.00 x 1075 5.30x 1074 | 2.86
50 3.97 x 1073 297 x 1074 | 2.72
60 1.34 x 1075 1.27x107* | 2.54
70 8.10 x 106 772 x 1075 | 2.53
80 2.56 x 106 2.24 x 1075 | 2.59
TABLE I

ERROR, ERROR BOUND, AND EFFECTIVITY AS A FUNCTION OF N, AT A
PARTICULAR REPRESENTATIVE POINT i € D, FOR THE
TWO-DIMENSIONAL THERMAL FIN PROBLEM.

are chosen “log-randomly” over D: we sample from a mul-
tivariate uniform probability density on log(u). We ob-
serve that the error is remarkably small even for very small
N; and that very rapid convergence obtains as N — .
We do not yet have any theory for P > 1. But certainly
the Galerkin optimality plays a central role, automatically
selecting “appropriate” scattered-data subsets of Sy and
associated “good” weights so as to mitigate the curse of
dimensionality as P increases; and the logarithmic point
distribution is also important, yielding significantly more
accurate results [20].

C. Computational Procedure

The theoretical and empirical results of Sections III.A
and ITI.B suggest that N may, indeed, be chosen very small.
We now develop off-line/on-line computational procedures
that exploit this dimension reduction.

We first express un(u) as

un(p) = Z un (1) G = (v ()" G, (12)

where upy (1) € RY; we then choose for test functions v =
G, = 1,...,N. Inserting these representations into (6)
yields the desired algebraic equations for uy (1) € RY,

An(p) un(p) = Ey (13)
in terms of which the output can then be evaluated as
sn(p) = Fh un(p). Here Ay(u) € RVXN is the SPD
matrix with entries Ay, ;(p) = a(¢;,G3p), 1 < 4,j <N,
and F € RY is the “load” (and “output”) vector with
entries Fv; = f(¢;),i=1,...,N.

We now invoke (2) to write

Q

AN () = alG, Gip) =Y 0%(m) a%((,G) »  (14)

or

where AL, . = a?((j,Gi), 4 <4, <N, 1< g < Q. The
off-line/on-line decomposition is now clear. In the off-line
stage, we compute the u(u,) and form the A% and Fy:
this requires N (expensive) “a” finite element solutions and
O(QN?) finite-element-vector inner products. In the on-—
line stage, for any given new pu, we first form A, from (14),
then solve (13) for uy(p), and finally evaluate sy(p) =
Flun(p): this requires O(QN?)+O(2N?) operations and
O(QN?) storage.

Thus, as required, the incremental, or marginal, cost to
evaluate sy(u) for any given new p — as proposed in a
design, optimization, or inverse-problem context — is very
small: first, because N is very small, typically O(10) —
thanks to the good convergence properties of Wy ; and sec-
ond, because (13) can be very rapidly assembled and in-
verted — thanks to the affine parameter dependence and
associated off-line/on-line computational decomposition
(see [14] for an earlier application of this strategy within
the reduced—basis context). For the problems discussed
in this paper, the resulting computational savings relative
to standard (well-designed) finite-element approaches are
significant — at least O(10), typically O(100), and often
0(1000) or more.

IV. A POSTERIORI ERROR ESTIMATION: QUTPUT
BOUNDS

From Section IIT we know that, in theory, we can ob-
tain sy(u) very inexpensively: the on-line stage scales as
O(N?) + O(QN?); and N can, in theory, be chosen quite
small. However, in practice, we do not know how small N
can be chosen: this will depend on the desired accuracy,
the selected output(s) of interest, and the particular prob-
lem in question; in some cases N = 5 may suffice, while
in other cases, N = 100 may still be insufficient. In the
face of this uncertainty, either too many or too few basis
functions will be retained: the former results in computa-
tional inefficiency; the latter in unacceptable uncertainty
— particularly egregious in the decision contexts in which
reduced—basis methods typically serve. We thus need a
posteriori error estimators for sy. Surprisingly, a poste-
riori error estimation has received relatively little atten-
tion within the reduced-basis framework [8], even though
reduced—basis methods are particularly in need of accuracy
assessment: the spaces are ad hoc and pre-asymptotic, thus
admitting relatively little intuition, “rules of thumb,” or
standard approximation notions.

The approach described here is a particular instance of a
general “variational” framework for a posteriori error esti-
mation of outputs of interest. However, the reduced—basis
instantiation differs significantly from earlier applications
to finite element discretization error [25], [26] and iterative
solution error [27] both in the choice of (energy) relaxation
and in the associated computational artifice. For an alter-
native approach to reduced—basis error estimates, see [18],
[20].



A. Formulation

We assume that we are given a function g(u) : D — Ry,
and a continuous, coercive, symmetric (u-independent) bi-
linear form @ : X x X — IR such that

allvllx < g(w) a(v,v) < a(v,v;p), (15)

Vve X,VueD Wethen find é(p) € X from the

modified error equation

9(p) a(é(u),v) = R(v;un(p);p), YveX,  (16)

where for a given w € X, R(v;w;p) = f(v) — a(w,v; p) is

the weak form of the residual. Our lower and upper output
estimators are then evaluated as

sy(p) = sn(u), and sf(n) = sn(p) + An(p), (17)
respectively, where
An(p) = g(p) a(é(p), é(p)) (18)

is the estimator gap.

B. Properties

We shall prove in this section that sy(p) < s(p) <
s%(1), and hence that |s(u) — sn ()| = (1) — sn () <
Apn(p). Our lower and upper output estimators are thus
lower and upper output bounds; and our output estimator
gap is thus an output bound gap — a rigorous bound for
the error in the output of interest. It is also critical that
An(p) be a relatively sharp bound for the true error: a
poor (overly large) bound will encourage us to refine an
approximation which is, in fact, already adequate — with
a corresponding (unnecessary) increase in off-line and on—
line computational effort. We shall prove in this section
that Ax(p) < g—g(s(u) — sy (w)), where v and o are the
N-independent a-continuity and a-coercivity constants de-
fined earlier. Our two results of this section can thus be
summarized as

1< an(u) < 2, VN, (19)
a
where
_ An(p)

is the effectivity. We shall denote the left (bounding prop-
erty) and right (sharpness property) inequalities (19) as
the lower effectivity and upper effectivity inequalities re-
spectively.

We now prove the lower effectivity inequality (bound-
ing property): sy(u) < s(u) < si(u), Vu € D, for
sy (1) and s} (i) defined in (17). The lower bound prop-
erty directly follows from Section III.B. To prove the up-
per bound property, we first observe that R(v;un;u) =
a(u(p) — un(p), v; 1) = ale(p), v; u), where e(u) = u(p) —

un(p); we may thus rewrite (16) as g(p)a(é(u),v) =
a(e(u),v;u), ¥ v € X. We thus obtain

= g(pa(é—eé—e)+(ale,e;pu)  (21)
- g(p)&(e, e)) + a(ea €; :u)
> a(e, e p)
since g(p) a(é(n) — e(pn),é(p) — e(p) > and
ale(p),e(p);p) — g(u) ale(w),e(n)) > 0 from (1 ) In-

voking (8) and (21), we then obtain s(u) — sy(p) =
ale(n),e(p); ) < g(p) a(é(p),é(p)); and thus s(u) <

N () + g(p) a(é(w),é(p)) = s (w), as desired.

We now prove our second result, the upper effectivity
inequality (sharpness property):

A 20y

O S = s = 0

To begin, we appeal to a-continuity and a-coercivity to
obtain

, Yo 9()
(B);p) < OTO

a(é(p),é a(é(p), é(m)-  (22)

But from the modified error equation (16) we know that

g(p)a(é(p), é(p)) = R(é(n); p) = ale(p), é(p); p)- Invoking
the Cauchy-Schwartz inequality, we obtain

g(wa(e,e) = ale,&p)
< (alé, & p)'*(ale, e; )/
1/2
< (2) 7 o ate.e)'” (alevei)
=0

the desired result then directly follows from (18) and (8).

We now provide empirical evidence for (19). In particu-
lar, we present in Table I the bound gap and effectivities for
the thermal fin example. Clearly, ny(u) is always greater
than unity for any N, and bounded — indeed, quite close
to unity — as N — oo.

C. Computational Procedure

Finally, we turn to the computational artifice by which
we can efficiently compute An(u) in the on-line stage of
our procedure. We again exploit the affine parameter de-
pendence, but now in a less transparent fashion. To begin,
we rewrite the modified error equation, (16), as

1 R
) (E(v) -y Z of (M)uNj(u)aq(Cj,v)> ;

V v € X, where we have appealed to our reduced—basis
approximation (12) and the affine decomposition (2). It



is immediately clear from linear superposition that we can
express é(t) as

é(w) =—= 14 +ZZU wun (w2 |, (23)
q=1 j=1
where Zp € X satisfies a(2g,v) = £(v), V v € X, and

e X,j=1,.., ,Q, satisfies a(2],v) =
—a?(¢;,v), Y v € X. Inserting (23) into our expression for

3
the upper bound, s} () = sn(p) + g(p)a(é(n),é(u)), we
obtain

N, q =1,...

@+23 3o

g=1 j=1

9(u) ki ()A;
Q N N , ,
+Y 0N Z Zaq(u)aq (Wun j(pun j (W,

(24)
9=1¢'=1j=1j'=1
where co = a(%o, %), A] = a(%,£]), and 1";” = a(z], 2;1,')

The off-line/on-line decomposmlon should now be clear
In the off-line stage we compute Zg and 2 z ,j=1,... N,

g = 1,...,Q, and then form cp,Af, and F;I;]: this re-
quires QN +1 (expensive) “4” finite element solutions, and
O(Q?N?) finite-element-vector inner products. In the on—
line stage, for any given new u, we evaluate s} as expressed
n (24): this requires O(Q%N?) operations; and O(Q?N?)
storage (for co, AJ, and Fﬁ:). As for the computation
of sn (1), the marginal cost for the computation of s% ()
for any given new py is quite small — in particular, it is
independent of the dimension of the truth finite element
approximation space X.

There are a variety of ways in which the off-line/on—
line decomposition and output error bounds can be ex-
ploited. A particularly attractive mode incorporates the
error bounds into an on-line adaptive process, in which we
successively approximate sy (u) on a sequence of approx-
imation spaces Wy; C Wi, N, = Ny27 — for example,
WN: may contain the N} sample points of Sy closest to
the new u of interest — untll A N s less than a specified
error tolerance. This procedure both minimizes the on-line
computational effort and reduces conditioning problems —
while simultaneously ensuring both accuracy and certainty.
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