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Summary This paper presents an a posteriori error analysis of the
discretization methods used in computational quantum chemistry on
the Hartree-Fock equations. Upper and lower bounds for the energy
are obtained from any discrete approximation strategy of the solution
and the estimator proposed is shown to possess further approximation
virtues.

1 Introduction

The purpose of this paper is to present an a posteriori error analysis
for the approximation of the Hartree-Fock equations. This analysis
is designed to quantitatively asses the performance of an approxima-
tion strategy of a solution of the Hartree-Fock equations obtained by
prior computation. In agreement with the general paradigm of the a
posteriori analysis of [13,15-17], an error bar for an output such as
the Hartree-Fock energy starting from the approximated solution at
hand is proposed. As in the real laboratory experiments, numerical
computations do not provide the exact value of the searched quantity
but rather an approximation that is to be qualified by the use of the
error bars in exactly the same spirit as in the laboratory measure-
ments. In addition we will show that in some cases the a posteriori
method may also be seen as an accelerator of the convergence of the
primary algorithm used to compute the solution.



2 Yvon Maday and Gabriel Turinici

The time independent Schrodinger equation that models the be-
havior of a quantum molecular system deals with state functions
1(x), where z denotes the position of the particles (nuclei and elec-
trons) hence is a variable that lives in R*) where K is the number
of particles'. This system is far too large to be directly tractable by
numerical simulations for molecules larger than the hydrogen atom.
The quantum chemists have thus introduced a series of simplified
models. One of them (the Born Oppenheimer approximation) allows
to separate the electron and the nuclei so as to consider first a sys-
tem in which only the N electrons of the molecule move (thus are
the only N variables of the state function) and the nuclei are fixed
in Z; (and appear as parameters). For each configuration (71, ..., Z,)
of the m nuclei a complex electronic wavefunction @(z1,...,zy) € C,
z; € R}, i = 1,...,N is sought after that minimizes the energy of
the system. This first simplification is nevertheless not sufficient to
make the resulting equations accessible for computations for large
molecules; another simplification is therefore introduced by consider-
ing that the state function is a N dimensional determinant of simple
functions of R3, called Slater determinant:

B(ry, ) = \/%det(d%(rj)),

where @;, i = 1,..., N are now functions of one variable in R? chosen
orthogonal with respect to the canonical scalar product < -,- > on
L?(R3).

Let us denote by K the subset of (L?(R?))Y defined by

K={(®,..,0n) € (L*(R2))N; < &;,8; >= §;;}. (1)

Assuming that the molecule is isolated and only Coulombic forces
are present, the description of the non-relativistic electrons where, for
the sake of simplicity we have neglected the spin dependency, leads
to the following expression of the Hartree-Fock energy :

N
EHF (@), By = Z/ (VD> + V |®;]%) +
N R3

2
// p@ d d _ _// |p¢ | AN L VAN d’y, (2)
R3xR3 |:v—y| R3xR3 |1U—y|

we will consider non relativistic models without spin variables

1
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where the density matriz ps(z,y), the electronic density pe(x) and
the potential V are given by the formulaes :

Z@ (3)
po(z) = pas(a:,a:)

-y 2
= |z — 75|
We have denoted here by Z; > 0 the charge of the j-th nucleo.

In order to determine the ground state of the molecule that, by
definition, minimizes the energy (2) under the constraint (1), the
Euler Lagrange equations give rise to the Hartree-Fock problem :

Find a L?(R?)-orthonormal system & = {@i};;:l,N and an hermi-
tian matrix A = P‘i,j]i,j:l,N such that

N
Vi, L<i< N, Fo(® ZAmqﬁ], (4)

where Fg is the Fock operator. When acting on an element v regular
enough of the variable z € R3, this operator associates the following
function of the z € R? variable:

1 pa (2, Y)
Fa@)w) =( = A+ V(&) + (o ) ilo) - [ HEEE a,b(y)dé)

Here % is the convolution product

(f % 9)(a /fx— (y)dy

Remark 11t is standard to notice that the density matrix is invariant
under unitary transforms, i.e. for any element U of the set of the
N x N unitary matrices U(N) :

V(.’L’, y) € R37 pqs(.’L', y) = PUQS(Q% y) (6)

Hence it follows that the unitary transform U can be chosen in such
a way that the hermitian matrix A become diagonal: A = [\;]i=1,n-
The solution ¥ = UP = {(U®P); };=1,n satisfies indeed the more simple
Hartree-Fock problem :

Vi, 1 <i< N, Fu(h;)=—Nith; (7)

The problem then appears as a non linear eigenvalue problem.
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This highly nonlinear problem is solved through iterations known
as Self Consistent Field approximation; we refer to [6] for a very
recent and complete analysis on the convergence of some of these al-
gorithms (Roothaan algorithm and the level shifting algorithm). It is
still a very expensive problem since the non linear contribution has a
large computational complexity (we refer to [20,8] for some example
of tailored techniques to minimize this complexity). The numerical
analysis of the method used typically by the chemists community is
most often an open problem and in any case will not provide sound in-
formation since most of the numerical approximations are very often
at the limit of the convergence. More interesting seems the concept
of a posteriori error estimators where, from the computed solution,
it is possible to derive reliable information about the validity of the
computation that has been done. The purpose of this paper is in this
direction.

Denote by H = (H'(R?))"™ the natural space for the solutions of
the Hartree-Fock equations and by Fj; the mapping Fj; : H — R
defined over any element ¢ = (®;), by

Fij(é) =< @i,@j > _6ij-

In all that follows any N-tuple element ¢ = (®;)Y; will be supposed
to be a column (N x 1) vector of H. Consider the minimization
problem

inf{EAT(@); d € HNK} (8)

Remark 2 The analysis of problem (7) is not completely under con-
trol: we can cite the partial results obtained in [10,11] about the
existence of a ground state for positive or neutral molecules and non
existence results for negative ions. The basic result of uniqueness of
the density solution is still an open problem of outstanding difficulty.
Under the hypothesis

> Zj>N-1, (9)
7j=1

it has been proven in [11] that a minimum of the problem (8) exists
and any such minimum is a solution of the Hartree-Fock equation (4).
Moreover, when this problem is written in the form (7) additional
information is available on A;, namely \; > 0, i = 1,..., N. We will
assume in all that follows that (9) is true.
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In order to make the presentation easy, we will assume in all that
follows that the electronic wavefunction is real and will work on real
function spaces; trivial adaptations allow the treatment of complex
valued wavefunctions.

2 Error decomposition
2.1 Error metrics

Let &y = (P;)¥; € HNK be a minimum of (8) and & = (&;)¥, € HN
K an approximation of @y obtained as the solution of a minimization
problem:

inf{AT(@);d € XN N K} (10)

where X is a finite dimensional subspace of H'(R3).

The a posteriori analysis on the one hand studies bounds for the
difference E21(@y) — £ (@) and on the other hand proposes ex-
plicit trust intervals on the desired (but unknown) quantity &7 (&)
using only the approximate solution at hand @ ; of course, due to
the variational setting, an upper bound on EHF(®y) is ELF (D) itself;
the main focus will therefore be placed on finding lower bounds for
EHE (@), which is a non-trivial problem that, to our knowledge, has
not been addressed in the literature.

Before dwelling into the a posteriori analysis of (8) it is crucial to
introduce the proper definition for the error between a minimizer @,
and its approximation ¢. To this end one has to recall the invariance
property of the Hartree-Fock energy:

EHE () = g1F(Uw), YW e HN K, YU € U(N) (11)

From (11) it follows that if @¢ is a minimizer of (8), then for any U €
U(N), Uy is also a minimizer and therefore a solution of (4). The
same considerations remain true for the problem (10). It is therefore
natural to consider the distance between the sets {U®o; U € U(N)}
and {V&;V € U(N)} as the most appropriate definition of the dis-
tance between @ and @. For reasons that will be made clear later on,
we will use in fact an equivalent form (see section 2.3) of the above
definition. For any ¥q,¥s € H let

UWl,Wz = argmin{“le - WZH?Lz(Rg))N; U e U(N)} (12)

For a given norm || - || (|[ - [[(z2)n || l(g1)n --.) we will measure the
distance between (sets represented by) ¥; and ¥, as:

P71 — Pallx = Uy oW1 — V2|l = [|[¥1 — Uy, V2|,
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the last equality being motivated by the fact that Uy, w, = Uél,WQ €
U(N).

Remark 3 Note from (12) that Uy, y, is intrinsically related to the
norm of (L?)™; when ||-|| = ||- [(z2)~ we recover the distance between
the sets {UW;U € U(N)} and {VW; V € U(N)}.

The properties of this metric are closely related to the following
decomposition of H:

H=As ®Ss @Dt (13)
where for any @ € H N K:

Ap = {CP;C c RNV ¢t = —C}
Sy = {SP;S € RV*N gt = 5}
oL ={v =), e ;< ¥, &; >=0;i,j=1,..,N}

We will denote for any ¥, ¥, € (L?)V: ¥, 1L W, if for any i,j = 1, N:
< (?1);, (%); >= 0; then &4 can be defined equivalently

ot = (¥ € H; WL D).

For any ¢ = (&)Y, € H the decomposition (13) is obtained in
the following manner: compute the matrix M = (Mij)i\,szl where for
eachi,j =1,...,N: M;; =< §;,®; >. Denote by S the symmetric part
of M: § = MEMt and by C the antisymmetric part: C' = MEMt.
Then S® will be the component of ¢ in the space Sg and C'® the
component of £ in the space Ag; in addition it is easy to see that

(6 — SP — CP)1LD, so the difference ¢ — S® — CP is in $-.

Lemma 1 Let &, € H N K. Then the matriz Uy e solution of (12)
has the properties

UpoW — D €Sp @D, & —UpoV € Sy, ,u @ (14)
In particular for ¥ = &y,
UpooPo =P+ SP+W, SERVN . gt =8 Weodt.  (15)
Proof. Consider the decomposition

V—P=CP+SP+W, CP e Ap, SP € Sp, W e dt,  (16)
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and denote M = C' 4+ S. Then we can write

Up.e = argmin{|[U¥ — D||F 2 gsyn; U € U(N)}

= argmin{||U((Idy + M)® + W) — @[22 sy U € U(N)}

= argmin{||(U(Idy + M) = Idx) |7 2 gsyv; U € UN)}

= argmin{||U(Idy + M) — Idy)|Zxxn; U € U(N)}

= argmin{||(Idy + M) — U"|[fvxn; U €U(N)} (17)

The transformation from the second to the third line is a consequence
of the fact that W1L® so therefore U(Idy + M)PLLW ; the next
equality is true because @ € K.

For any antisymmetric matrix C' € RV*N consider the path in U/(N)
given by ¢ — eCtU¢,¢. The tangent at ¢ = 0 to this path is C~’Ug,7¢.
Writing the first order conditions for the minimality in (17) we obtain:

0 =< (Idy + M) = U}, 4, Uty s C* >gnxn
=< Upg(Idy + M) — Idy,C* >gaxw,
VC e RVXN . 0t = ¢,

which shows that Uy ¢(Idy + M) is a symmetric matrix ; and there-
fore Uy ¥ € Sp ® -, To prove the second part of the equation (14)
denote for any ¥, Yo by Cy, v, the antisymmetric matrix appearing
in the decomposition ¥ — ¥ = Cy, v, Y2 + Su, v, W2 + Wy, w, with
Co, 0, ¥s € AYs, Su, w, ¥ € S¥5 and Wy, w, € !I/QL ; then one obtains
by straightforward computations Cy, v, = —Cg,w,. 0O

Remark 4 In practice the representative of the class of isoenergy func-
tions {U®o;U € U(N)} is taken to be the one that solves equations
(7), and the same is true for any of its approximations @. It is not
clear whether a norm for which this practical choice gives optimal
approximations in the sense of (12) exists and to what extent this
choice is also optimal in the L? norm.

2.2 Order of the symmetric part of the error

Let ¥, & € H N K and let us consider the decomposition (16). We
have seen that the antisymmetric part given by matrix C' may be
set to zero modulo some appropriate “rotation” on ¥ ; it is therefore
natural to study the properties of the symmetric part S®.



8 Yvon Maday and Gabriel Turinici

Lemma 2 Let ¥, d € HNI with associated decomposition (16). Then
there exists constants C'y, Cy depending only of N such that:

ISPl mepyn < Cill¥ — BlIF 2 gy (18)
1S2|l3 < Call# — 17|l (19)

Proof. Let us write W = DW such that < Wi,Wj >= 0;5, M =
C + S. Denote

N
€= ||¥ — B[] p2reyn = Z M} + D}
i,j=1

Since ¥ € K, Fj;j(¥) =0,4,5 =1,...,N. For j =i we obtain:

N
L= (1+ M)+ ) Mj+ Dy,
i =1

or equivalently:

N N
B > My + 35, D},

Sii = Mi; = 5 :

which proves that M;; < €2, i = 1,..., N. For i # j one obtains:

N
0= Z Miijk + (Mzz + 1)Mji + Mij(ij + 1) + ZDkkaj,
ki k#j k=1
. . . . . M;;+M;; 2
which gives after straightforward manipulations S;; = —5—* <€

; this concludes the proof of (18). For (19) one denotes first that
¥ = D||(2m3y)~y < [[¥ — @|l% and apply (18) to conclude that S;; <
HW—(PH%, i,7 =1, ..., N. The conclusion follows then by the definition
of the norm || - ||%. O

2.8 Optimality in H' norm

We have proposed in section 2.1 that for any norm ||-|| the error &y —@
be computed as [|Up, Py — @||. Since the definition Ugp, ¢ is closely
related to the L? norm it is natural to ask whether this definition is
still appropriate when norms other than L? are used, for instance the
canonical norm of H. The situation is settled by the following
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Lemma 3 Let ¥ = (¥, ....,.¥N) € HNK and ® € HN K and denote
U$7¢ = argmin{||U¥ — ®||4;U € U(N)}
There exists a constant ¢ depending only of N and ¥ such that
c||Upa¥ — |l < |Ugg¥ — Bll3y < |Upo¥ — By
Proof. The inequality
1Usa¥ — P2 > Uy o¥ — Dlln

follows as a consequence of the definition of Ué,qs.
Denote by F' the linear space generated by {¥1, ..., ¥y} and define:

M ={¢CeH'(R’);<(,x >12.2=0, Vx € F}.

For any y € H'(R3) denote by xr the L? projection of x on F' and
X = X — xr. We define a norm || - |g on H'(R?) as follows:

Il = eIl + a7 ges)-

We will prove that this norm is equivalent to the canonical norm of
H'(R?) (with constants depending only on N and ¥). Write for any
x € HY(R?):

Xl @sy < X — xella@s) + Ixell s
< lIxlla + IxFllzrgsy < Clixlla

where we have used the fact that the norms |- [[z> and || - | 1 (gs) are
equivalent on the finite dimensional space F'. It follows that there
exists a constant C' (depending only on N and ¥) such that for any
x € H'(R?)

Xl ey < Cllxlla-

We will prove next that the norm ||-|| 1 (s can also be lower bounded
by the norm || - || modulo some constant depending only N and ¥.
Assume on the contrary that this is not true. Then there exists a
sequence (xn)n>1 C H'(R?) such that ||xn[lq = 1 and [[xnl g1 sy = 0
as n — oo. It follows that the sequence x,, converges to zero in L?
and in particular the sequence (xy p)n>1 of L? projections to F is also
converging to zero: ||xnpllzz = 0 (n — o0); by the same argument
as above we obtain ||xnp || g1 (rs) — 0 (n — 00). Then

||XTLM||H1(R3) = |Ixn — XnF“Hl(R3) < “Xn||H1(R3) + ||XnF||H1(R3)

and it follows that ||xnullgi@®s) — 0 (n — o0). Together with
IXnpllz = 0 (n — o0) we conclude that ||xnlla = 0 (n — o0), in
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contradiction with the initial assumption. We have therefore proved
that there exists constants ¢, C' (depending only N and ¥) such that
for any x € H'(R?)

clixlla < [Ixllmr®sy < Cllxlla-

The above equivalence imply that the canonical norm || - |4~ of
(HY(R3),]|| - |la)V is equivalent (with constants depending only on
N and ¥) to the canonical norm of H:

¢l < liKllany < CrllCln, V¢ e H.

Since ¥ € K, the functions {¥,...,¥x} are orthonormal with
respect to the scalar product of L?(IR3) and also with respect to the
scalar product < -, - >, associated with the norm || - ||4. It follows by
(17) that

Upo = argmin{||U¥ — 125||H,||d,N; U €eU(N)},

as both solve the same minimization problem on U(N). But then
1
1Ug 6% — |3 > aHUql/pW = Plan >
U3 0 — By > Vs 0 — 2
o 1Y 4N = o 1Mo He

which concludes the proof. O

3 Optimality conditions and coercivity

We will begin this section with some elementary information about
the geometry of the manifolds K and H N K:

Lemma 4 Let & € H N K.The tangent space in @ to the manifold
HNK is Ap & o

Proof. Let ®(t) :] —¢,e[— HNK, e > 0, #(0) = & be a C* path in
H N K. Consider the decomposition ¢'(0) = S&+CP+ W, S® € Sp,
C® € Ap, W € ¢l By differentiating the condition Fj;(®(t)) = 0
we obtain < @;,#3(0) > + < #;(0),¢; >= 0 which proves that
S;j = 0. Since this is true for any ¢,7 = 1,..., N we conclude S = 0
ie. 9'(0) € Ap ® &L

To prove that any ¥ = CP + W € Ag ® & may be seen as the
tangent in @ of a C' path in H N K, choose ®(t) :] — €,e[— HNK,
0<e<l, &) =+V1—12"P + tW and note that @'(0) = ¥ and
|2()l =1, —e<t<e O
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The second order optimality conditions for the minimization prob-
lem (8) will be seen to be very useful within our approach. Let
@y € H N K be a minimizer of (8) and A" be the hermitian ma-
trix corresponding to @ in equations (4). We will write the second
order conditions in the form:

D*EM (@) (T, W)+ < AW, W > (12gayv > 0, VI € Agp, ® Py

Denote for any ® € H N K:
N
EP()=E"()+ ) AiFy() (20)
i,7=1
where Aij =< fg&@i,éj > 4,5=1,....,N.

Remark 5 The Hartree-Fock equations (4) can be “symbolically” de-
rived as a corollary of lemma 4. Indeed, the first order minimality
conditions associated to (8) read

< DEHF(@O),W > (L2(R3))N = 0, VW e Ap, @ @é‘L

which is the same as writing DEH (®g) = S®y, (S being a symmetric
matrix) which are exactly equations (4) since DEE (@) can be iden-
tified with (Fg,, ..., Fa,). Moreover, with the definition (20) we note
that

DE = 0. (21)

Denote by ag(-,-) the bilinear form D?£%(®)(-,-) and remark that
agy(+,-) = DETT (D) (-, )+ < A%, >(parayw -

In order to obtain an explicit formula for ag, we need the expres-

sion of D?EMF (dy). Let @, W', ¥? € H N K. Then

N
DX (@)t w?) =2 /R ) (V! ve? + vele?)
=1

1 // 8pp w1 (%) pp w2 (y) + 4pyr w2 (x)%(y)dxdy
R3xR3

+_
|z —y|
_1// 200 (,y) (pwr w2 (2, Y) + por w2 (y, 2))
R3xR3 |$ - y|
1 // +4pg w1 (T, Y) (Pow2 (T,Y) + po w2 (y, 7))
R3 xR3 |z —y|

dxdy

dxdy,
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with the definitions

put w2 (T,y) = Zi]\;l Wil (33)%2(9),
Pwl w2 (z) = Pwl w2 (z,z).

We obtain therefore:

N
DZEN (@0)(¥, ) = 2- Z/g(lvw + V)
i=1 /R

L1 / / 8@, () pay,w (y) + 4pw () pa, (y)dxdy
R3 xR3 |33 - y|

1 4

1 // P, (x,y)pw(%y)da;dy

2 J Jr3xm3 |z — y|

! // P20 (@, 9) (P00 (5:Y) + oo (4, 2) )
R3xR3 |£E - y|

We will study in the following the coercivity properties of the
bilinear form ag,. Note that for any ¥ € H N K: ELF (W) = £20(W)
and in addition ag, = D2£%0(®g). By differentiating the invariance
property (11) we obtain in particular (cf. lemma 4):

DEP (W) (CW) =0,Y0 e HNK, YO € Ay. (22)

Differentiating now (22) in ¥ = @; and taking into account the fact
that @ is a solution of (4) we obtain:

< D2EP (D) (CPy, Cy + W) = 0, YCPy, CPy € Ag,, YW € &5~

Then it follows that ag, vanishes on Ag, thus cannot be coercive
there ; the coercivity properties of ag, are described by the following
two lemmata.

Lemma 5 Let Vi, be the closure of span{¥ € Ap,®Pi" : as, (¥, V) =
0} with respect to the canonical topology of H. Then ag, is null on
Vgso X Vgso.

Proof. Let ¥', U2 € Ag, ®Py- be such that ag, (¥, V%) =0,i=1,2.
Then since ag, > 0 on Ag, ® D3- by a standard Cauchy-Schwartz in-
equality for the positive bilinear form ag, we obtain 2|ag, (¥!,¥?)| <
ag, (W', ') + ag, (W%, ¥?) and therefore ag,(¥!,¥?) = 0. It follows
then that for any ¥ = p1 W' + po¥? such that pui, s € R we have
ap, (¥,¥) = 0 which, together with the continuity of ag, concludes
the proof. O
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Proposition 1 Let X4, be a closed subspace of 3~ (H) such that
Y e Xop,, ¥ #0: a,gso(y_—/,W) > 0.
Then ag, is coercive on Xg,.

The proof of this proposition makes use of the following auxiliary
result

Lemma 6 The mapping

4
W,_> // 8,05‘1507 ),0450, ( )+ PLT/( )pQO(y)dedy
R3 xR3

|z =yl

__// 4pao (z,y)pw (2,y) . dy
2 JJr3xw3 |z — |

_l // 4p¢0,k”($7y)(p¢0,k”($ay) +p¢0’w(y’$))d$dy
R3xR3 |z — y|

15 sequentially weakly lower semicontinuous with respect to the canonic
topology of H.

Proof. Let us recall the Hardy inequality (used in the version of [11]
p.42) which holds for all y € R3, o € H'(R3):

P
/R | ”'|d < Ollllos) 1902,

s |a

with a constant C' independent of i and ¢. Note that if u,v € H(R?)

fi(/)_(f € L2(R? x R3). Indeed:

//R3><R3 |$ - y| )da;dy - /R3 (/R3 |32£QZ| dm) v*(y)dy

< Cllull 2 w3yl Vul L2 sy /R3 v*(y)dy < O||U||L2(R3)||VUHL2(R3)“7)“%2@[{3)

Let ¥™ be a sequence weakly convergent in H to ¥; this sequence
is bounded in H ; without loss of generality it can be supposed that

[ |3 < 1.
Consider a term of the form
Y ()"
// (2)¥; (y)dxdy (23)
R3 xR3 |$ -y

here f,g € {(Bo)1, ... We h that LZew) HDY )
where f,g € {(Po)1, ..., (Po) v }. We have seen tha =R =
L?(R? x R3?); since |[¢™||% < 1, it follows that LG R weakly

|z—yl
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convergent in L?(R? x R?) to? % so any term of the form (23)

is weakly continuous (so also lower weakly semicontinuous), and of

course the same is true for any sum of terms of this type, in particular
pagum (@)pag om (Y) oy (T:y)pem (B,Y)  pPog,um (T,Y)psywm (y,2)
lz—yl ’ lz—yl ’ lz—y!

The only term that remains to be analyzed in (23) is

_ 2
R3xR3 |z -y

We transform the numerator of the above fraction as follows:

N

pu (@) (4) — (0 (2,9))” = 3T (2)(@0)2(0)
=1
£ 30 W)2(0) (20)3 ) + () () (207 ()
1<g
N
- Z(%)Q(ﬂ?)(@o)?(y) - Z Pi(z)(Po)i(y)¥;()(Po);(y)
i=1 1<j
= 3 (W) (@0); ) — () (@)iw))
1<J

It is easy to see from this equality that pg (z)pe, (y) — (poyw (z,y))? is
a convex function of ¥ and therefore, by a classical functional analysis
argument, is sequentially weakly lower semicontinuous. 0O

Proof of Proposition 1: Let us proceed with the proof of propo-
sition 1. Suppose on the contrary that the conclusion is not true. Then
there exists a sequence {¥"},,>1 € Xg, such that [|[¢"|y = 1, and
limy, 00 ag, (P™, ¥"™) = 0 ; extracting if necessary a subsequence out
of it, we may suppose that {¢""},,>; is weakly convergent in H to

2 In order to rigorously identify the weak limit one uses appropriate test func-
tions /Jz — yla(x)B(y) 1 z|<rljy<r for any a, 3 € L*(R*), R >0 .
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¥ € Xg,. We first write:
N
any (@07 =23 [ O
i—1 /R

N
2-2/1%/

N
Ww;mrz-z/ V(@m? +
ij—1 R? i1 /R’

1 / / 8P, wm (%) pag wm (y) + 4pwm () pa, (y)
R3xRR3 |z —yl
1 // dpao (@ W)pur (@:4) 4 o
2 J Jr3xr? |z —yl
1 / / 4pag wm (3, Y) (peo w (%,Y) + pooum (Y, 7))
2 J Jr3xrs |z —yl

dxdy

dxdy(24)

Recall that ([11] p.42) that [, Vip?dz is weakly lower semicontinuous
on H'(R?) ([11] p.42). By the lemma 6 the integrals on R3 x R? in (24)
also have weakly lower semicontinuity properties. Since the matrix A°
has strictly positive eigenvalues (remark 2) the first two terms on
the right hand side of (24) define a norm so this part is also weakly
lower semicontinuous ; we obtain

as, (2, %) < lim_ag, (0™, ™) =0

which together with (1) imply ¥ = 0. We will use now this infor-
mation for a finer analysis of the sequence ag,(¥™,¥"™) ; by the
argument above there exists a constant ¢y > 0 depending on @ such
that for any ¥ € H:

N
Z/ 2|VY;|? +
i—1 /R?

Using again the lower semicontinuity of the remaining terms we ob-
tain:

N
>4y [ 0> @l

ij=1 K

m— o0

N
_ . m m . . 2
O—W%g%oagso(w O™ >0 + llmlnf.51/Rg2|VWZ~m| +
1=

N
>4l [ e > colimint |97 = 0 > 0

which is impossible. O
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Motivated by the above analysis, we will introduce the following
hypothesis:

YO € Bt W £ 0 ag, (¥, W) > 0. (25)

which, by proposition 1, ensures the existence of a “coercivity con-
stant” cg, > 0 such that

YO € Bg- W #0: agy (T, T) > cap||¥]|3,. (26)

Remark 6 Using the lemma 5 a posteriori analysis may still be car-
ried out without the hypothesis 25 ; some aspects of a more general
analysis are presented in remark 11.

4 Error estimators, bounds and convergence acceleration

Let @y, ® € HNK be as in section 2.1: @¢ a minimizer of (8) (which is
thus a solution of (4)) and @ € XN K a given discrete approximation
of @ obtained by a previous computation.

Let us denote by € = ||Ugy 0Py — Pllu = ||Us0,® — Dol the
distance between @ and @y. Even if the wavefunction @, may be
intrinsically interesting (e.g. when the form of the molecular orbitals
is studied), the main result of a Hartree-Fock computation is the
Hartree-Fock energy X1 (®y).

We will suppose in all that follows that @ is close enough to @
such that e.g. in the development of the error E7F (@) — £HI ()
with respect to powers of e: EH(P) — EHF(P) = cref + o(e¥) the
second term o(e¥) is indeed smaller than c,e® (due to the asymptotic
properties of the decomposition this is certain to happen when ¢ is
small enough).

4.1 Error estimators

The a posteriori analysis method presented in this section is con-
nected to the works of Babuska [1], Bernardi [4], Ladeveze [9], Oden
[14], Pousin and Rappaz [18], Verfurth [21,22] and is aimed at giving
quantitative indications on the form of the error, through bilateral
estimates. Even if the constants are not explicitly known, this method
may prove interesting when only relative error estimates are needed
(as in adaptative procedures) or when the estimator is shown to pos-
sess further properties that allow to estimate those constants.
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Let us recall (see also (15)) that Up e, @ — P9 € So, ® P3- and
denote Up ¢ @ — Pg = SPo+ W, 5Py € Sg,, W € QSOL. Then one can
write

ERF (@) — 1V (@y) = EHF (Ug 5,8) — EMF (0y)

= EP(Py + SPy + W) — EP(By)

= DEP (D) (SPy + W) + D2EL0 (D) (SPy + W, SPy + W) + O(e3)
= 0+ D2EP° (Do) (W, W) + O(€’) = aay (W, W) + O(€’)

where we have used firstly the fact that @ is the solution of (4) (see
remark 5 equation 21) and secondly the lemma 2 for (Ug 4,P, o) —
(¥, ®). From the continuity of ag, and (26) one concludes that ||W||%,
is a third order estimator of the energy error E4F (@) — EHF ().

Remark 71t easy to see by (19) that [|[W||» = € + O(€?).

Unfortunately direct computation of W (and then of [|W||3, ) as-
sumes knowledge of @, which is not available. However good approxi-
mations of |W |3, that require only the knowledge of @ can be found.
Indeed, let us set F' = DEHY v = Ug 3,29 and study the norm of
F(¥) in the dual space ¥-* of ¥t

< DEHE (W) € > < DEPo(W), € >
IF@) e = sup &> _ oup ),¢
o an [1€]]2¢ o an 1€
< DEPo (W) — DEPo(dy), € >

= sup

cewl €112

20%g _

= sup D=& (@0)(w @075) +O(62)

eyl “f”%

We used in the first line of the equation above the definition (20) of
£?0 and the identity DF;;(¥,-) = 0 on ¥+, We show now that we can
replace in the above supremum the space V- = (Ug ¢,9)- = &+ by
gt Let &€ € U be written as £ = M, + £ €e ®g-. Note that

|M;j| =] < &,P0; > | =1|<&,Poj —¥; > |
< ||£||(L2(R3))N “@0 - WH(LZ(R:%))N (27)
SO one can write

|a¢0(W — By, MPy) | Coo |7 — Dol el Po — Pl (L2 (msy)w
112 - [1€]12¢

S 0450623
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[1€ll2¢

where Cg, is the continuity constant of ag,. Since T = 1+ O(e)
one concludes that
@ (¥ — By, €
||F(W)||WJ_L* = sup M 0(62)
S 2 (137
U — By, & SPo + W,
— sup a@o( - 076) +O(62): sup a@o( 9+ 76) 0(62)
S T ST

ag, (vau 5)
gewt  I€lln

+0(e) = [Wlly + O(€?).

We have shown above that ||F'(¥)||gw- is a second order approx-
imation of ||[W|ly and therefore ||[F(¥)||2 . will be a third order
estimator of the energy error E7F(®) — EHF(dy). We next prove
that |F(¥)|lpw« is invariant with respect to the multiplication of ¥
by unitary matrices and therefore equal to ||F(®)| g+, so it can be
computed (a posteriori) using only available data (i.e. @). Let us com-
pute for ¢ in H N K the function F(U(), by the definition of F this
equals DEAT(U¢) which can be written:

DeM(U¢) = <9EU<((UC)z'))N1 = <(_%A + V)((UC)i)>N1 "

1= =

(v o= [ =D woay)

|z — |

~0((=3a+ ) +U(loex e - [ AP an)”

= P s o=yl i1

where we have used the invariance property (6). It was therefore
proven that

F(U¢) = UF((),¥ € HN K,
and therefore ||F(¥)|lgrs = [|[F(Upao®)|lgrs = ||F(P)||pr- We will
summarize the results obtained in this section in the following

Theorem 1 Let $y be a minimizer of (8), ® € HNK a (given)
discrete approzimation of @y obtained by a previous computation as
described in section 2.1 (10), and denote € = ||Up, oPo— P||3 the quo-
tient distance between @ and ®y. Then, under the assumption (25),

|DEHT (@) . = €+ O(e2).
Moreover there exists constants c1,co depending only on @y such that
IDEMF (@)]3.0. + O(}) < £ () — £17 (ay)
< | DEMT (@) + O(E%). (28)
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Remark 8 The constants cq,co in (28) are not known and therefore
the quantity ||D5HF(<15)||§5LL* can be used to estimate the error in
energy but not to obtain precise error bars.

4.2 Explicit bounds for the Hartree-Fock energy and convergence
acceleration

The purpose of this section is to propose methods to find explicit
bounds for the Hartree-Fock energy. The method belongs to the more
general paradigm [13,15-17] of definition of explicit lower and upper
bounds for outputs depending on the solution of a partial differential
equation. The output of interest will be taken to be the Hartree-Fock
energy ; this choice will be seen (cf. thm. 2 ) to posses particularities
that in fact allow to design an improvement of the solution itself,
although this is not expected to be the case for general outputs.

We will begin this section with some remarks on the coercivity
properties of the bilinear forms ag, and ae.

Lemma 7 Under the hypothesis (25) there ezists a constant v > 0
depending only on @y such that for any U € U(N) the bilinear form
aye, 18 coercive on (U@o)ﬂ‘ = @é"‘ with coercivity constant -y.

Proof. Note that for any ¥3 € HNK , ¥ € H, U € U(N):
apw, (U, U¥s) = ay, (¥2,¥s), so by (25) and proposition 1 we obtain
the conclusion. O

Lemma 8 Under the assumption (25) there exists a constant n > 0
depending only on @y such that for all @ € HNK with || — Pyl < 1
the bilinear form ag is coercive on ® with a coercivity constant
depending only of ®y.

Proof. Let ¢ € &5 ||€]l% < 1 be written as £ = M®y + &, £ € &g
We will generically denote by C' various constants depending only on
@0. Recall that (by (27)) |Ml]| < ||§“(L2(R3))N||¢0 — W“(L2(R3))N, SO
for ||@¢ — || small enough

ag(€,€) = ap(E+MPy, E+MEg) > ag (€, €)= CllE|ulIE ]Il Po— ¥ |3

But for ||®y — ¥||3 small enough we can also write

1€l 1€l Po — Tl < €M7 (€l + 1€ lI2/1Po — Pll30) | Bo — Pl
< ClEl3 )P0 — 2l
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Since |Aj; — A%| < C||® — ||y, it follows that as (€, ) — ag, (€, §)] <
ClI€ll3,IPo — |3 so in fact

00 (£,€) > any (€, €) = CUIEINR + 1113 |20 — @l
> 7IIEl13 — CUIENG + €170 190 — @ lla.

It suffices now to use a last time [[|€|l% — [|€]12] < 1€]|2]|Po — ¥ ||3 to
conclude. O

In what follows we start the presentation of the construction of
(lower) bounds for the Hartree-Fock energy. As it was seen in lemma
7, under the assumption (25) we have uniform coercivity properties
for bilinear forms ap, with respect to the multiplication of @y by uni-
tary matrices U € U(N); for this reason we can replace @y with any
U@, that fits better our needs; we will therefore suppose in agreement
with lemma 1 that @ is such that &5 — & = SP+ W € Sp ® &L

The construction of (lower) bounds for the Hartree-Fock energy
is based on the following development:

EUE (py) — EUE (@) = E2(Dy) — E2(D) = E2(D + SD + W) — E2(D)
1
= DE*(P)(SP+ W) + 51)2545(43)(543 + W, 8D + W) + O(e)
Note first that by the properties of @ as described in section 2.1 eq.
(10) DE® (&) is null on the dual space of the discretization space so in

particular DE?(P)(SP) = 0 ; recall also the fact that S is of order
€2 and W of order ¢ to obtain

M (@) — EMT(®) = DEP (D) (W) +
éD%%ﬁ)(W, W) + O(e) (29)

Consider now the problem: find the reconstructed error W e & such
that

D2E® (D) (W, W) + DE? (D) (W) = 0, V& € oL (30)

By the coercivity of ag it follows that (30) has a unique solution
W e ot

Remark 9 Note that in order to compute W one solves a direct (i.e.
not eigenvalue) problem on the solution space ; moreover all operators
involved depend only on &.
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Using the definition of W one can rewrite (29):
. 1
EHE (pg) = EHF (@) — D*E (@) (W, W) + §D25¢(¢>)(W, W)

+O(eH) = EHF (@) — %D25¢(@)(W,W)

+%D25¢(¢)(W — W, W — W)+ 0(e3). (31)

But since ag is positive on ¢~ it follows that £ D2E? (D) (W — W, W —

~

W) > 0 so in fact we obtain an asymptotic explicit lower bound
on the Hartree-Fock energy:

EHE (@) > £HF () - %D25¢(¢)(W, W)+ 0, (32

which together with the inequality £/ (®y) < EHF(®) gives an in-
terval for the exact value of the Hartree-Fock energy.

Remark 10 A natural question is to study the order in € of the length
of the error bar found above. Let us recall that the error in energy is
of order €? ; we will prove that this interval is optimal in a sense that
its length is also of order €2 ; indeed the distance between the upper
and lower bound is %DQEQ@)(W, W) + O(€?) which is equivalent to
|W||3; all that remains to be proven is that ||[W|ly < Ce (with a
constant not depending on @;). Indeed:
W3 < CIDE? (D)l g < C|IDE(P) — DE? ()| pu-
+C||DE®(Dy) — DEP (y)||pu- < Ce

where we have used the fact that DE?° (&) is null on &g

The nomination of W as “reconstructed error” is best explained
by the following property:

W =W +O0(e?). (33)
In order to prove (33) we will prove that W has the following property:
D2E2(@) (W, ) + DEX(@)(W)| < O, Vi € B4, |W]ly, = 1.(34)

with a constant C' independent of @, ¥. Suppose (34) is true then
jointly with (30) one obtains:

|D2EY(B)(W — W, W)| < Ce? W0 € &, [Tl = 1.
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Let ¥ = W= ; from the coercivity of ag = D?£?(®) we deduce:
W =Wlln
1
W — Wil
and (33) follows.
Recall that, from lemma 2, ||®g — ® — W|| is of order 2. In order

to prove (34) it is thus sufficient to prove it for &5 — @ instead of W:
let us write

DE?(P)(W) = DE? () (W) + D2E? (Do) (P — By, ¥) + O(€?).

W =W < Cé,

Besides we have

|D2ER (20)(® — Bo, W) — D*EV(B)(® — P, ¥)| < CE||¥]|3,
(with a constant C' depending only of &), so

DE? (D) (W) = DE? (Py)(¥) + D*E?(9)( — Py, ¥) + O(€?)
and therefore

D?E?(D)(Py — D,W) + DE?(P)(¥) = DE? (D) (¥) + O(€?).
It suffices now to prove that DE?(Py)(¥) = O(e?). By the definition
of £%,

DE® (@) (¥) = DE™(Po) () + Yo7, (4ij — AY) DEyj(%o) (¥)
=0+ 3071 (4ij — A% DF;(20) (¥).

Note firstly that A;; — Agj < Ce (C depending only of @(). Moreover

DEj(@O)(LP) =< Q50Z~7g[/j >+ < @[)j,![/i >
=< Do; — P, ¥; > + < Dy — P, ¥; >

thus |DFj;(99)(¥)| can be upper bounded by Ce (we used the fact
that ¥ € @), which concludes the proof of (33).
Combining (31) and (33) we can give a better version of (32):

EMT (o) = £MF'(@) ~ SDPEN@)(W, W) +O(),  (39)
so instead of a lower bound we have obtained an improvement of
the Hartree-Fock energy ; note that this improvement is of a strictly
higher order in € since the best approximation known before the com-
putation of W was £ (®) which is exact to the order €2,

Although (35) may represent in itself the conclusion of the a pos-
teriori analysis, further progress is possible. To this end note that
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an improvement for the wavefunction @ has also been found, namely
& = & + W. However we cannot propose @ as a legitimate solution
of (4) since it is not certain to be in K. We will see in the following
that it is possible to find a correction to add to @+ W which not only
gives an admissible solution of (4) but also improves with another
order the approximation (35) of the Hartree-Fock energy 1 (dy).

In order to improve even more the solution, remind the equality
Py =D+ W + 59. Since both @5 and @ are in K we can write

N N
6ij =< ¢0ia¢0j >S=< P, + Z Sk P + Wia@j + Z Sjlél + Wj >
k=1 =1

N N
= 5ij+ < Wiy, W; >+ Z Sik5kj + Z Sjldil + 0(64) (36)
k=1 k=1

because we know that S;; = O(e?). We obtain
0=<W;,W; >+5;; + Sji + 0(64) =< Wi, Wj > +8;; + Sji + 0(63)

so denoting S’ij = —% < Wi, Wj >, we obtain that S® is a order €
approximation of S@: S® = SP + O(e?). Note that by remark 9 that
the computation of S requires knowledge of @ only.

We will prove in the following that having an approximation W
of W to the order €2 and an approximation S of S to the order €3 is
enough to have an approximation of the Hartree-Fock energy to the
order €*. Indeed, write

EVE (py) — T (@) = £2(Py) — EP(P) = EX(D + SP + W) — E2(D)
= DEP(P)(SP + W) + %ng‘b(qﬁ)(sqﬁ + W, 8P + W)

1
3!
= DE*(P)(W) + %D%@(@)(W, W) + D?E%()(SP, W)
1

+—D3E2(D)(SP + W, SP + W, SD + W) + O(e*)

+3,D35¢(¢>)(W, W, W) + O(e")
= —%17259’(45)(147, W) + %ng‘b(@)(W W, W -W) +
D2E®()(5, W) + %D?’E‘b(qﬁ)(vf/, W, W) + O(e)
= —%D28¢(¢)(W, W) + D?E?(0) (S, W) +

%D?’g@(@)(ﬁ/, W, W) + O(e"),
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so we have obtained
1 A ~ o
EHE(@y) = 1T (@) — 51)254‘(45)(14/, W) + D?E2(®)(SD, W) +
%D?’gq’(@)(w, W, W) + 0(e).

where all terms involved in the right hand side can be computed from
.

One problem remains though, our best approximation for the so-
lution @y, namely & = & + W + S® is still not certain to be in
K ; in fact it can be proved that there exists an S that depends
only of @ that has the property S& = S + O(¢?) and such that
d =&+ W + 5P € K. Moreover, using the above arguments, we will
also have EHF (@) = EHF () 4+ O(e*). The existence and properties
of S follows by considering as in (36) the equations satisfied by S,
Denote by M the matrix with entries < Wi, Wj > then $ is solution
of the equation

(I+8)2*=I-M. (37)

This shows that S is an O(e?) approximation of S. The matrix S can
be computed from equation 37 by taking the square root of I — M
which is well defined as W is close to W (and small). Note that this
procedure may be costly for non-sparse matrices and can be replaced
in practice with Taylor-like series expansion formulas
. 1 1 1
I+S:\/I—M:I—§M+§M2—1—6M3+...

We will summarize the results obtained in this section in the fol-

lowing theorem:

Theorem 2 Let $y be a minimizer of (8), ® € HNK a (known)
discrete approzimation of @y obtained by a previous computation as
described in section 2.1 (10). Then, under the assumption (25), there
exists an 1 > 0 such that for any ® € H NI with ||Up, Po — P|| <1
there exists W € &+ and S® € Sp whose computation requires only

knowledge of & such that ® = &+ S&+W € HNK has the following
properties:

1@ — B3 < c1]|@ — o3,

T (@) — €M7 (20)| < ol €7T (@) — EMF (@9) .

with constants c1,co depending only of .
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Error bars can be easily derived from the Thm. 2 above and the
minimization properties of 77 (Py):

Theorem 3 Under the same assumptions and with the same nota-
tions as in Thm. 2, there exists an i > 0 such that for any ® € HNK
with ||Ug,.sPo — || < 1) the following estimates hold:

2. 0 (p) — el (p) < £8F () < 1T ().

Remark 11 The approach described in this section can be developed
under more general assumptions than (25). Denote by Xg, the closed
subspace of qﬁ&'— where (1) holds so that, in agreement with propo-
sition 1 ag, is coercive on Xg, ; using the same arguments as in
lemma 8 one proves for ||$y — @|| small enough coercivity for agp on
Xg,NP* ; this shows that the problem (30) has an unique solution on
Xo, N@1- and this solution is then shown to posses the same property
(33) as W. A “reconstructed symmetrical” part is then computed by
the same method as above and we obtain thus an improvement for
the energy and for the wavefunction. The only computational imped-
iment to this program is that one cannot really identify the space
Xgp, N & where problem (30) is to be solved ; one chooses then
the largest subspace in @~ where ag is positive (therefore coercive),
which will contain Xg, N @'-, and proves that the solution of (30)
on this space is an order €2 approximation of the solution of (30) on
Xgp, N@*. In practice (cf. section 5) there was no need to implement
this procedure as (25) seems to be satisfied.

Remark 12 The numerical computation of W involves the resolution
of equation (30) over the discrete subspace @% of #1-; the correspond-
ing solution W; will be an approximation of W which converges to
W when the discretization parameter 4 is such that (15(%L converges to
the space &L,

Remark 13 Upon writing this paper we were made aware [5] that (30)
is equivalent to a density matrix quadratic convergence equation (see
for instance [3] an references therein for an introduction). A study
is being undertaken to further investigate the advantages that this
equivalence may bring at the numerical level.

5 Numerical simulations

The theory presented in the previous sections was tested in two cat-
egories of numerical experiments.
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In the experiments of the first category we checked on simple cases
(hydrogen molecule, helium) that the methodology proposed above is
coherent with available results when the problem (30) that provides
W is solved on a very fine discretization of H.

In a second stage more complex molecules were studied and the
method was implemented in a Hartree-Fock quantum chemistry code.

Before presenting the results let us remark that the partial differ-
ential equation (PDE) (30) is, for N large, very difficult to discretize
with classical tools from the PDE equations (finite elements, finite
volumes, ...) due to the high dimensionality of the linear spaces in-
volved. Moreover a good discretization has also to take into account
some specific quantum chemical effects as the singularities of the
electronic wavefunction around nuclei; in conclusion, only very small
quantum systems are thus available for study using classical tools in
solving PDEs ; such systems are for example the hydrogen molecule
(H2) and the helium atom (He).

5.1 Validation of the discretization basis

We illustrate in this section how to use of the error bars to validate
the discretization basis used to solve the Hartree-Fock problem. Error
bars are computed for several approximations of the exact wavefunc-
tion corresponding to several discretization basis and the exact (best
known) Hartree-Fock energy is seen to fall within the error bars as
indicated by the theory. The size of the error bar can be therefore
used to to asses the quality of the result and thus to validate the
discretisation basis used.

For all the numerical experiments we placed ourselves into the
Restricted (closed) shell Hartree-Fock (Lewis electron pair) approxi-
mation that states that when the number of electrons in a molecule is
even, one can group together the electrons 2 by 2; the two electrons in
each such pair will share a common spatial wavefunction but will have
opposite spin. Within this approximation, for a bi-electronic system
as the hydrogen molecule or Helium atom, the search of the electronic
wavefunction of the system reduces to the search of a function w of 3
variables such that

1
—Au+Vu+ <|u|2*—> + =0 in R3.

]

The space to be discretized is therefore R? ; in fact using classical
localization arguments it can be reduced to a brick of R® that contains
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the nuclei of the system ; in the case of the Helium atom this brick
was taken to be a cube centered around the nucleus.

We will present in the following the results obtained for the Helium
atom; each axis of a cube centered in the nucleus mentioned above
was discretized with the same number of points that varied between
60 and 120 depending on the singularities of the initial solutions
considered; precise results were obtained for about 100 points per
dimension and corresponding vectors of size 1003 = 10.

Several initial approximations @;, ¢ = 2,3,4,5,6 of the electronic
wavefunction were considered; each correspond to a quantum chem-
ical computation that used specific quantum basis sets denominated
as STOnG, n = 2,3,4,5,6 ; the larger the parameter n, the finer
the basis used; in each case the linear problem (30) was solved on
the chosen grid as indicated in Remark 12 and then the symmetric
part of the error was reconstructed as indicated in previous section.
In order to solve (30) an iterative algorithm was employed, the ma-
trix associated to D2E?(®)(-,-) (typically 10° x 10°) being too large
for direct inversion; finally in order to take advantage of the tensor-
product-like discretization the computation of convolution products
was done by means of fast Fourier transforms.

The figure 1 shows the energy of the initial wavefunction @ (“Clas-
sically computed energy”), the best known approximation of the en-
ergy Helium atom, the improved energy obtained as in thm. 2 and
then the order €2 lower bound as described in Thm. 3; agreement
with the theoretical results is obtained.

5.2 Validation of the iterative resolution procedure

The numerical resolution of the Hartree-Fock equations involves it-
erative resolution of eigenvalue problems. The number of iterations
necessary is not known in advance and no natural stoping criterion
exists. We found therefore important to illustrate how the error bars
presented above can be used to validate the number of iterations to be
undertaken by the resolution procedure. This time error bars are com-
puted for several approximations of the electronic wavefunction each
corresponding to a different number of iterations, the discretiza-
tions basis being kept fixed. The error bar give in this case lower
and upper bounds for the Hartree-Fock energy of the solution of the
Hartree-Fock equations on the given discretizations basis. The size
of the error bar can be taken as a measure of the improvement still
possible if iterations are carried on untill convergence (in the given
discrete basis) is reached.
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Estimator behaviour
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Fig. 1. A posteriori improvements for the energy obtained with the basis sets

STOnG.

Motivated by the success of the first series of experiments, this
time the molecules considered were larger, as is for instance the case
of the carbyne molecule Cr(CO)4CICH, with 52 electron pairs (104
electrons) ; the model chosen was again the Restricted Hartree Fock
model; in this setting the energy to minimize is

N
HEF o 12 12
EN (P, ..., PN) = }_:/R?)(Wm +V |2i)

// P (T // lpa(, ) dy
R3xR3 |$ — y| R3xR3 |$ — y|

with the same formal definitions (cf. Eq. (3 , 4) for ps(z), ps(z,y)).
The Euler-Lagrange equations associated to the minimization of &7
on H N K are completely similar to (7) (only some multiplicative
factors before the last two terms in (5) are changed).

Due to concerns about computation complexity and efficiency and
also for realistic verification we have chosen to implement the a pos-
teriori procedure (and the “convergence acceleration” version) in a
quantum computational chemistry code named Asterix [7,19,23]. As
a consequence, the evaluation of the performances of the a posteri-
ori procedure is to be compared with the performances of quantum
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chemistry ab initio codes. An introduction to the complexity of the
algorithms used is given in the following.

One particularity of computational quantum chemistry codes (es-
pecially at the Hartree-Fock level) is the presence of very special
Galerkin discretization basis. This basis contains in general functions
on R? which are centered in the nuclei of the system and are sum of
Gaussian type functions; it is beyond the scope of this paper to give
a rigorous presentation of the basis involved, let us just say that they
all satisfy an important requirement: for any elements hy, hg, hy and
hs of the discretization basis, the quantity

can be computed in O(1) time3.

Let us denote by n the number of basis functions used when com-
puting the Hartree-Fock energy of a molecule with N electron pairs
(2N electrons); in general n is taken to depend linearly on N.

In order to solve the nonlinear eigenvalue equations (7) iterative
(also named selfconsistent - SCF) algorithms are used. The most
straightforward idea is to start from an initial guess @' for the wave-
function and then, for any 7 > 1, construct the Fock operator F* =
Fei associated to @', diagonalize F' and take its first N eigenfunc-
tions as the next guess ! for the wavefunction (Roothaan algo-
rithm) ; ideally this fixed point algorithm will converge and the so-
lution will be the solution of equations (7). Numerical reality does
not however always validate this choice, we refer to [6] for a mathe-
matical description of the phenomena involved. In order to cure the
convergence deficiencies, various other methods have been proposed
[6]: the basic level shift method, DIIS,...

During the SCF resolution of the Hartree-Fock equations, the most
time consuming part is the construction of the Fock operator Fg: ; we
will see in the following that this is an O(N?) operation, one order of
magnitude larger than the diagonalization of the Fock operator itself
(under assumption that n is linear in V). Let

B ={hg;a=1,..,n}

be a discretization basis and & = (3 ., @ijha)i]\il be an element in

the discretized space X = (span(B))Y and also in K. The matrix
of the operators —A and V take O(N?) time to compute, supposing

% Using the fact that the product of two gaussian functions is also a gaussian
function, analytical formulas may be provided for the computation of the integral
(38).
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that finite constant time to compute [53 Vhq - Vhg and [ps Vhghg is

needed. The situation is very different for the matrices of the opera-
tors (pg * |‘,]E|) and 9 — [os m—jll)w(y)dy. Let us take for instance the
last operator. To compute the matrix of this operator it is necessary

to compute for all hg, h., € B:

)h @
/ / pa(z,y) ,8( )dyh )dz = Z/ Ea:l iaha ()
R3 JR3 |$ - y| |$ - y|

R3 xR3

Y Bishs(y) s (y) by () dzdy = Z Z Z¢ia¢i6(a7||ﬂ5)-
0=1

i=1 a=1 =1

Even if formally this is a O(N®) computation (summation over three
indices for each of the N? required terms), it is easy to see that pre-
computing in O(N3) for any o, = 1,...,n: D, 5 = EZ]\LI D;D;s the
computation reduces to order N* ; unfortunately no further reduc-
tions are possible so the matrix of the operator ¢ — [4s x—y‘)w( )dy

is obtained by computing (D%, 5)" ;_,, then obtain in O(N*) the de-
n
sired matrix (22,5:1 D?, s(ay| |56)> - The computational com-

plexity of a SCF Hartree-Fock computation is therefore NyxN* where
Ny is the number of iterations required by the SCF method, usually
in the range 10 — 50. We shall apply the bound procedure and the
improvement strategy to qualify the (known) solution obtained from
the previous iterative procedure far from convergence.

Let us now present the complexity issues related to the computa-
tion of the reconstructed error W. The problem (30) is approximated
on a product of N dimensional spaces so the solution will be an
n X N vector (considering the same discretization X of H as the
one used to solve the Hartree-Fock problem)?; we will denote by P
the matrix of the projector from X to X N@1L; it is easy to see that
P is block diagonal so projecting an element ¥ = (0, Yigha )l
of X to X N @ will be an O(N?) operation. Let us denote by Ag
the matrix of the second differential in @ of the energy with respect
to this discretization, and by bg the “vector” corresponding to the

* Since only one discretization is used for the entire computation, the bounds
thus obtained refer to the energy of the solution of the Hartree-Fock problem on
discrete space X. When the discretization X is fine enough, one can consider to
obtain bounds for the Hartree-Fock energy. In any situation, bounds are usefull
e.g. as stopping criteria for the iterative SCF procedure (and eventually to accel-
erate convergence); then, in order to obtain bounds on the Hartree-Fock energy,
correction need to be solved on a grid fine enough to be considered exact as is the
case of the computation presented in Fig. 1.
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first differential in @ of the energy, interpreted as an element of the
dual X'. The problem (30) has then the following discretization: find
w € RN such that w = Pw and

(P'AgP)w + (P'bg) = 0. (39)

The matrix Ag of the linear system (39) is full and impossible to com-
pletely invert in practice due to the high computational complexity
O(NY) required. However, using the same argument as above, ap-
plying the matrix Ag to a vector v € R™¥ can be done in O(N*)
operations. The problem (39) is then solved iteratively ; finally let
us remark that the total cost of the reconstruction of the symmetric
part is an O(N?) process.

The a posteriori method was tested in the computation of the
Hartree-Fock energy of the carbyne Cr(CO),CICH molecule. For
each iteration step of the SCF algorithm the order e* exact energy es-
timations were constructed, and also the corresponding lower bounds
as described in Thm. 3. The convergence of the SCF method is pre-
sented in Fig. 2 and 3. Remark the presence of quadratically conver-
gence periods (iterations 10-50), the presence of ”jumps” (55-65) and
slow convergence periods (70-90). In order to avoid the last regime,
in practice one only uses the SCF algorithm for a small number of
iterations 10-40 and then enlarges discretization basis, or tries to em-
pirically optimize other parameters (DIIS).

The results obtained by the a posteriori procedure are presented
in the Fig. 4 and 5. For some approximate solution obtained during
the SCF iterations, the method described in previous section was
applied to improve the energy and obtain a lower bound (initial data
corresponding to more than 60 iterations is interpreted as converged
due to numerical round-off errors); we do not attach special meaning
to the good properties of the reconstructed error for N = 30 (cf. Fig.
5). As the results show, the method gives nearly converged results as
soon as the initial approximation is as good as the one from the 10"
iteration of the SCF procedure.

Remark 14 The number of iterations required to solve the linear sys-
tem (39) was of the order of 10, which makes this method more
efficient than the SCF cycles; for instance finding the improvement
from the 10" SCF cycle needs 10 iterations to solve (39) and is as
good as the result of the 60" SCF iteration.

Remark 15 Applying the matrix Ag to a vector v € RV in (39) re-
quires at most O(N*) operations. The method is however compatible
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Energy convergence
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Fig. 2. The convergence of the energy computed by the SCF algorithm in the
form used by Chemists. The number of SCF cycles (iterations) ranges between 1
and 30. No a posteriori improvements are made.
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Fig. 3. The convergence of the energy computed by the SCF algorithm in the
form used by Chemists. The number of SCF cycles (iterations) ranges between 15
and 90. No a posteriori improvements are made.
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Fig. 4. A posteriori error bounds and improvements are computed for the re-
sults of the SCF procedure. In each case we plot the energy of the initial (SCF)
approximation, the energy of the wavefunction as computed by the a posteriori
improvement procedure and the lower bound as described in Thm. 3. The refer-
ence value of the energy is the result of the SCF algorithm after 90 iterations.
The initial approximations to improve are the results of the SCF procedure for a
number of cycles between 7 and 30.

with the a priori introduction of further localization properties (as
domain decomposition methods) of the electronic wavefunction as it
is usually the case when more efficient Hartree-Fock computations
are searched for [20], which results in the application of the matrix
Ag being a O(N?) process (or even less); combining with classical
convergence acceleration tools from the linear system solving (pre-
conditioning ...) and with theorem 2, this method can be also seen as
another approach towards the design of Hartree-Fock computations
of lower algorithmic complexity.
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