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Summary This paper presents an a posteriori error analysis of the

dis
retization methods used in 
omputational quantum 
hemistry on

the Hartree-Fo
k equations. Upper and lower bounds for the energy

are obtained from any dis
rete approximation strategy of the solution

and the estimator proposed is shown to possess further approximation

virtues.

1 Introdu
tion

The purpose of this paper is to present an a posteriori error analysis

for the approximation of the Hartree-Fo
k equations. This analysis

is designed to quantitatively asses the performan
e of an approxima-

tion strategy of a solution of the Hartree-Fo
k equations obtained by

prior 
omputation. In agreement with the general paradigm of the a

posteriori analysis of [13,15{17℄, an error bar for an output su
h as

the Hartree-Fo
k energy starting from the approximated solution at

hand is proposed. As in the real laboratory experiments, numeri
al


omputations do not provide the exa
t value of the sear
hed quantity

but rather an approximation that is to be quali�ed by the use of the

error bars in exa
tly the same spirit as in the laboratory measure-

ments. In addition we will show that in some 
ases the a posteriori

method may also be seen as an a

elerator of the 
onvergen
e of the

primary algorithm used to 
ompute the solution.
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The time independent S
hr�odinger equation that models the be-

havior of a quantum mole
ular system deals with state fun
tions

 (x), where x denotes the position of the parti
les (nu
lei and ele
-

trons) hen
e is a variable that lives in R

3K

where K is the number

of parti
les

1

. This system is far too large to be dire
tly tra
table by

numeri
al simulations for mole
ules larger than the hydrogen atom.

The quantum 
hemists have thus introdu
ed a series of simpli�ed

models. One of them (the Born Oppenheimer approximation) allows

to separate the ele
tron and the nu
lei so as to 
onsider �rst a sys-

tem in whi
h only the N ele
trons of the mole
ule move (thus are

the only N variables of the state fun
tion) and the nu
lei are �xed

in x

j

(and appear as parameters). For ea
h 
on�guration (x

1

; :::; x

m

)

of the m nu
lei a 
omplex ele
troni
 wavefun
tion �(x

1

; :::; x

N

) 2 C ,

x

i

2 R

3

, i = 1; :::; N is sought after that minimizes the energy of

the system. This �rst simpli�
ation is nevertheless not suÆ
ient to

make the resulting equations a

essible for 
omputations for large

mole
ules; another simpli�
ation is therefore introdu
ed by 
onsider-

ing that the state fun
tion is a N dimensional determinant of simple

fun
tions of R

3

, 
alled Slater determinant:

�(r

1

; :::; r

N

) =

1

p

N !

det(�

i

(r

j

));

where �

i

; i = 1; :::; N are now fun
tions of one variable in R

3


hosen

orthogonal with respe
t to the 
anoni
al s
alar produ
t < �; � > on

L

2

(R

3

).

Let us denote by K the subset of (L

2

(R

2

))

N

de�ned by

K = f(�

1

; :::; �

N

) 2 (L

2

(R

2

))

N

;< �

i

; �

j

>= Æ

ij

g: (1)

Assuming that the mole
ule is isolated and only Coulombi
 for
es

are present, the des
ription of the non-relativisti
 ele
trons where, for

the sake of simpli
ity we have negle
ted the spin dependen
y, leads

to the following expression of the Hartree-Fo
k energy :

E

HF

(�

1

; :::; �

N

) =

N

X

i=1

Z

R

3

�

jr�

i

j

2

+ V j�

i

j

2

�

+

1

2

ZZ

R

3

�R

3

�

�

(x)�

�

(y)

jx� yj

dxdy �

1

2

ZZ

R

3

�R

3

j�

�

(x; y)j

2

jx� yj

dxdy; (2)

1

we will 
onsider non relativisti
 models without spin variables
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where the density matrix �

�

(x; y), the ele
troni
 density �

�

(x) and

the potential V are given by the formulaes :

�

�

(x; y) =

N

X

i=1

�

i

(x)�

i

(y) (3)

�

�

(x) = �

�

(x; x)

V (x) = �

m

X

j=1

Z

j

jx� x

j

j

:

We have denoted here by Z

j

> 0 the 
harge of the j-th nu
leo.

In order to determine the ground state of the mole
ule that, by

de�nition, minimizes the energy (2) under the 
onstraint (1), the

Euler Lagrange equations give rise to the Hartree-Fo
k problem :

Find a L

2

(R

3

)-orthonormal system � = f�

i

g

t

i=1;N

and an hermi-

tian matrix � = [�

i;j

℄

i;j=1;N

su
h that

8i; 1 � i � N; F

�

(�

i

) = �

N

X

j=1

�

i;j

�

j

; (4)

where F

�

is the Fo
k operator. When a
ting on an element  regular

enough of the variable x 2 R

3

, this operator asso
iates the following

fun
tion of the x 2 R

3

variable:

F

�

( )(x) =

�

��+ V (x) + (�

�

?

1

jxj

)

�

 (x) �

Z

R

3

�

�

(x; y)

jx� yj

 (y)dy:

(5)

Here ? is the 
onvolution produ
t

(f ? g)(x) =

Z

R

3

f(x� y)g(y)dy:

Remark 1 It is standard to noti
e that the density matrix is invariant

under unitary transforms, i.e. for any element U of the set of the

N �N unitary matri
es U(N) :

8(x; y) 2 R

3

; �

�

(x; y) = �

U�

(x; y) (6)

Hen
e it follows that the unitary transform U 
an be 
hosen in su
h

a way that the hermitian matrix � be
ome diagonal: � = [�

i

℄

i=1;N

.

The solution 	 = U� = f(U�)

i

g

i=1;N

satis�es indeed the more simple

Hartree-Fo
k problem :

8i; 1 � i � N; F

	

( 

i

) = ��

i

 

i

(7)

The problem then appears as a non linear eigenvalue problem.
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This highly nonlinear problem is solved through iterations known

as Self Consistent Field approximation; we refer to [6℄ for a very

re
ent and 
omplete analysis on the 
onvergen
e of some of these al-

gorithms (Roothaan algorithm and the level shifting algorithm). It is

still a very expensive problem sin
e the non linear 
ontribution has a

large 
omputational 
omplexity (we refer to [20,8℄ for some example

of tailored te
hniques to minimize this 
omplexity). The numeri
al

analysis of the method used typi
ally by the 
hemists 
ommunity is

most often an open problem and in any 
ase will not provide sound in-

formation sin
e most of the numeri
al approximations are very often

at the limit of the 
onvergen
e. More interesting seems the 
on
ept

of a posteriori error estimators where, from the 
omputed solution,

it is possible to derive reliable information about the validity of the


omputation that has been done. The purpose of this paper is in this

dire
tion.

Denote by H = (H

1

(R

3

))

N

the natural spa
e for the solutions of

the Hartree-Fo
k equations and by F

ij

the mapping F

ij

: H 7! R

de�ned over any element � = (�

i

)

N

i=1

by

F

ij

(�) =< �

i

; �

j

> �Æ

ij

:

In all that follows any N -tuple element � = (�

i

)

N

i=1

will be supposed

to be a 
olumn (N � 1) ve
tor of H. Consider the minimization

problem

inffE

HF

(�);� 2 H \Kg (8)

Remark 2 The analysis of problem (7) is not 
ompletely under 
on-

trol: we 
an 
ite the partial results obtained in [10,11℄ about the

existen
e of a ground state for positive or neutral mole
ules and non

existen
e results for negative ions. The basi
 result of uniqueness of

the density solution is still an open problem of outstanding diÆ
ulty.

Under the hypothesis

m

X

j=1

Z

j

> N � 1; (9)

it has been proven in [11℄ that a minimum of the problem (8) exists

and any su
h minimum is a solution of the Hartree-Fo
k equation (4).

Moreover, when this problem is written in the form (7) additional

information is available on �

i

, namely �

i

> 0, i = 1; :::; N . We will

assume in all that follows that (9) is true.
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In order to make the presentation easy, we will assume in all that

follows that the ele
troni
 wavefun
tion is real and will work on real

fun
tion spa
es; trivial adaptations allow the treatment of 
omplex

valued wavefun
tions.

2 Error de
omposition

2.1 Error metri
s

Let �

0

= (�

0i

)

N

i=1

2 H\K be a minimum of (8) and � = (�

i

)

N

i=1

2 H\

K an approximation of �

0

obtained as the solution of a minimization

problem:

inffE

HF

(�);� 2 X

N

\Kg (10)

where X is a �nite dimensional subspa
e of H

1

(R

3

).

The a posteriori analysis on the one hand studies bounds for the

di�eren
e E

HF

(�

0

) � E

HF

(�) and on the other hand proposes ex-

pli
it trust intervals on the desired (but unknown) quantity E

HF

(�

0

)

using only the approximate solution at hand � ; of 
ourse, due to

the variational setting, an upper bound on E

HF

(�

0

) is E

HF

(�) itself;

the main fo
us will therefore be pla
ed on �nding lower bounds for

E

HF

(�

0

), whi
h is a non-trivial problem that, to our knowledge, has

not been addressed in the literature.

Before dwelling into the a posteriori analysis of (8) it is 
ru
ial to

introdu
e the proper de�nition for the error between a minimizer �

0

and its approximation �. To this end one has to re
all the invarian
e

property of the Hartree-Fo
k energy:

E

HF

(	) = E

HF

(U	);8	 2 H \K; 8U 2 U(N) (11)

From (11) it follows that if �

0

is a minimizer of (8), then for any U 2

U(N), U�

0

is also a minimizer and therefore a solution of (4). The

same 
onsiderations remain true for the problem (10). It is therefore

natural to 
onsider the distan
e between the sets fU�

0

;U 2 U(N)g

and fV �;V 2 U(N)g as the most appropriate de�nition of the dis-

tan
e between �

0

and �. For reasons that will be made 
lear later on,

we will use in fa
t an equivalent form (see se
tion 2.3) of the above

de�nition. For any 	

1

; 	

2

2 H let

U

	

1

;	

2

= argminfkU	

1

� 	

2

k

2

(L

2

(R

3

))

N

;U 2 U(N)g: (12)

For a given norm k � k (k � k

(L

2

)

N

, k � k

(H

1

)

N

...) we will measure the

distan
e between (sets represented by) 	

1

and 	

2

as:

k	

1

� 	

2

k

?

= kU

	

1

;	

2

	

1

� 	

2

k = k	

1

� U

	

2

;	

1

	

2

k;
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the last equality being motivated by the fa
t that U

	

2

;	

1

= U

t

	

1

;	

2

2

U(N).

Remark 3 Note from (12) that U

	

2

;	

1

is intrinsi
ally related to the

norm of (L

2

)

N

; when k�k = k�k

(L

2

)

N

we re
over the distan
e between

the sets fU	

1

;U 2 U(N)g and fV 	

2

;V 2 U(N)g.

The properties of this metri
 are 
losely related to the following

de
omposition of H:

H = A

�

� S

�

� �

??

(13)

where for any � 2 H \K:

A

�

= fC�;C 2 R

N�N

; C

t

= �Cg

S

�

= fS�;S 2 R

N�N

; S

t

= Sg

�

??

= f	 = (	

i

)

N

i=1

2 H;< 	

i

; �

j

>= 0; i; j = 1; :::; Ng

We will denote for any 	

1

; 	

2

2 (L

2

)

N

: 	

1

??	

2

if for any i; j = 1; N :

< (	

1

)

i

; (	

2

)

j

>= 0; then �

??


an be de�ned equivalently

�

??

= f	 2 H;	??�g:

For any � = (�

i

)

N

i=1

2 H the de
omposition (13) is obtained in

the following manner: 
ompute the matrix M = (M

ij

)

N

i;j=1

where for

ea
h i; j = 1; :::; N :M

ij

=< �

i

; �

j

>. Denote by S the symmetri
 part

of M : S =

M+M

t

2

and by C the antisymmetri
 part: C =

M�M

t

2

.

Then S� will be the 
omponent of � in the spa
e S

�

and C� the


omponent of � in the spa
e A

�

; in addition it is easy to see that

(� � S�� C�)??�, so the di�eren
e � � S��C� is in �

??

.

Lemma 1 Let �; 	 2 H \ K. Then the matrix U

	;�

solution of (12)

has the properties

U

	;�

	 � � 2 S

�

� �

??

; �� U

	;�

	 2 S

U

	;�

	

� 	

??

: (14)

In parti
ular for 	 = �

0

,

U

�

0

;�

�

0

= �+ S�+W; S 2 R

N�N

: S

t

= S; W 2 �

??

: (15)

Proof. Consider the de
omposition

	 � � = C�+ S�+W; C� 2 A

�

; S� 2 S

�

; W 2 �

??

; (16)
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and denote M = C + S. Then we 
an write

U

	;�

= argminfkU	 � �k

2

(L

2

(R

3

))

N

;U 2 U(N)g

= argminfkU((Id

N

+M)�+W )� �k

2

(L

2

(R

3

))

N

;U 2 U(N)g

= argminfk(U(Id

N

+M)� Id

N

)�k

2

(L

2

(R

3

))

N

;U 2 U(N)g

= argminfkU(Id

N

+M)� Id

N

)k

2

R

N�N

;U 2 U(N)g

= argminfk(Id

N

+M)� U

t

k

2

R

N�N

;U 2 U(N)g (17)

The transformation from the se
ond to the third line is a 
onsequen
e

of the fa
t that W??� so therefore U(Id

N

+M)�??W ; the next

equality is true be
ause � 2 K.

For any antisymmetri
 matrix

~

C 2 R

N�N


onsider the path in U(N)

given by t ! e

~

Ct

U

	;�

. The tangent at t = 0 to this path is

~

CU

	;�

.

Writing the �rst order 
onditions for the minimality in (17) we obtain:

0 =< (Id

N

+M)� U

t

	;�

; U

t

	;�

~

C

t

>

R

N�N

=< U

	;�

(Id

N

+M)� Id

N

;

~

C

t

>

R

N�N

;

8

~

C 2 R

N�N

:

~

C

t

= �

~

C;

whi
h shows that U

	;�

(Id

N

+M) is a symmetri
 matrix ; and there-

fore U

	;�

	 2 S

�

��

??

. To prove the se
ond part of the equation (14)

denote for any 	

1

, 	

2

by C

	

1

;	

2

the antisymmetri
 matrix appearing

in the de
omposition 	

1

� 	

2

= C

	

1

;	

2

	

2

+ S

	

1

;	

2

	

2

+W

	

1

;	

2

with

C

	

1

;	

2

	

2

2 A	

2

, S

	

1

;	

2

	

2

2 S	

2

andW

	

1

;	

2

2 	

??

2

; then one obtains

by straightforward 
omputations C

	

1

;	

2

= �C

	

2

;	

1

. ut

Remark 4 In pra
ti
e the representative of the 
lass of isoenergy fun
-

tions fU�

0

;U 2 U(N)g is taken to be the one that solves equations

(7), and the same is true for any of its approximations �. It is not


lear whether a norm for whi
h this pra
ti
al 
hoi
e gives optimal

approximations in the sense of (12) exists and to what extent this


hoi
e is also optimal in the L

2

norm.

2.2 Order of the symmetri
 part of the error

Let 	;� 2 H \ K and let us 
onsider the de
omposition (16). We

have seen that the antisymmetri
 part given by matrix C may be

set to zero modulo some appropriate \rotation" on 	 ; it is therefore

natural to study the properties of the symmetri
 part S�.
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Lemma 2 Let 	;� 2 H\K with asso
iated de
omposition (16). Then

there exists 
onstants C

1

, C

2

depending only of N su
h that:

kS�k

(L

2

(R

3

))

N

� C

1

k	 � �k

2

(L

2

(R

3

))

N

(18)

kS�k

H

� C

2

k	 � �k

2

H

k�k

H

(19)

Proof. Let us write W = D

~

W su
h that <

~

W

i

;

~

W

j

>= Æ

ij

, M =

C + S. Denote

� = k	 � �k

(L

2

(R

3

))

N

=

v

u

u

t

N

X

i;j=1

M

2

ij

+D

2

ij

Sin
e 	 2 K, F

ij

(	) = 0, i; j = 1; :::; N . For j = i we obtain:

1 = (1 +M

ii

)

2

+

X

j 6=i

M

2

ij

+

N

X

j=1

D

2

ij

;

or equivalently:

S

ii

=M

ii

= �

P

N

j=1

M

2

ij

+

P

N

j=1

D

2

ij

2

;

whi
h proves that M

ii

� �

2

, i = 1; :::; N . For i 6= j one obtains:

0 =

X

k 6=i;k 6=j

M

ik

M

jk

+ (M

ii

+ 1)M

ji

+M

ij

(M

jj

+ 1) +

N

X

k=1

D

ki

D

kj

;

whi
h gives after straightforward manipulations S

ij

=

M

ij

+M

ji

2

� �

2

; this 
on
ludes the proof of (18). For (19) one denotes �rst that

k	 � �k

(L

2

(R

3

))

N

� k	 � �k

H

and apply (18) to 
on
lude that S

ij

�

k	��k

2

H

, i; j = 1; :::; N . The 
on
lusion follows then by the de�nition

of the norm k � k

H

. ut

2.3 Optimality in H

1

norm

We have proposed in se
tion 2.1 that for any norm k�k the error �

0

��

be 
omputed as kU

�

0

;�

�

0

� �k. Sin
e the de�nition U

�

0

;�

is 
losely

related to the L

2

norm it is natural to ask whether this de�nition is

still appropriate when norms other than L

2

are used, for instan
e the


anoni
al norm of H. The situation is settled by the following
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Lemma 3 Let 	 = (	

1

; :::; 	

N

) 2 H \K and � 2 H \K and denote

U

1

	;�

= argminfkU	 � �k

H

;U 2 U(N)g

There exists a 
onstant 
 depending only of N and 	 su
h that


kU

	;�

	 � �k

H

� kU

1

	;�

	 � �k

H

� kU

	;�

	 � �k

H

Proof. The inequality

kU

	;�

	 � �k

H

� kU

1

	;�

	 � �k

H

follows as a 
onsequen
e of the de�nition of U

1

	;�

.

Denote by F the linear spa
e generated by f	

1

; :::; 	

N

g and de�ne:

M = f� 2 H

1

(R

3

);< �; � >

L

2

;L

2
= 0; 8� 2 Fg:

For any � 2 H

1

(R

3

) denote by �

F

the L

2

proje
tion of � on F and

�

M

= �� �

F

. We de�ne a norm k � k

d

on H

1

(R

3

) as follows:

k�k

2

d

= k�

F

k

2

L

2

+ k�

M

k

2

H

1

(R

3

)

:

We will prove that this norm is equivalent to the 
anoni
al norm of

H

1

(R

3

) (with 
onstants depending only on N and 	). Write for any

� 2 H

1

(R

3

):

k�k

H

1

(R

3

)

� k�� �

F

k

H

1

(R

3

)

+ k�

F

k

H

1

(R

3

)

� k�k

d

+ k�

F

k

H

1

(R

3

)

� Ck�k

d

where we have used the fa
t that the norms k � k

L

2
and k � k

H

1

(R

3

)

are

equivalent on the �nite dimensional spa
e F . It follows that there

exists a 
onstant C (depending only on N and 	) su
h that for any

� 2 H

1

(R

3

)

k�k

H

1

(R

3

)

� Ck�k

d

:

We will prove next that the norm k�k

H

1

(R

3

)


an also be lower bounded

by the norm k � k

d

modulo some 
onstant depending only N and 	 .

Assume on the 
ontrary that this is not true. Then there exists a

sequen
e (�

n

)

n�1

� H

1

(R

3

) su
h that k�

n

k

d

= 1 and k�

n

k

H

1

(R

3

)

! 0

as n ! 1. It follows that the sequen
e �

n


onverges to zero in L

2

and in parti
ular the sequen
e (�

n

F

)

n�1

of L

2

proje
tions to F is also


onverging to zero: k�

n

F

k

L

2
! 0 (n ! 1); by the same argument

as above we obtain k�

n

F

k

H

1

(R

3

)

! 0 (n!1). Then

k�

n

M

k

H

1

(R

3

)

= k�

n

� �

n

F

k

H

1

(R

3

)

� k�

n

k

H

1

(R

3

)

+ k�

n

F

k

H

1

(R

3

)

and it follows that k�

n

M

k

H

1

(R

3

)

! 0 (n ! 1). Together with

k�

n

F

k

L

2
! 0 (n ! 1) we 
on
lude that k�

n

k

d

! 0 (n ! 1), in
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ontradi
tion with the initial assumption. We have therefore proved

that there exists 
onstants 
; C (depending only N and 	) su
h that

for any � 2 H

1

(R

3

)


k�k

d

� k�k

H

1

(R

3

)

� Ck�k

d

:

The above equivalen
e imply that the 
anoni
al norm k � k

d;N

of

(H

1

(R

3

); k � k

d

)

N

is equivalent (with 
onstants depending only on

N and 	) to the 
anoni
al norm of H:




1

k�k

H

� k�k

d;N

� C

1

k�k

H

; 8� 2 H:

Sin
e 	 2 K, the fun
tions f	

1

; :::; 	

N

g are orthonormal with

respe
t to the s
alar produ
t of L

2

(R

3

) and also with respe
t to the

s
alar produ
t < �; � >

d

asso
iated with the norm k � k

d

. It follows by

(17) that

U

	;�

= argminfkU	 � �k

k�k

d;N

;U 2 U(N)g;

as both solve the same minimization problem on U(N). But then

kU

1

	;�

	 � �k

H

�

1

C

1

kU

1

	;�

	 � �k

d;N

�

1

C

1

kU

	;�

	 � �k

d;N

�




1

C

1

kU

	;�

	 � �k

H

:

whi
h 
on
ludes the proof. ut

3 Optimality 
onditions and 
oer
ivity

We will begin this se
tion with some elementary information about

the geometry of the manifolds K and H \K:

Lemma 4 Let � 2 H \ K.The tangent spa
e in � to the manifold

H \K is A

�

� �

??

.

Proof. Let �(t) :℄��; �[! H\K, � > 0, �(0) = � be a C

1

path in

H\K. Consider the de
omposition �

0

(0) = S�+C�+W , S� 2 S

�

,

C� 2 A

�

, W 2 �

??

. By di�erentiating the 
ondition F

ij

(�(t)) = 0

we obtain < �

i

; �

0

j

(0) > + < �

0

i

(0); �

j

>= 0 whi
h proves that

S

ij

= 0. Sin
e this is true for any i; j = 1; :::; N we 
on
lude S = 0

i.e. �

0

(0) 2 A

�

� �

??

.

To prove that any 	 = C�+W 2 A

�

� �

??

may be seen as the

tangent in � of a C

1

path in H \ K, 
hoose �(t) :℄ � �; �[! H \ K,

0 < � < 1, �(t) =

p

1� t

2

e

Ct

� + tW and note that �

0

(0) = 	 and

k�(t)k = 1; �� < t < �. ut
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The se
ond order optimality 
onditions for the minimization prob-

lem (8) will be seen to be very useful within our approa
h. Let

�

0

2 H \ K be a minimizer of (8) and �

0

be the hermitian ma-

trix 
orresponding to �

0

in equations (4). We will write the se
ond

order 
onditions in the form:

D

2

E

HF

(�

0

)(	; 	)+ < �

0

	; 	 >

(L

2

(R

3

))

N

� 0; 8	 2 A

�

0

� �

??

0

:

Denote for any � 2 H \K:

E

�

(�) = E

HF

(�) +

N

X

i;j=1

�

ij

F

ij

(�) (20)

where �

ij

=< F

�

�

i

; �

j

>, i; j = 1; :::; N .

Remark 5 The Hartree-Fo
k equations (4) 
an be \symboli
ally" de-

rived as a 
orollary of lemma 4. Indeed, the �rst order minimality


onditions asso
iated to (8) read

< DE

HF

(�

0

); 	 >

(L

2

(R

3

))

N

= 0; 8	 2 A

�

0

� �

??

0

whi
h is the same as writingDE

HF

(�

0

) = S�

0

, (S being a symmetri


matrix) whi
h are exa
tly equations (4) sin
e DE

HF

(�

0

) 
an be iden-

ti�ed with (F

�

0

; :::;F

�

0

). Moreover, with the de�nition (20) we note

that

DE

�

0

� 0: (21)

Denote by a

�

(�; �) the bilinear form D

2

E

�

(�)(�; �) and remark that

a

�

0

(�; �) = D

2

E

HF

(�

0

)(�; �)+ < �

0

�; � >

(L

2

(R

3

))

N

:

In order to obtain an expli
it formula for a

�

0

we need the expres-

sion of D

2

E

HF

(�

0

). Let �; 	

1

; 	

2

2 H \K. Then

D

2

E

HF

(�)(	

1

; 	

2

) = 2 �

N

X

i=1

Z

R

3

�

r	

1

i

� r	

2

i

+ V 	

1

i

	

2

i

�

+

1

2

ZZ

R

3

�R

3

8�

�;	

1
(x)�

�;	

2
(y) + 4�

	

1

;	

2
(x)�

�

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

2�

�

(x; y)(�

	

1

;	

2
(x; y) + �

	

1

;	

2
(y; x))

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

+4�

�;	

1(x; y)(�

�;	

2(x; y) + �

�;	

2(y; x))

jx� yj

dxdy;
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with the de�nitions

�

	

1

;	

2(x; y) =

P

N

i=1

	

1

i

(x)	

2

i

(y);

�

	

1

;	

2
(x) = �

	

1

;	

2
(x; x):

We obtain therefore:

D

2

E

HF

(�

0

)(	; 	) = 2 �

N

X

i=1

Z

R

3

�

jr	

i

j

2

+ V 	

2

i

�

+

1

2

ZZ

R

3

�R

3

8�

�

0

;	

(x)�

�

0

;	

(y) + 4�

	

(x)�

�

0

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

(x; y)�

	

(x; y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

;	

(x; y)(�

�

0

;	

(x; y) + �

�

0

;	

(y; x))

jx� yj

dxdy:

We will study in the following the 
oer
ivity properties of the

bilinear form a

�

0

. Note that for any 	 2 H \ K: E

HF

(	) = E

�

0

(	)

and in addition a

�

0

= D

2

E

�

0

(�

0

). By di�erentiating the invarian
e

property (11) we obtain in parti
ular (
f. lemma 4):

DE

�

0

(	)(C	) = 0;8	 2 H \K; 8C	 2 A

	

: (22)

Di�erentiating now (22) in 	 = �

0

and taking into a

ount the fa
t

that �

0

is a solution of (4) we obtain:

< D

2

E

�

0

(�

0

)(C�

0

;

~

C�

0

+W ) = 0; 8C�

0

;

~

C�

0

2 A

�

0

; 8W 2 �

??

0

:

Then it follows that a

�

0

vanishes on A

�

0

thus 
annot be 
oer
ive

there ; the 
oer
ivity properties of a

�

0

are des
ribed by the following

two lemmata.

Lemma 5 Let V

�

0

be the 
losure of spanf	 2 A

�

0

��

??

0

: a

�

0

(	; 	) =

0g with respe
t to the 
anoni
al topology of H. Then a

�

0

is null on

V

�

0

� V

�

0

.

Proof. Let 	

1

; 	

2

2 A

�

0

��

??

0

be su
h that a

�

0

(	

i

; 	

i

) = 0, i = 1; 2.

Then sin
e a

�

0

� 0 on A

�

0

��

??

0

by a standard Cau
hy-S
hwartz in-

equality for the positive bilinear form a

�

0

we obtain 2ja

�

0

(	

1

; 	

2

)j �

a

�

0

(	

1

; 	

1

) + a

�

0

(	

2

; 	

2

) and therefore a

�

0

(	

1

; 	

2

) = 0. It follows

then that for any 	 = �

1

	

1

+ �

2

	

2

su
h that �

1

; �

2

2 R we have

a

�

0

(	; 	) = 0 whi
h, together with the 
ontinuity of a

�

0


on
ludes

the proof. ut
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Proposition 1 Let X

�

0

be a 
losed subspa
e of �

??

0

(H) su
h that

8	 2 X

�

0

; 	 6= 0 : a

�

0

(	; 	) > 0:

Then a

�

0

is 
oer
ive on X

�

0

.

The proof of this proposition makes use of the following auxiliary

result

Lemma 6 The mapping

	 7!

1

2

ZZ

R

3

�R

3

8�

�

0

;	

(x)�

�

0

;	

(y) + 4�

	

(x)�

�

0

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

(x; y)�

	

(x; y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

;	

(x; y)(�

�

0

;	

(x; y) + �

�

0

;	

(y; x))

jx� yj

dxdy

is sequentially weakly lower semi
ontinuous with respe
t to the 
anoni


topology of H.

Proof. Let us re
all the Hardy inequality (used in the version of [11℄

p.42) whi
h holds for all y 2 R

3

, ' 2 H

1

(R

3

):

Z

R

3

j'(x)j

2

jx� yj

dx � Ck'k

L

2

(R

3

)

kr'k

L

2

(R

3

)

with a 
onstant C independent of y and '. Note that if u; v 2 H

1

(R

3

)

u(x)v(y)

p

jx�yj

2 L

2

(R

3

� R

3

). Indeed:

ZZ

R

3

�R

3

u

2

(x)v

2

(y)

jx� yj

dxdy =

Z

R

3

�

Z

R

3

u

2

(x)

jx� yj

dx

�

v

2

(y)dy

� Ckuk

L

2

(R

3

)

kruk

L

2

(R

3

)

Z

R

3

v

2

(y)dy � Ckuk

L

2

(R

3

)

kruk

L

2

(R

3

)

kvk

2

L

2

(R

3

)

Let 	

m

be a sequen
e weakly 
onvergent in H to 	 ; this sequen
e

is bounded in H ; without loss of generality it 
an be supposed that

k	

m

k

H

� 1.

Consider a term of the form

ZZ

R

3

�R

3

f(x)g(y)	

m

i

(x)	

m

j

(y)

jx� yj

dxdy (23)

where f; g 2 f(�

0

)

1

; :::; (�

0

)

N

g. We have seen that

f(x)g(y)

p

jx�yj

,

	

m

i

(x)	

m

j

(y)

p

jx�yj

2

L

2

(R

3

� R

3

); sin
e k	

m

k

H

� 1, it follows that

	

m

i

(x)	

m

j

(y)

p

jx�yj

is weakly
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onvergent in L

2

(R

3

�R

3

) to

2

	

i

(x)	

j

(y)

p

jx�yj

so any term of the form (23)

is weakly 
ontinuous (so also lower weakly semi
ontinuous), and of


ourse the same is true for any sum of terms of this type, in parti
ular

�

�

0

;	

m
(x)�

�

0

;	

m
(y)

jx�yj

,

�

�

0

(x;y)�

	

m
(x;y)

jx�yj

,

�

�

0

;	

m
(x;y)�

�

0

;	

m
(y;x)

jx�yj

.

The only term that remains to be analyzed in (23) is

4

ZZ

R

3

�R

3

�

	

(x)�

�

0

(y)� �

�

0

;	

(x; y)

2

jx� yj

dxdy

We transform the numerator of the above fra
tion as follows:

�

	

(x)�

�

0

(y)� (�

�

0

;	

(x; y))

2

=

N

X

i=1

(	

i

)

2

(x)(�

0

)

2

i

(y)

+

X

i<j

(	

i

)

2

(x)(�

0

)

2

j

(y) + (	

j

)

2

(x)(�

0

)

2

i

(y)

�

N

X

i=1

(	

i

)

2

(x)(�

0

)

2

i

(y)�

X

i<j

	

i

(x)(�

0

)

i

(y)	

j

(x)(�

0

)

j

(y)

=

X

i<j

�

	

i

(x)(�

0

)

j

(y)� 	

j

(x)(�

0

)

i

(y)

�

2

It is easy to see from this equality that �

	

(x)�

�

0

(y)�(�

�

0

;	

(x; y))

2

is

a 
onvex fun
tion of 	 and therefore, by a 
lassi
al fun
tional analysis

argument, is sequentially weakly lower semi
ontinuous. ut

Proof of Proposition 1: Let us pro
eed with the proof of propo-

sition 1. Suppose on the 
ontrary that the 
on
lusion is not true. Then

there exists a sequen
e f	

m

g

m�1

2 X

�

0

su
h that k	

m

k

H

= 1, and

lim

m!1

a

�

0

(	

m

; 	

m

) = 0 ; extra
ting if ne
essary a subsequen
e out

of it, we may suppose that f	

m

g

m�1

is weakly 
onvergent in H to

2

In order to rigorously identify the weak limit one uses appropriate test fun
-

tions

p

jx� yj�(x)�(y)1

jxj�R

1

jyj�R

for any �; � 2 L

2

(R

3

), R > 0 .
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	 2 X

�

0

. We �rst write:

a

�

0

(	

m

; 	

m

) = 2 �

N

X

i=1

Z

R

3

jr	

m

i

j

2

+

2 �

N

X

i;j=1

�

0

ij

Z

R

3

	

m

i

	

m

j

+ 2 �

N

X

i=1

Z

R

3

V (	

m

i

)

2

+

1

2

ZZ

R

3

�R

3

8�

�

0

;	

m

(x)�

�

0

;	

m

(y) + 4�

	

m

(x)�

�

0

(y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

(x; y)�

	

m

(x; y)

jx� yj

dxdy

�

1

2

ZZ

R

3

�R

3

4�

�

0

;	

m

(x; y)(�

�

0

;	

m

(x; y) + �

�

0

;	

m

(y; x))

jx� yj

dxdy(24)

Re
all that ([11℄ p.42) that

R

R

3

V  

2

dx is weakly lower semi
ontinuous

onH

1

(R

3

) ([11℄ p.42). By the lemma 6 the integrals on R

3

�R

3

in (24)

also have weakly lower semi
ontinuity properties. Sin
e the matrix �

0

has stri
tly positive eigenvalues (remark 2) the �rst two terms on

the right hand side of (24) de�ne a norm so this part is also weakly

lower semi
ontinuous ; we obtain

a

�

0

(	; 	) � lim

m!1

a

�

0

(	

m

; 	

m

) = 0

whi
h together with (1) imply 	 = 0. We will use now this infor-

mation for a �ner analysis of the sequen
e a

�

0

(	

m

; 	

m

) ; by the

argument above there exists a 
onstant 


0

> 0 depending on �

0

su
h

that for any 	 2 H:

N

X

i=1

Z

R

3

2jr	

i

j

2

+

N

X

i;j=1

�

0

ij

Z

R

3

	

i

	

j

� 


0

k	k

H

:

Using again the lower semi
ontinuity of the remaining terms we ob-

tain:

0 = lim

m!1

a

�

0

(	

m

; 	

m

) � 0 + lim inf

m!1

N

X

i=1

Z

R

3

2jr	

m

i

j

2

+

N

X

i;j=1

�

0

ij

Z

R

3

	

m

i

	

m

j

� 


0

lim inf

m!1

k	

m

k

H

= 


0

> 0;

whi
h is impossible. ut
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Motivated by the above analysis, we will introdu
e the following

hypothesis:

8	 2 �

??

0

; 	 6= 0 : a

�

0

(	; 	) > 0: (25)

whi
h, by proposition 1, ensures the existen
e of a \
oer
ivity 
on-

stant" 


�

0

> 0 su
h that

8	 2 �

??

0

; 	 6= 0 : a

�

0

(	; 	) � 


�

0

k	k

2

H

: (26)

Remark 6 Using the lemma 5 a posteriori analysis may still be 
ar-

ried out without the hypothesis 25 ; some aspe
ts of a more general

analysis are presented in remark 11.

4 Error estimators, bounds and 
onvergen
e a

eleration

Let �

0

; � 2 H\K be as in se
tion 2.1: �

0

a minimizer of (8) (whi
h is

thus a solution of (4)) and � 2 H\K a given dis
rete approximation

of �

0

obtained by a previous 
omputation.

Let us denote by � = kU

�

0

;�

�

0

� �k

H

= kU

�;�

0

� � �

0

k

H

the

distan
e between � and �

0

. Even if the wavefun
tion �

0

may be

intrinsi
ally interesting (e.g. when the form of the mole
ular orbitals

is studied), the main result of a Hartree-Fo
k 
omputation is the

Hartree-Fo
k energy E

HF

(�

0

).

We will suppose in all that follows that � is 
lose enough to �

0

su
h that e.g. in the development of the error E

HF

(�) � E

HF

(�

0

)

with respe
t to powers of �: E

HF

(�) � E

HF

(�

0

) = 


k

�

k

+ o(�

k

) the

se
ond term o(�

k

) is indeed smaller than 


k

�

k

(due to the asymptoti


properties of the de
omposition this is 
ertain to happen when � is

small enough).

4.1 Error estimators

The a posteriori analysis method presented in this se
tion is 
on-

ne
ted to the works of Babu�ska [1℄, Bernardi [4℄, Ladev�eze [9℄, Oden

[14℄, Pousin and Rappaz [18℄, Verf�urth [21,22℄ and is aimed at giving

quantitative indi
ations on the form of the error, through bilateral

estimates. Even if the 
onstants are not expli
itly known, this method

may prove interesting when only relative error estimates are needed

(as in adaptative pro
edures) or when the estimator is shown to pos-

sess further properties that allow to estimate those 
onstants.
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Let us re
all (see also (15)) that U

�;�

0

� � �

0

2 S

�

0

� �

??

0

and

denote U

�;�

0

���

0

= S�

0

+W , S�

0

2 S

�

0

, W 2 �

??

0

. Then one 
an

write

E

HF

(�)� E

HF

(�

0

) = E

HF

(U

�;�

0

�)� E

HF

(�

0

)

= E

�

0

(�

0

+ S�

0

+W )� E

�

0

(�

0

)

= DE

�

0

(�

0

)(S�

0

+W ) +D

2

E

�

0

(�

0

)(S�

0

+W;S�

0

+W ) +O(�

3

)

= 0 +D

2

E

�

0

(�

0

)(W;W ) +O(�

3

) = a

�

0

(W;W ) +O(�

3

)

where we have used �rstly the fa
t that �

0

is the solution of (4) (see

remark 5 equation 21) and se
ondly the lemma 2 for (U

�;�

0

�;�

0

)!

(	;�). From the 
ontinuity of a

�

0

and (26) one 
on
ludes that kWk

2

H

is a third order estimator of the energy error E

HF

(�)� E

HF

(�

0

).

Remark 7 It easy to see by (19) that kWk

H

= �+O(�

2

).

Unfortunately dire
t 
omputation of W (and then of kWk

2

H

) as-

sumes knowledge of �

0

whi
h is not available. However good approxi-

mations of kWk

2

H

that require only the knowledge of � 
an be found.

Indeed, let us set F = DE

HF

, 	 = U

�;�

0

� and study the norm of

F (	) in the dual spa
e 	

??�

of 	

??

kF (	)k

	

??�

= sup

�2	

??

< DE

HF

(	); � >

k�k

H

= sup

�2	

??

< DE

�

0

(	); � >

k�k

H

= sup

�2	

??

< DE

�

0

(	)�DE

�

0

(�

0

); � >

k�k

H

= sup

�2	

??

D

2

E

�

0

(�

0

)(	 � �

0

; �)

k�k

H

+O(�

2

)

We used in the �rst line of the equation above the de�nition (20) of

E

�

0

and the identity DF

ij

(	; �) � 0 on 	

??

. We show now that we 
an

repla
e in the above supremum the spa
e 	

??

= (U

�;�

0

�)

??

= �

??

by

�

??

0

. Let � 2 	

??

be written as � =M�

0

+

~

�,

~

� 2 �

??

0

. Note that

jM

ij

j = j < �

i

; �

0j

> j = j < �

i

; �

0j

� 	

j

> j

� k�k

(L

2

(R

3

))

N

k�

0

� 	k

(L

2

(R

3

))

N

(27)

so one 
an write

j

a

�

0

(	 � �

0

;M�

0

)

k�k

H

j �

C

�

0

k	 � �

0

k

H

k�k

H

k�

0

� 	k

(L

2

(R

3

))

N

k�k

H

� C

�

0

�

2

;
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where C

�

0

is the 
ontinuity 
onstant of a

�

0

. Sin
e

k

~

�k

H

k�k

H

= 1 + O(�)

one 
on
ludes that

kF (	)k

	

??�

= sup

�2	

??

a

�

0

(	 � �

0

;

~

�)

k

~

�k

H

+O(�

2

)

= sup

~

�2	

??

0

a

�

0

(	 � �

0

;

~

�)

k

~

�k

H

+O(�

2

) = sup

~

�2	

??

0

a

�

0

(S�

0

+W;

~

�)

k

~

�k

H

+O(�

2

)

= sup

~

�2	

??

0

a

�

0

(W;

~

�)

k

~

�k

H

+O(�

2

) = kWk

H

+O(�

2

):

We have shown above that kF (	)k

	

??�

is a se
ond order approx-

imation of kWk

H

and therefore kF (	)k

2

	

??�

will be a third order

estimator of the energy error E

HF

(�) � E

HF

(�

0

). We next prove

that kF (	)k

	

??�

is invariant with respe
t to the multipli
ation of 	

by unitary matri
es and therefore equal to kF (�)k

�

??�

, so it 
an be


omputed (a posteriori) using only available data (i.e. �). Let us 
om-

pute for � in H \ K the fun
tion F (U�), by the de�nition of F this

equals DE

HF

(U�) whi
h 
an be written:

DE

HF

(U�) =

�

F

U�

((U�)

i

)

�

N

i=1

=

�

(�

1

2

�+ V )((U�)

i

)

�

N

i=1

+

�

(�

U�

?

1

jxj

)(U�)

i

�

Z

R

3

�

U�

(x; y)

jx� yj

(U�)

i

(y)dy

�

N

i=1

= U

�

(�

1

2

�+ V )(�

i

)

�

N

i=1

+ U

�

(�

�

?

1

jxj

)�

i

�

Z

R

3

�

�

(x; y)

jx� yj

�

i

(y)dy

�

N

i=1

;

where we have used the invarian
e property (6). It was therefore

proven that

F (U�) = UF (�);8� 2 H \ K;

and therefore kF (	)k

	

??�

= kF (U

�;�

0

�)k

	

??�

= kF (�)k

�

??�

We will

summarize the results obtained in this se
tion in the following

Theorem 1 Let �

0

be a minimizer of (8), � 2 H \ K a (given)

dis
rete approximation of �

0

obtained by a previous 
omputation as

des
ribed in se
tion 2.1 (10), and denote � = kU

�

0

;�

�

0

��k

H

the quo-

tient distan
e between � and �

0

. Then, under the assumption (25),

kDE

HF

(�)k

�

??�

= �+O(�

2

):

Moreover there exists 
onstants 


1

; 


2

depending only on �

0

su
h that




1

kDE

HF

(�)k

2

�

??�

+O(�

3

) � E

HF

(�)� E

HF

(�

0

)

� 


2

kDE

HF

(�)k

2

�

??�

+O(�

3

): (28)
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Remark 8 The 
onstants 


1

; 


2

in (28) are not known and therefore

the quantity kDE

HF

(�)k

2

�

??�


an be used to estimate the error in

energy but not to obtain pre
ise error bars.

4.2 Expli
it bounds for the Hartree-Fo
k energy and 
onvergen
e

a

eleration

The purpose of this se
tion is to propose methods to �nd expli
it

bounds for the Hartree-Fo
k energy. The method belongs to the more

general paradigm [13,15{17℄ of de�nition of expli
it lower and upper

bounds for outputs depending on the solution of a partial di�erential

equation. The output of interest will be taken to be the Hartree-Fo
k

energy ; this 
hoi
e will be seen (
f. thm. 2 ) to posses parti
ularities

that in fa
t allow to design an improvement of the solution itself,

although this is not expe
ted to be the 
ase for general outputs.

We will begin this se
tion with some remarks on the 
oer
ivity

properties of the bilinear forms a

�

0

and a

�

.

Lemma 7 Under the hypothesis (25) there exists a 
onstant 
 > 0

depending only on �

0

su
h that for any U 2 U(N) the bilinear form

a

U�

0

is 
oer
ive on (U�

0

)

??

= �

??

0

with 
oer
ivity 
onstant 
.

Proof. Note that for any 	

1

2 H \ K , 	

2

2 H, U 2 U(N):

a

U	

1

(U	

2

; U	

2

) = a

	

1

(	

2

; 	

2

), so by (25) and proposition 1 we obtain

the 
on
lusion. ut

Lemma 8 Under the assumption (25) there exists a 
onstant � > 0

depending only on �

0

su
h that for all � 2 H\K with k���

0

k

H

� �

the bilinear form a

�

is 
oer
ive on �

??

with a 
oer
ivity 
onstant

depending only of �

0

.

Proof. Let � 2 �

??

, k�k

H

� 1 be written as � = M�

0

+

~

�,

~

� 2 �

??

0

.

We will generi
ally denote by C various 
onstants depending only on

�

0

. Re
all that (by (27)) jM

ij

j � k�k

(L

2

(R

3

))

N

k�

0

� 	k

(L

2

(R

3

))

N

, so

for k�

0

� 	k

H

small enough

a

�

(�; �) = a

�

(

~

�+M�

0

;

~

�+M�

0

) � a

�

(

~

�;

~

�)�Ck�k

H

k

~

�k

H

k�

0

�	k

H

:

But for k�

0

� 	k

H

small enough we 
an also write

k�k

H

k

~

�k

H

k�

0

� 	k

H

� k�k

H

(k�k

H

+ k�k

H

k�

0

� 	k

H

)k�

0

� 	k

H

� Ck�k

2

H

k�

0

� 	k

H

:
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Sin
e j�

ij

��

0

ij

j � Ck���

0

k

H

it follows that ja

�

(

~

�;

~

�)�a

�

0

(

~

�;

~

�)j �

Ck

~

�k

2

H

k�

0

� 	k

H

so in fa
t

a

�

(�; �) � a

�

0

(

~

�;

~

�)� C(k

~

�k

2

H

+ k�k

2

H

)k�

0

� 	k

H

� 
k

~

�k

2

H

� C(k

~

�k

2

H

+ k�k

2

H

)k�

0

� 	k

H

:

It suÆ
es now to use a last time jk�k

H

�k

~

�k

H

j � k�k

H

k�

0

� 	k

H

to


on
lude. ut

In what follows we start the presentation of the 
onstru
tion of

(lower) bounds for the Hartree-Fo
k energy. As it was seen in lemma

7, under the assumption (25) we have uniform 
oer
ivity properties

for bilinear forms a

�

0

with respe
t to the multipli
ation of �

0

by uni-

tary matri
es U 2 U(N); for this reason we 
an repla
e �

0

with any

U�

0

that �ts better our needs; we will therefore suppose in agreement

with lemma 1 that �

0

is su
h that �

0

� � = S�+W 2 S

�

� �

??

.

The 
onstru
tion of (lower) bounds for the Hartree-Fo
k energy

is based on the following development:

E

HF

(�

0

)� E

HF

(�) = E

�

(�

0

)� E

�

(�) = E

�

(�+ S�+W )� E

�

(�)

= DE

�

(�)(S�+W ) +

1

2

D

2

E

�

(�)(S�+W;S�+W ) +O(�

3

)

Note �rst that by the properties of � as des
ribed in se
tion 2.1 eq.

(10) DE

�

(�) is null on the dual spa
e of the dis
retization spa
e so in

parti
ular DE

�

(�)(S�) = 0 ; re
all also the fa
t that S� is of order

�

2

and W of order � to obtain

E

HF

(�

0

)� E

HF

(�) = DE

�

(�)(W ) +

1

2

D

2

E

�

(�)(W;W ) +O(�

3

) (29)

Consider now the problem: �nd the re
onstru
ted error

^

W 2 �

??

su
h

that

D

2

E

�

(�)(

^

W;	) +DE

�

(�)(	) = 0; 8	 2 �

??

: (30)

By the 
oer
ivity of a

�

it follows that (30) has a unique solution

^

W 2 �

??

.

Remark 9 Note that in order to 
ompute

^

W one solves a dire
t (i.e.

not eigenvalue) problem on the solution spa
e ; moreover all operators

involved depend only on �.
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Using the de�nition of

^

W one 
an rewrite (29):

E

HF

(�

0

) = E

HF

(�)�D

2

E

�

(�)(

^

W;W ) +

1

2

D

2

E

�

(�)(W;W )

+O(�

3

) = E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W )

+

1

2

D

2

E

�

(�)(W �

^

W;W �

^

W ) +O(�

3

): (31)

But sin
e a

�

is positive on �

??

it follows that

1

2

D

2

E

�

(�)(W�

^

W;W�

^

W ) � 0 so in fa
t we obtain an asymptoti
 expli
it lower bound

on the Hartree-Fo
k energy:

E

HF

(�

0

) � E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W ) +O(�

3

); (32)

whi
h together with the inequality E

HF

(�

0

) � E

HF

(�) gives an in-

terval for the exa
t value of the Hartree-Fo
k energy.

Remark 10 A natural question is to study the order in � of the length

of the error bar found above. Let us re
all that the error in energy is

of order �

2

; we will prove that this interval is optimal in a sense that

its length is also of order �

2

; indeed the distan
e between the upper

and lower bound is

1

2

D

2

E

�

(�)(

^

W;

^

W ) +O(�

3

) whi
h is equivalent to

k

^

Wk

H

; all that remains to be proven is that k

^

Wk

H

� C� (with a


onstant not depending on �

0

). Indeed:

k

^

Wk

H

� CkDE

�

(�)k

�

??�

� CkDE

�

(�)�DE

�

(�

0

)k

�

??�

+CkDE

�

(�

0

)�DE

�

0

(�

0

)k

�

??�

� C�

where we have used the fa
t that DE

�

0

(�

0

) is null on �

??

0

.

The nomination of

^

W as \re
onstru
ted error" is best explained

by the following property:

^

W =W +O(�

2

): (33)

In order to prove (33) we will prove thatW has the following property:

jD

2

E

�

(�)(W;	) +DE

�

(�)(	)j � C�

2

; 8	 2 �

??

; k	k

H

= 1: (34)

with a 
onstant C independent of �, 	 . Suppose (34) is true then

jointly with (30) one obtains:

jD

2

E

�

(�)(W �

^

W;	)j � C�

2

;8	 2 �

??

; k	k

H

= 1:
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Let 	 =

W�

^

W

kW�

^

Wk

H

; from the 
oer
ivity of a

�

= D

2

E

�

(�) we dedu
e:

1

kW �

^

Wk

H

� 
kW �

^

Wk

2

H

� C�

2

;

and (33) follows.

Re
all that, from lemma 2, k�

0

� ��Wk is of order �

2

. In order

to prove (34) it is thus suÆ
ient to prove it for �

0

�� instead of W :

let us write

DE

�

(�)(	) = DE

�

(�

0

)(	) +D

2

E

�

(�

0

)(�� �

0

; 	) +O(�

2

):

Besides we have

jD

2

E

�

(�

0

)(�� �

0

; 	)�D

2

E

�

(�)(�� �

0

; 	)j � C�

2

k	k

H

;

(with a 
onstant C depending only of �

0

), so

DE

�

(�)(	) = DE

�

(�

0

)(	) +D

2

E

�

(�)(�� �

0

; 	) +O(�

2

)

and therefore

D

2

E

�

(�)(�

0

� �; 	) +DE

�

(�)(	) = DE

�

(�

0

)(	) +O(�

2

):

It suÆ
es now to prove that DE

�

(�

0

)(	) = O(�

2

). By the de�nition

of E

�

,

DE

�

(�

0

)(	) = DE

�

0

(�

0

)(	) +

P

N

i;j=1

(�

ij

� �

0

ij

)DF

ij

(�

0

)(	)

= 0 +

P

N

i;j=1

(�

ij

� �

0

ij

)DF

ij

(�

0

)(	):

Note �rstly that �

ij

��

0

ij

� C� (C depending only of �

0

). Moreover

DF

ij

(�

0

)(	) =< �

0i

; 	

j

> + < �

0j

; 	

i

>

=< �

0i

� �

i

; 	

j

> + < �

0j

� �

j

; 	

i

>

thus jDF

ij

(�

0

)(	)j 
an be upper bounded by C� (we used the fa
t

that 	 2 �

??

), whi
h 
on
ludes the proof of (33).

Combining (31) and (33) we 
an give a better version of (32):

E

HF

(�

0

) = E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W ) +O(�

3

); (35)

so instead of a lower bound we have obtained an improvement of

the Hartree-Fo
k energy ; note that this improvement is of a stri
tly

higher order in � sin
e the best approximation known before the 
om-

putation of

^

W was E

HF

(�) whi
h is exa
t to the order �

2

.

Although (35) may represent in itself the 
on
lusion of the a pos-

teriori analysis, further progress is possible. To this end note that
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an improvement for the wavefun
tion � has also been found, namely

~

� = � +

^

W . However we 
annot propose

~

� as a legitimate solution

of (4) sin
e it is not 
ertain to be in K. We will see in the following

that it is possible to �nd a 
orre
tion to add to �+

^

W whi
h not only

gives an admissible solution of (4) but also improves with another

order the approximation (35) of the Hartree-Fo
k energy E

HF

(�

0

).

In order to improve even more the solution, remind the equality

�

0

= �+W + S�. Sin
e both �

0

and � are in K we 
an write

Æ

ij

=< �

0i

; �

0j

>=< �

i

+

N

X

k=1

S

ik

�

k

+W

i

; �

j

+

N

X

l=1

S

jl

�

l

+W

j

>

= Æ

ij

+ < W

i

;W

j

> +

N

X

k=1

S

ik

Æ

kj

+

N

X

k=1

S

jl

Æ

il

+O(�

4

) (36)

be
ause we know that S

ij

= O(�

2

). We obtain

0 =< W

i

;W

j

> +S

ij

+ S

ji

+O(�

4

) =<

^

W

i

;

^

W

j

> +S

ij

+ S

ji

+O(�

3

)

so denoting

~

S

ij

= �

1

2

<

^

W

i

;

^

W

j

>, we obtain that

~

S� is a order �

3

approximation of S�:

~

S� = S�+O(�

3

). Note that by remark 9 that

the 
omputation of

~

S requires knowledge of � only.

We will prove in the following that having an approximation

^

W

of W to the order �

2

and an approximation

~

S of S to the order �

3

is

enough to have an approximation of the Hartree-Fo
k energy to the

order �

4

. Indeed, write

E

HF

(�

0

)� E

HF

(�) = E

�

(�

0

)� E

�

(�) = E

�

(�+ S�+W )� E

�

(�)

= DE

�

(�)(S�+W ) +

1

2

D

2

E

�

(�)(S�+W;S�+W )

+

1

3!

D

3

E

�

(�)(S�+W;S�+W;S�+W ) +O(�

4

)

= DE

�

(�)(W ) +

1

2

D

2

E

�

(�)(W;W ) +D

2

E

�

(�)(S�;W )

+

1

3!

D

3

E

�

(�)(W;W;W ) +O(�

4

)

= �

1

2

D

2

E

�

(�)(

^

W;

^

W ) +

1

2

D

2

E

�

(�)(W �

^

W;W �

^

W ) +

D

2

E

�

(�)(

~

S�;

^

W ) +

1

3!

D

3

E

�

(�)(

^

W;

^

W;

^

W ) +O(�

4

)

= �

1

2

D

2

E

�

(�)(

^

W;

^

W ) +D

2

E

�

(�)(

~

S�;

^

W ) +

1

3!

D

3

E

�

(�)(

^

W;

^

W;

^

W ) +O(�

4

);



24 Yvon Maday and Gabriel Turini
i

so we have obtained

E

HF

(�

0

) = E

HF

(�)�

1

2

D

2

E

�

(�)(

^

W;

^

W ) +D

2

E

�

(�)(

~

S�;

^

W ) +

1

3!

D

3

E

�

(�)(

^

W;

^

W;

^

W ) +O(�

4

):

where all terms involved in the right hand side 
an be 
omputed from

�.

One problem remains though, our best approximation for the so-

lution �

0

, namely

~

~

� = � +

^

W +

~

S� is still not 
ertain to be in

K ; in fa
t it 
an be proved that there exists an

^

S that depends

only of � that has the property

^

S� =

~

S� + O(�

3

) and su
h that

^

� = �+

^

W +

^

S� 2 K. Moreover, using the above arguments, we will

also have E

HF

(�

0

) = E

HF

(

^

�) +O(�

4

). The existen
e and properties

of

^

S follows by 
onsidering as in (36) the equations satis�ed by

^

S.

Denote by M the matrix with entries <

^

W

i

;

^

W

j

> then

^

S is solution

of the equation

(I +

^

S)

2

= I �M: (37)

This shows that

^

S is an O(�

3

) approximation of

~

S. The matrix

^

S 
an

be 
omputed from equation 37 by taking the square root of I �M

whi
h is well de�ned as

^

W is 
lose to W (and small). Note that this

pro
edure may be 
ostly for non-sparse matri
es and 
an be repla
ed

in pra
ti
e with Taylor-like series expansion formulas

I +

^

S =

p

I �M = I �

1

2

M +

1

8

M

2

�

1

16

M

3

+ :::

We will summarize the results obtained in this se
tion in the fol-

lowing theorem:

Theorem 2 Let �

0

be a minimizer of (8), � 2 H \ K a (known)

dis
rete approximation of �

0

obtained by a previous 
omputation as

des
ribed in se
tion 2.1 (10). Then, under the assumption (25), there

exists an � > 0 su
h that for any � 2 H\K with kU

�

0

;�

�

0

��k � �

there exists

^

W 2 �

??

and

^

S� 2 S

�

whose 
omputation requires only

knowledge of � su
h that

^

� = �+

^

S�+

^

W 2 H\K has the following

properties:

k

^

�� �

0

k

H

� 


1

k�� �

0

k

2

H

;

jE

HF

(

^

�)� E

HF

(�

0

)j � 


2

jE

HF

(�)� E

HF

(�

0

)j

2

:

with 
onstants 


1

,


2

depending only of �

0

.
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Error bars 
an be easily derived from the Thm. 2 above and the

minimization properties of E

HF

(�

0

):

Theorem 3 Under the same assumptions and with the same nota-

tions as in Thm. 2, there exists an ~� > 0 su
h that for any � 2 H\K

with kU

�

0

;�

�

0

� �k � ~� the following estimates hold:

2 � E

HF

(

^

�)� E

HF

(�) � E

HF

(�

0

) � E

HF

(�):

Remark 11 The approa
h des
ribed in this se
tion 
an be developed

under more general assumptions than (25). Denote by X

�

0

the 
losed

subspa
e of �

??

0

where (1) holds so that, in agreement with propo-

sition 1 a

�

0

is 
oer
ive on X

�

0

; using the same arguments as in

lemma 8 one proves for k�

0

��k

H

small enough 
oer
ivity for a

�

on

X

�

0

\�

??

; this shows that the problem (30) has an unique solution on

X

�

0

\�

??

and this solution is then shown to posses the same property

(33) as

^

W . A \re
onstru
ted symmetri
al" part is then 
omputed by

the same method as above and we obtain thus an improvement for

the energy and for the wavefun
tion. The only 
omputational imped-

iment to this program is that one 
annot really identify the spa
e

X

�

0

\ �

??

where problem (30) is to be solved ; one 
hooses then

the largest subspa
e in �

??

where a

�

is positive (therefore 
oer
ive),

whi
h will 
ontain X

�

0

\ �

??

, and proves that the solution of (30)

on this spa
e is an order �

2

approximation of the solution of (30) on

X

�

0

\�

??

. In pra
ti
e (
f. se
tion 5) there was no need to implement

this pro
edure as (25) seems to be satis�ed.

Remark 12 The numeri
al 
omputation of

^

W involves the resolution

of equation (30) over the dis
rete subspa
e �

??

Æ

of �

??

; the 
orrespond-

ing solution

^

W

Æ

will be an approximation of

^

W whi
h 
onverges to

^

W when the dis
retization parameter Æ is su
h that �

??

Æ


onverges to

the spa
e �

??

.

Remark 13 Upon writing this paper we were made aware [5℄ that (30)

is equivalent to a density matrix quadrati
 
onvergen
e equation (see

for instan
e [3℄ an referen
es therein for an introdu
tion). A study

is being undertaken to further investigate the advantages that this

equivalen
e may bring at the numeri
al level.

5 Numeri
al simulations

The theory presented in the previous se
tions was tested in two 
at-

egories of numeri
al experiments.
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In the experiments of the �rst 
ategory we 
he
ked on simple 
ases

(hydrogen mole
ule, helium) that the methodology proposed above is


oherent with available results when the problem (30) that provides

^

W is solved on a very �ne dis
retization of H.

In a se
ond stage more 
omplex mole
ules were studied and the

method was implemented in a Hartree-Fo
k quantum 
hemistry 
ode.

Before presenting the results let us remark that the partial di�er-

ential equation (PDE) (30) is, for N large, very diÆ
ult to dis
retize

with 
lassi
al tools from the PDE equations (�nite elements, �nite

volumes, ...) due to the high dimensionality of the linear spa
es in-

volved. Moreover a good dis
retization has also to take into a

ount

some spe
i�
 quantum 
hemi
al e�e
ts as the singularities of the

ele
troni
 wavefun
tion around nu
lei; in 
on
lusion, only very small

quantum systems are thus available for study using 
lassi
al tools in

solving PDEs ; su
h systems are for example the hydrogen mole
ule

(H

2

) and the helium atom (He).

5.1 Validation of the dis
retization basis

We illustrate in this se
tion how to use of the error bars to validate

the dis
retization basis used to solve the Hartree-Fo
k problem. Error

bars are 
omputed for several approximations of the exa
t wavefun
-

tion 
orresponding to several dis
retization basis and the exa
t (best

known) Hartree-Fo
k energy is seen to fall within the error bars as

indi
ated by the theory. The size of the error bar 
an be therefore

used to to asses the quality of the result and thus to validate the

dis
retisation basis used.

For all the numeri
al experiments we pla
ed ourselves into the

Restri
ted (
losed) shell Hartree-Fo
k (Lewis ele
tron pair) approxi-

mation that states that when the number of ele
trons in a mole
ule is

even, one 
an group together the ele
trons 2 by 2; the two ele
trons in

ea
h su
h pair will share a 
ommon spatial wavefun
tion but will have

opposite spin. Within this approximation, for a bi-ele
troni
 system

as the hydrogen mole
ule or Helium atom, the sear
h of the ele
troni


wavefun
tion of the system redu
es to the sear
h of a fun
tion u of 3

variables su
h that

��u+ V u+

�

juj

2

?

1

jxj

�

+ �u = 0 in R

3

:

The spa
e to be dis
retized is therefore R

3

; in fa
t using 
lassi
al

lo
alization arguments it 
an be redu
ed to a bri
k of R

3

that 
ontains
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the nu
lei of the system ; in the 
ase of the Helium atom this bri
k

was taken to be a 
ube 
entered around the nu
leus.

We will present in the following the results obtained for the Helium

atom; ea
h axis of a 
ube 
entered in the nu
leus mentioned above

was dis
retized with the same number of points that varied between

60 and 120 depending on the singularities of the initial solutions


onsidered; pre
ise results were obtained for about 100 points per

dimension and 
orresponding ve
tors of size 100

3

= 10

6

.

Several initial approximations �

i

, i = 2; 3; 4; 5; 6 of the ele
troni


wavefun
tion were 
onsidered; ea
h 
orrespond to a quantum 
hem-

i
al 
omputation that used spe
i�
 quantum basis sets denominated

as STOnG, n = 2; 3; 4; 5; 6 ; the larger the parameter n, the �ner

the basis used; in ea
h 
ase the linear problem (30) was solved on

the 
hosen grid as indi
ated in Remark 12 and then the symmetri


part of the error was re
onstru
ted as indi
ated in previous se
tion.

In order to solve (30) an iterative algorithm was employed, the ma-

trix asso
iated to D

2

E

�

(�)(�; �) (typi
ally 10

6

� 10

6

) being too large

for dire
t inversion; �nally in order to take advantage of the tensor-

produ
t-like dis
retization the 
omputation of 
onvolution produ
ts

was done by means of fast Fourier transforms.

The �gure 1 shows the energy of the initial wavefun
tion � (\Clas-

si
ally 
omputed energy"), the best known approximation of the en-

ergy Helium atom, the improved energy obtained as in thm. 2 and

then the order �

2

lower bound as des
ribed in Thm. 3; agreement

with the theoreti
al results is obtained.

5.2 Validation of the iterative resolution pro
edure

The numeri
al resolution of the Hartree-Fo
k equations involves it-

erative resolution of eigenvalue problems. The number of iterations

ne
essary is not known in advan
e and no natural stoping 
riterion

exists. We found therefore important to illustrate how the error bars

presented above 
an be used to validate the number of iterations to be

undertaken by the resolution pro
edure. This time error bars are 
om-

puted for several approximations of the ele
troni
 wavefun
tion ea
h


orresponding to a di�erent number of iterations, the dis
retiza-

tions basis being kept �xed. The error bar give in this 
ase lower

and upper bounds for the Hartree-Fo
k energy of the solution of the

Hartree-Fo
k equations on the given dis
retizations basis. The size

of the error bar 
an be taken as a measure of the improvement still

possible if iterations are 
arried on untill 
onvergen
e (in the given

dis
rete basis) is rea
hed.
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Lower estimator

Improved energy

Best known energy

Classi
ally 
omputed energy

Estimator behaviour

Basis set STOnG

E

n

e

r

g

y

65432

-2.7

-2.75

-2.8

-2.85

-2.9

-2.95

-3

-3.05

Fig. 1. A posteriori improvements for the energy obtained with the basis sets

STOnG.

Motivated by the su

ess of the �rst series of experiments, this

time the mole
ules 
onsidered were larger, as is for instan
e the 
ase

of the 
arbyne mole
ule Cr(CO)

4

ClCH, with 52 ele
tron pairs (104

ele
trons) ; the model 
hosen was again the Restri
ted Hartree Fo
k

model; in this setting the energy to minimize is

E

HF

(�

1

; :::; �

N

) =

N

X

i=1

Z

R

3

�

jr�

i

j

2

+ V j�

i

j

2

�

+

ZZ

R

3

�R

3

�

�

(x)�

�

(y)

jx� yj

dxdy �

1

2

ZZ

R

3

�R

3

j�

�

(x; y)j

2

jx� yj

dxdy

with the same formal de�nitions (
f. Eq. (3 , 4) for �

�

(x), �

�

(x; y)).

The Euler-Lagrange equations asso
iated to the minimization of E

HF

on H \ K are 
ompletely similar to (7) (only some multipli
ative

fa
tors before the last two terms in (5) are 
hanged).

Due to 
on
erns about 
omputation 
omplexity and eÆ
ien
y and

also for realisti
 veri�
ation we have 
hosen to implement the a pos-

teriori pro
edure (and the \
onvergen
e a

eleration" version) in a

quantum 
omputational 
hemistry 
ode named Asterix [7,19,23℄. As

a 
onsequen
e, the evaluation of the performan
es of the a posteri-

ori pro
edure is to be 
ompared with the performan
es of quantum
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hemistry ab initio 
odes. An introdu
tion to the 
omplexity of the

algorithms used is given in the following.

One parti
ularity of 
omputational quantum 
hemistry 
odes (es-

pe
ially at the Hartree-Fo
k level) is the presen
e of very spe
ial

Galerkin dis
retization basis. This basis 
ontains in general fun
tions

on R

3

whi
h are 
entered in the nu
lei of the system and are sum of

Gaussian type fun
tions; it is beyond the s
ope of this paper to give

a rigorous presentation of the basis involved, let us just say that they

all satisfy an important requirement: for any elements h

�

, h

�

, h




and

h

Æ

of the dis
retization basis, the quantity

(��jj
Æ) =

ZZ

R

3

�R

3

h

�

(x)h

�

(x)h




(y)h

Æ

(y)

jx� yj

dxdy (38)


an be 
omputed in O(1) time

3

.

Let us denote by n the number of basis fun
tions used when 
om-

puting the Hartree-Fo
k energy of a mole
ule with N ele
tron pairs

(2N ele
trons); in general n is taken to depend linearly on N .

In order to solve the nonlinear eigenvalue equations (7) iterative

(also named self
onsistent - SCF) algorithms are used. The most

straightforward idea is to start from an initial guess �

1

for the wave-

fun
tion and then, for any i � 1, 
onstru
t the Fo
k operator F

i

=

F

�

i

asso
iated to �

i

, diagonalize F

i

and take its �rst N eigenfun
-

tions as the next guess �

i+1

for the wavefun
tion (Roothaan algo-

rithm) ; ideally this �xed point algorithm will 
onverge and the so-

lution will be the solution of equations (7). Numeri
al reality does

not however always validate this 
hoi
e, we refer to [6℄ for a mathe-

mati
al des
ription of the phenomena involved. In order to 
ure the


onvergen
e de�
ien
ies, various other methods have been proposed

[6℄: the basi
 level shift method, DIIS,...

During the SCF resolution of the Hartree-Fo
k equations, the most

time 
onsuming part is the 
onstru
tion of the Fo
k operator F

�

i
; we

will see in the following that this is an O(N

4

) operation, one order of

magnitude larger than the diagonalization of the Fo
k operator itself

(under assumption that n is linear in N). Let

B = fh

�

;� = 1; :::; ng

be a dis
retization basis and � = (

P

n

�=1

�

i�

h

�

)

N

i=1

be an element in

the dis
retized spa
e X = (span(B))

N

and also in K. The matrix

of the operators �� and V take O(N

2

) time to 
ompute, supposing

3

Using the fa
t that the produ
t of two gaussian fun
tions is also a gaussian

fun
tion, analyti
al formulas may be provided for the 
omputation of the integral

(38).
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that �nite 
onstant time to 
ompute

R

R

3

rh

�

�rh

�

and

R

R

3

V h

�

h

�

is

needed. The situation is very di�erent for the matri
es of the opera-

tors (�

�

?

1

jxj

) and  7!

R

R

3

�

�

(x;y)

jx�yj

 (y)dy. Let us take for instan
e the

last operator. To 
ompute the matrix of this operator it is ne
essary

to 
ompute for all h

�

, h




2 B:

Z

R

3

Z

R

3

�

�

(x; y)h

�

(y)

jx� yj

dyh




(x)dx =

N

X

i=1

ZZ

R

3

�R

3

P

n

�=1

�

i�

h

�

(x)

jx� yj

�

n

X

Æ=1

�

iÆ

h

Æ

(y)h

�

(y)h




(x)dxdy =

N

X

i=1

n

X

�=1

n

X

Æ=1

�

i�

�

iÆ

(�
jj�Æ):

Even if formally this is a O(N

5

) 
omputation (summation over three

indi
es for ea
h of the N

2

required terms), it is easy to see that pre-


omputing in O(N

3

) for any �; Æ = 1; :::; n: D

�

�;Æ

=

P

N

i=1

�

i�

�

iÆ

the


omputation redu
es to order N

4

; unfortunately no further redu
-

tions are possible so the matrix of the operator  7!

R

R

3

�

�

(x;y)

jx�yj

 (y)dy

is obtained by 
omputing (D

�

�;Æ

)

n

�;Æ=1

, then obtain in O(N

4

) the de-

sired matrix

�

P

n

�;Æ=1

D

�

�;Æ

(�
jj�Æ)

�

n

�;
=1

. The 
omputational 
om-

plexity of a SCF Hartree-Fo
k 
omputation is therefore N

I

?N

4

where

N

I

is the number of iterations required by the SCF method, usually

in the range 10 � 50. We shall apply the bound pro
edure and the

improvement strategy to qualify the (known) solution obtained from

the previous iterative pro
edure far from 
onvergen
e.

Let us now present the 
omplexity issues related to the 
omputa-

tion of the re
onstru
ted error

^

W . The problem (30) is approximated

on a produ
t of N dimensional spa
es so the solution will be an

n � N ve
tor (
onsidering the same dis
retization X of H as the

one used to solve the Hartree-Fo
k problem)

4

; we will denote by P

the matrix of the proje
tor from X to X \�

??

; it is easy to see that

P is blo
k diagonal so proje
ting an element 	 = (

P

n

�=1

	

i�

h

�

)

n

i=1

of X to X \ �

??

will be an O(N

3

) operation. Let us denote by A

�

the matrix of the se
ond di�erential in � of the energy with respe
t

to this dis
retization, and by b

�

the \ve
tor" 
orresponding to the

4

Sin
e only one dis
retization is used for the entire 
omputation, the bounds

thus obtained refer to the energy of the solution of the Hartree-Fo
k problem on

dis
rete spa
e X. When the dis
retization X is �ne enough, one 
an 
onsider to

obtain bounds for the Hartree-Fo
k energy. In any situation, bounds are usefull

e.g. as stopping 
riteria for the iterative SCF pro
edure (and eventually to a

el-

erate 
onvergen
e); then, in order to obtain bounds on the Hartree-Fo
k energy,


orre
tion need to be solved on a grid �ne enough to be 
onsidered exa
t as is the


ase of the 
omputation presented in Fig. 1.
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�rst di�erential in � of the energy, interpreted as an element of the

dual X

0

. The problem (30) has then the following dis
retization: �nd

w 2 R

n�N

su
h that w = Pw and

(P

t

A

�

P )w + (P

t

b

�

) = 0: (39)

The matrix A

�

of the linear system (39) is full and impossible to 
om-

pletely invert in pra
ti
e due to the high 
omputational 
omplexity

O(N

6

) required. However, using the same argument as above, ap-

plying the matrix A

�

to a ve
tor v 2 R

n�N


an be done in O(N

4

)

operations. The problem (39) is then solved iteratively ; �nally let

us remark that the total 
ost of the re
onstru
tion of the symmetri


part is an O(N

3

) pro
ess.

The a posteriori method was tested in the 
omputation of the

Hartree-Fo
k energy of the 
arbyne Cr(CO)

4

ClCH mole
ule. For

ea
h iteration step of the SCF algorithm the order �

4

exa
t energy es-

timations were 
onstru
ted, and also the 
orresponding lower bounds

as des
ribed in Thm. 3. The 
onvergen
e of the SCF method is pre-

sented in Fig. 2 and 3. Remark the presen
e of quadrati
ally 
onver-

gen
e periods (iterations 10-50), the presen
e of "jumps" (55-65) and

slow 
onvergen
e periods (70-90). In order to avoid the last regime,

in pra
ti
e one only uses the SCF algorithm for a small number of

iterations 10-40 and then enlarges dis
retization basis, or tries to em-

piri
ally optimize other parameters (DIIS).

The results obtained by the a posteriori pro
edure are presented

in the Fig. 4 and 5. For some approximate solution obtained during

the SCF iterations, the method des
ribed in previous se
tion was

applied to improve the energy and obtain a lower bound (initial data


orresponding to more than 60 iterations is interpreted as 
onverged

due to numeri
al round-o� errors); we do not atta
h spe
ial meaning

to the good properties of the re
onstru
ted error for N = 30 (
f. Fig.

5). As the results show, the method gives nearly 
onverged results as

soon as the initial approximation is as good as the one from the 10

th

iteration of the SCF pro
edure.

Remark 14 The number of iterations required to solve the linear sys-

tem (39) was of the order of 10, whi
h makes this method more

eÆ
ient than the SCF 
y
les; for instan
e �nding the improvement

from the 10

th

SCF 
y
le needs 10 iterations to solve (39) and is as

good as the result of the 60

th

SCF iteration.

Remark 15 Applying the matrix A

�

to a ve
tor v 2 R

n�N

in (39) re-

quires at most O(N

4

) operations. The method is however 
ompatible
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Energy

Energy 
onvergen
e

iteration number

e

n

e

r

g

y
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Fig. 2. The 
onvergen
e of the energy 
omputed by the SCF algorithm in the

form used by Chemists. The number of SCF 
y
les (iterations) ranges between 1

and 30. No a posteriori improvements are made.

Energy

Energy 
onvergen
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iteration number
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Fig. 3. The 
onvergen
e of the energy 
omputed by the SCF algorithm in the

form used by Chemists. The number of SCF 
y
les (iterations) ranges between 15

and 90. No a posteriori improvements are made.
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Energy for 90 iterations

Lower bound

Initial (SCF) energy

Improvement

3025201510

-1970

-1975

-1980

-1985

-1990

-1995

-2000

-2005

Fig. 4. A posteriori error bounds and improvements are 
omputed for the re-

sults of the SCF pro
edure. In ea
h 
ase we plot the energy of the initial (SCF)

approximation, the energy of the wavefun
tion as 
omputed by the a posteriori

improvement pro
edure and the lower bound as des
ribed in Thm. 3. The refer-

en
e value of the energy is the result of the SCF algorithm after 90 iterations.

The initial approximations to improve are the results of the SCF pro
edure for a

number of 
y
les between 7 and 30.

with the a priori introdu
tion of further lo
alization properties (as

domain de
omposition methods) of the ele
troni
 wavefun
tion as it

is usually the 
ase when more eÆ
ient Hartree-Fo
k 
omputations

are sear
hed for [20℄, whi
h results in the appli
ation of the matrix

A

�

being a O(N

3

) pro
ess (or even less); 
ombining with 
lassi
al


onvergen
e a

eleration tools from the linear system solving (pre-


onditioning ...) and with theorem 2, this method 
an be also seen as

another approa
h towards the design of Hartree-Fo
k 
omputations

of lower algorithmi
 
omplexity.
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