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Abstract

These notes contain a short exposition of selected results about para-
bolic equations: Schauder estimates for linear parabolic equations with
Holder coefficients, some existence, uniqueness and regularity results for
viscosity solutions of fully nonlinear parabolic equations (including degen-
erate ones), the Harnack inequality for fully nonlinear uniformly parabolic
equations.

MSC. 35K55, 35D40, 35B45, 35B65
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1 Introduction

The literature about parabolic equations is immense and it is very difficult to
have a complete picture of available results. Very nice books such as [20, 17, 7,
21] are attempt to gather and order the most significant advances in this wide
field. If now one restricts himself to fully nonlinear parabolic equations, the task
is still almost impossible. Indeed, many results proved for parabolic equations
were first proved for elliptic equations and these results are numerous. We recall
that many problems come from geometry; the reader is referred to the survey
paper [19] where Krylov gives historical and bibliographical landmarks.

In these notes, we will focus on three specific topics concerning parabolic
equations: Schauder estimates for linear parabolic equations (following Safonov
[23] and the textbook by Krylov [18]), viscosity solutions for fully nonlinear
parabolic equations (see e.g. [5]) and the Harnack inequality for fully nonlinear
uniformly parabolic equations.
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1.1 Main objects and notation

Geometric objects. We first consider a connected open bounded set Q € R<.
We refer to such a set as a domain. A domain is C*¢ if, locally, the boundary of
the domain can be represented as the graph of a function with two derivatives
that are a-Holder continuous.

Parabolic equations are considered in cylindrical domain of the form (0,7") x
Q. The parabolic boundary of 2 is denoted by 0,(0,T") x €; we recall that it is
defined as follows

0p(0,T) x Q@ ={0} x QU (0,T) x 9.

The open ball of R? centered at z of radius p is denoted by B,(z). If z = 0,
we simply write B,. The following elementary cylindrical domains play a central
role in the theory: for all p > 0 and = € R?, we define

Qp(t,x) = (t — P2 t) x B,(x)

When we write (),, we mean Q,(0,0). It is also convenient to write

Qp(tax> = (t7 x) + Qp

and

Qp = pQ1.

A linear operator. The general parabolic equation considered in Section 1
involves the following linear operator

u ou
Lu = ; aij(t, x)m + Z bi(t, x)a—xl + c(t, 2)u.

The set of d x d real symmetric matrices is denoted by S;. The identity
matrix is denoted by I. For A, B € S3, A > B means that all the eigenvalues
of A — B are non-negative.

Unknown functions u : (0,7)x§2 — R depend on two (set of) variables: ¢t € R
and x € R?. It is convenient to use a capital letter X to refer to (t,x) € R4+,

The time derivative of u is either denoted by %7; or O;u or u;. Du denotes
the gradient of the function u with respect to the space variable z. D?u denotes
the Hessian matrix of the function v with respect to x.

The linear operator introduced above can be written as follows
Lu = trace(AD?*u) +b- Du + cu

where A = (aij)ij.

Hélder spaces and semi-norms. We say that u € C%%(Q) for Q C (0,T) x
2 if u is §-Holder continuous with respect to time ¢ and a-Holder continuous
with respect to space z. The corresponding semi-norm is denoted by [u]a,q-
See Subsection 1.4 for details.



1.2 Fully nonlinear parabolic equations

We first emphasize the fact that we will not consider systems of parabolic equa-
tions; in other words, we will focus on scalar parabolic equations. This means
that the unknown function u will always be real valued. We also restrict our-
selves to second order parabolic equations.

We consider parabolic equations posed in a domain Q C R?: hence, unknown
functions w are defined in (0,7) x Q with T € [0,00]. In order to construct
solutions and prove uniqueness for instance, initial and boundary conditions
should be imposed. However, we will very often not specify them.

Fully nonlinear parabolic equations appear in optimal control theory and
geometry. Here are several significant examples.

e The Bellman equation

Oyu + su fZaa(x)ﬂJera(x)au +Au=0
' aeg i 9 Ox;0; . Y O e

p

e The mean curvature equation

D?*uDu - Du

= A =
Oru U Duf?

e The parabolic Monge-Ampere equations proposed by Krylov in [16]
ou

~5 det(D?u) = H+!
ou i
— det(D%u) + Lf% + H} =0 (1.1)

—det <D2u— 8u[> = Hg¢
ot

where H = H(t,x, Du) is a nonlinear first order term.
e For the study of the K&ahler-Ricci flow, one would like to study:

ou
5, = In(det(D?w)). (1.2)

1.3 Aim of these notes

Our goal is to construct solutions and study their regularity. One would like to
construct classical solutions, that is to say solutions such that the derivatives
appearing in the equation exist in the classical sense and satisfy the equation.
But this is not always possible and it is sometimes (very often?) necessary to
construct weak solutions. They are different notions of weak solutions; we will
focus in these notes on so-called viscosity solutions. The advantage is that it is



easy to construct such solutions. One can next try to prove that these solutions
are regular.

Before 1988 (date of publication of [15]), it was popular (necessary) to con-
struct solutions of fully nonlinear elliptic (or parabolic) equations by using the
continuity method. To apply it, it is necessary to get appropriate apriori esti-
mates (on third derivatives for instance, or on the modulus of continuity of the
second ones).

The situation changed dramatically when Jensen [15] managed to apply the
viscosity solution techniques of Crandall-Lions [6] to second order elliptic and
parabolic equations. In particular, he understood how to adapt the so-called
doubling variable techniques to prove uniqueness. Ishii also contributed to this
major breakthrough. The reader is referred to the survey paper [5] for further
details.

Before presenting the viscosity solution techniques and some select regularity
results for these weak solutions, we will present shortly the classical Schauder
approach to linear parabolic equations.

1.4 Spaces of Holder functions

Because we study parabolic equations, Hélder continuity of solutions refers to
uniform continuity with respect to

p(X,Y) = /[t = s[+ |z —y]

where X = (¢,z) and Y = (s,y). In other words, solutions are always twice
more regular with respect to the space variable than with respect to the time
variable.

Remark 1.1 (Important). The reader should keep in mind that, following Krylov
[18], we choose to write u € C%® for functions that are a-Hélder continuous in
r and g-Holder continuous in ¢. This choice is made first to emphasize the link
between regularities with respect to time and space variables, second to simplify
notation.

Let @ C (0,T) x Q and « € (0, 1].
e u € C%*(Q) means that there exists C > 0 s.t. for all (¢,),(s,y) € Q,

we have
lu(t,z) —u(s,y)| < C(|t —s|2 + [z —y|*).

In other words, u is §-Holder continuous in ¢ and a-Holder continuous in
xX.

e u € C1*(Q) means that u is 2 -Hélder continuous in ¢t and Du is a-
Holder continuous in x.

e u € C*%(Q)) means that %—? is §-Holder continuous in ¢ and D?u is a-
Holder continuous in x.



We also consider the following norms and semi-norms.

[u(X) —u(Y)]
Ula,Q = su _
[ ] @ X,YeQ],pX;éY P(Xa Y)

[ulo,@ = sup |u(X)]
XeQ

ou
[U]o4a,0 = |:8t:| a0 + [DQU]mQ

ou
sne = o +| 5| +1Duog+ Do + iaino
0,Q

)

We will use repeatedly the following elementary proposition.

Proposition 1.2.

[uv]a,q < |ulo,g[V]a,q + [v]0.@[Ua,q

and for k =0,2,
[U+V]kta.Q < [Wkta.Q + [Vkta.@-

The following proposition implies in particular that in order to control the
norm |u|z4q,0, it is enough to control |uly,g and [u]o1q,q-

Proposition 1.3 (Interpolation inequalities). For alle > 0, there exists C(e) >
0 s.t. for all u € C%,

%000 < elUara,q + CE)|uloq,
[Dula,g < elu]zta,q + C(e)lulo,q, (1.3)
[Uag < e[ulzraq+ Ce)|uloq-

The second proposition is a precise parabolic statement of the following
elliptic fact: in order to control the Holder modulus of continuity of the gradient
of wu, it is enough to make sure that, around each point, the function u can be

perturbed linearly so that the oscillation of u in a ball of radius r > 0 is of order
14+«
e

Proposition 1.4 (An equivalent semi-norm). There exist C > 1 such that for
all u € C**(Q),

C MUl yaq < (2400 < Clulbiag

where

[uly4 0.0 = sup supp >~* inf2 |lu— P

XeQ p>0 Pep 0.2, (0N

where )
Pg:{at+p'x+§Xx~x+c:a,ceR,péRd,XGSd}.

The reader is referred to [18] for proofs of the two previous propositions.



2 Schauder estimates for linear parabolic equa-
tions

In this first Section, we state a fundamental existence and uniqueness result for
linear parabolic equations with Holder continuous coefficients.

The proof of this theorem is rather long and presenting it completely is out
of the scope of the present lectures notes. Instead, we would like to focus on
two particular aspects: uniqueness and interior estimates.

The uniqueness of the solution is proved by using a maximum principle
(Subsection 2.3), the existence can be obtained through the continuity method.
This method relies on the proof of the “good” a priori estimate (2.1) on any
C?% solution. This estimate is global in the sense that it deals with what
happens at the interior of (0,7") x Q and at its boundary. In Subsection 2.5,
we focus on what happens in the interior of the domain. Precisely, we present
a complete proof of the interior Schauder estimate in the general case. It relies
on Schauder estimates for parabolic equations with constant coefficients. The
derivation of these estimates are presented in Subsection 2.4 by studying first
the heat equation. We present here an argument due to Safonov circa 1984.

2.1 Linear parabolic equations

The standing example of linear parabolic equations with constant coefficients is
the heat equation

ou
— —Au
ot =/
where f is a source term. The general form of a linear parabolic equation with

variable coefficients is the following

ou 0%u ou

4,9

where
c<0

and A(X) = (ai;(X))i,; is a symmetric matrix satisfying one of the following
assumptions

o (Degenerate ellipticity) For all X, A(X) > 0;
e (Strict ellipticity) There exists A > 0 s.t. for all X, 1 A(X) > AI;
e (Uniform ellipticity) There exists A > A > 0 s.t. for all X, A\TA(X) < Al

We recall that I denotes the identity matrix and if A, B € Sy, A > B means
that all the eigenvalues of A — B are non-negative.
It is convenient to consider the linear differential operator L defined as follows

8u
Lu= Z a;j(X 8:518% + Z bi( 8xl + c(X)u.

(3



2.2 A fundamental existence and uniqueness result

In this Subsection, we state a fundamental existence and uniqueness result for
linear parabolic equation with Hoélder continuous coefficients. Such a result
together with its proof can be found in various forms in several classical mono-
graphs such as [20, 18]. We choose here to present the version given in [18].

In the following statement, RZ*! denotes [0, +00) x RY.

Theorem 2.1. If Q is a C*“ domain and the coefficients A,b,c € C*((0,T) x
Q) and f € C*(RIY), g € C?**((0,T) x Q), h € C**(R?), and g and h
are compatible (see Remark 2.3 below), then there exists a unique solution u €
C22(Q) of

u —Au=f in(0,T)xQ

u=g on (0,+00) x 99
u=nh on {0} x €.
In addition,
U240, (0,702 < C(|f|a,Ri+1 +19l24a,(0,7)x2 + |Al2ta,ra) (2.1)

where C = C(d,\, K, a, po,diam(€2)) and K = |Also,r)yxa + |bls0,1)x0 +
|cls,0,7yxq and po is related to the C%< regularity of the boundary of €.

Remark 2.2. The inequality (2.1) is called the (global) Schauder a priori esti-
mate.

Remark 2.3. The fact that data g and h are compatible has to do with conditions
ensuring that a solution which is regular up to the boundary can be constructed.
Since we will not address these problems, we refer the interested reader to [20, 18]
for a precise definition.

2.3 Maximum and comparison principles

Maximum principles are powerful tools to study elliptic and parabolic equa-
tions. There are numerous statements which are not equivalent. We choose the
following one.

Theorem 2.4 (Maximum principle). Consider a bounded continuous function
uw: (0,T) x Q@ — R such that % exists at each point of (0,T) x Q and Du, D*u
exist and are continuous in (0,T) x Q.

If

g—?fLugom(O,T)XQ

u <0 on 0,(0,T) x Q
then u < 0 4n (0,T) x Q.

Remark 2.5. The set 9,(0,T) x Q is the parabolic boundary of the cylindrical
domain (0,7) x €. Its definition is recalled in the Section devoted to notation.



Proof. Fix v > 0 and consider the function v(t,z) = u(t,z) — #~. Assume

that v is not non-positive. Then its maximum M on (0,7) x § is positive. It
is reached, and it cannot be attained for ¢t = 0 or x € 992 since v < u < 0 on
0p(0,T) x Q. It can neither be attained for ¢ = T since v — —oo as t — T'—.
We conclude that the maximum is attained for some ¢t € (0,7) and z € Q. In
particular,

R e S
0= E(tax) - ot (tax) (T — t)2
0 = Du(t,z) = Du(t, )

0 > D%v(t,x) = D?u(t,z).
Remark that since A is (uniformly) elliptic, the linear operator satisfies
Lu(t,z) = trace(AD?u) + b - Du + cu = trace(AD?u) + cu < trace(AD?*u) < 0

since u(t,z) > v(t,z) > 0, ¢ <0, A > 0 and D?u(t,z) < 0. We now use the fact
that u satisfies 2% — Lu < 0 in (0,7) x € to get the desired contradiction:

y ou
—— = —(t,z) < Lu(t,z) <O0.
g = g ) < Lult.a) <
Since «y is arbitrary, the proof is complete. O

We now state two corollaries. The first one will be the starting point of the
second section (Section 3). In the framework of linear equation, it is a direct
consequence of the previous result.

Corollary 2.6 (Comparison principle - I). Consider two bounded continuous
functions u and v which are differentiable with respect to time and such that
first and second derivatives with respect to space are continous. If

% —Lu< fin (0,T) x Q (2.2)
ov

- > f

5 Lv> fin (0,T) x Q

and u < v in 9,Q, then u < v in (0,T) x €.

Remark 2.7. Remark that this corollary implies that as soon as u satisfies (2.2),

it lies below any solution of % — Lu = f. This is the reason why it is referred

to as a subsolution of the equation % — Lu = f. In the same way, v lies above

any solution and is referred to as a supersolution.

Remark 2.8. In view of the previous remark, we can reformulate the result of
the previous corollary as follows: if a subsolution lies below a supersolution at
the parabolic boundary then it lies below in the whole cylindral domain.

The next result contains a first estimate for solutions of linear parabolic
equations.



Corollary 2.9 (A first estimate). Consider a bounded continuous solution u
of % —Lu = f in (0,T) x Q. Assume moreover that it is differentiable with
respect to time and continuously twice differentiable with respect to space. Then

|U|0,(0,T)x£2 < T\f|0,(0,T)xQ + \9|O,ap(o,T)xQ-

Sketch of proof. Consider vt = u + (19l0,0,(0,1)x2 + t|flo,<0,r)xa) and check
that vT is a supersolution and v~ is a subsolution. Then the previous corollary
yields the desired result. O

2.4 Schauder estimate for the heat equation
2.4.1 Statement and corollary
The “interior” Schauder estimate for the heat equation takes the following form.

Theorem 2.10. Let a € (0,1) and consider a C™ function u : R — R with
compact support and define f = % — Au. Then there ezists a constant C' > 0
only depending on dimension and « such that

[u]2+a,Rd+1 < C[f]a,]RdJA .

It is then easy to derive a similar “interior” Schauder estimate for linear
uniformly parabolic equation with constant coefficients and no lower order term.

Corollary 2.11. Let a € (0,1) and assume that A = Ag in R and b = 0,
¢ =0. Then there exists a constant C' > 0 only depending on dimension and o
such that for any C'°° function u with compact support

[u]otaritt < C[f]larir

where f = % — Lu.

Sketch of proof. The proof consists in performing an appropriate change of co-

ordinates. Precisely, we choose P € Sy such that Ay = P? and consider
v(t,r) = u(t, Pr). Then check that Av = trace(4¢9D?*u) = Lu and use Theo-
rem 2.10. O

2.4.2 Two useful facts

Before proving Theorem 2.10, we recall two facts about the heat equation. We
recall first that a solution u € C'*° of

ou
E_Au_fv

with compact support included in (0, +00) x R%, can be represented as

u(t,x) = /0 y G(s,y)f(t —s,x — y)dsdy



where i
_l=?
G(t,x) = W@ 4

We write in short hand

u=Gx*f,

keeping in mind that G should be extended by 0 for t < 0 in order to make this
rigourous. This formula can be justified using Fourier analysis for instance.

Fact 1. For any 0 < p < R,
|G *1qn20)l0.0,(20) < CR?
where 19,z (Z2) =1 if Z € Qr(Zo) and 0 if not.

Fact 2. There exists a constant C > 0 such that any solution o %’Z = Ah in
Qr(0) satisfies

a" h

’D“h(O)’ < c!Mb.ano

otn - R2n+|a
—_ _ . ap — O 9%d
where o = (o, ..., an), |a| =3, a; and D*h = PaTT D h.

This second fact can be proved by using Bernstein’s techniques. See [18,
Chapter 8, p. 116].

2.4.3 Proof of the Schauder estimate

The following proof is due to Safonov circa 1984. It is presented in [18]. Krylov
says in [19] that “[he] believes this proof should be part of a general knowledge
for mathematicians even remotely concerned with the theory of PDEs”.

Recall that the C*® regularity can be established “pointwise”. Indeed, in
view of Proposition 1.4, it is enough to be able to find a polynomial P which is
linear in time and quadratic in space such that the oscillation of the difference
between u and P decreases as p?>T® in a box of size p. The natural candidate
for P is the “second order” Taylor polynomial of the function itself. The idea
of Safonov is to perturb this natural candidate in order to reduce to the case
where f = 0.

Proof of Theorem 2.10. Without loss of generality, we can assume that the com-
pact support of u is included in (0, +o00) x R

Take Xy € R¥1! p > 0 and K > 1 to be specified later. Let @ denote
Qi+1)p(Xo) and take ¢ € C>(R*!) with compact support and such that
(=1in Q.

We consider the “second order” Taylor polynomial associated with a function
w at a point X = (¢, z)

Tcw(s,y) = w(X) +wi(X)(s 1)+ Du(X) - (y =) + 3 Dw(X)(y—2) (s~ )

10



We now consider
9= ((Txou)e = A((Tx,u).

In view of properties of (,

g = f(Xo) in Q.
Keeping this piece of information in mind, we can write for X € @,

u—Tx,u=u—(Tx,u=G*(f—g)

=h+r

with
h=Gx((f—g)1lg)) and r=GCGx((f—f(X0))1q)

where Q¢ = R\ . Remark in particular that

ht —Ah=01in Q

Now we estimate

lu —Tx,u — Tx,hlo,q,x0) < b —Txohlo,0,xo) + 70,0, (x0)

and we study the two terms of the right hand side.
We use Fact 1 to get first

70,0, (x0) < [fla,@(K + 1)%p%G x 10,0, (x0)
< C(K + 170" [ flaq-

We now write for X € Q,(Xy),

(2.3)

(2.4)

A(X) = h(Xo) +ho(6,2)(t ~to) + Dh(Xo) (& 0) + 5 D*h(®) (z — o) - (7o)

for some 6 € (t,t) and © = (to, yo) € Q,(Xo). Hence, we have

h(X) = TxM(X) = (he(0, ©) — he(X0))(t = to)
1

+ =(D*1(©) — D*h(Xo))(x — z9) - (x — 20)

2

from which we deduce

(X)) = T, h(X)| < p?|he(0, ) — he(Xo)| + p*|D*1(®) — D*h(Xo)|.

Ova(X0)>

< C( (KEp) ™t +p*(Kp) =2+ p*(Kp)~?)|hlo.q

We now use Fact 2 in order to get

2

AN
0% 1o 0, (x0)
+ Cp*ID’hlo,q, (x0)

0

|h — T'x,hlo,Q,(xe) < P <P2

< O(K™* 42K %)|hlog
< CK_3|h|0,Q

11

(2.5)



by choosing K > 1. We next estimate |h|g o as follows
[hlo,@ < lu=Txyu=rloq < |u—Txoulo,q +[rlo.Q
< C(K + 170" ([ul21a,0 + [[fla)
where we used (2.5) for u instead of h and we used (2.4). Then, we have

2+«
%”QM(MHW + [flo@)-  (2:6)

Combining (2.3), (2.4) and (2.6), we finally get

|h = Txyhlo,g,x0) < C

P~ = Txu — Txohlo,g, (xo) < C(K +1)**[flag

(K + 1)2+a

+C K3 ([u]2+a,Q + [f]a,Q)

In view of Proposition 1.4, it is enough to choose K > 1 large enough so that

(K + 1)2+a
K3
to conclude the proof of the theorem. O

1
C <=
-2

2.5 Schauder estimate in the case of variable coefficients

Theorem 2.12. Consider a function u € C%*((0,T) xR) for some o € (0,1).
Then there exists C = C(d, o) such that
[Ulata,0,1)xRe < C ([fla0,1)xre + |Ulo,0.7)xR2)
_ Ou
where f = Sy — Lu.
Remark 2.13 (Notation). In the remaining of this subsection, it is convenient

to write semi-norms as ||+ instead of []x1a, (0,1 xre, ¥ = 0,2. In the same
way, | - |o stands for | - |o (0, 7)xRd-

Remark 2.14. Recall that by Corollary 2.9, one has

|ulo < T'|uy — Lulo + |u(0, -)|o ga-
Before giving a rigourous proof, we would like first to explain the main idea.

Main idea of the proof of Theorem 2.12. Assume first that there are no lower
order terms (¢ =0 and b = 0).

In a neighbourhood of Xy € R4t the coefficients of the linear operator L
are frozen: the linear operator with constant coeflicients is denoted by Lg. If X
is close to X, then L is not very far from Ly and this can be measured precisely
thanks to the Holder continuity of coeflicients.

Use first Corollary 2.11:

[u]a4a < Cluy — Loula < Cluy — Luly + C[Lu — Lou),.

Now control [Lu — Loul, thanks to [u]a4, and conclude.
Next, lower order terms are treated by using interpolation inequalities. [

12



Let us now make this precise and rigourous.

Proof of Theorem 2.12. We first assume that b = 0 and ¢ = 0. Let f denote
— Lu.

Let € € (0,7/2) and v < /2 be a positive real number to be fixed later and
consider X; and X5 such that

ou
ot

[Ut] (e, 7—e)xra < 2p( X1, Xo) ™ ¥fug(X1) — ug(Xo)|

where we recall that p(X1, Xo) = /|t1 — tao| + |21 — 22| if X; = (t;,25), 1= 1,2.
If p(X1,X3) > 7, then we use interpolation inequalities (1.3) in order to get

[ut]a,(s,Tfs) xRd < ZW_O[ ‘ut|0

< 3 ltara+ CO)lulo

If p(X1,X5) < 7, we consider ¢ € C(R4!) with compact support such
that ((X) = 1 if p(X,0) < 1 and ¢(X) = 0 if p(X,0) > 2. We next define
Et,m) = C(y2(t —t1),y Yz — x1)). In particular, £(X) = 1if p(X, X;) < v
and £(X) =0 if p(X, X71) > 2.

Now we use Corollary 2.11 in order to get

[Ut] (e, 7—e)xra < 2p( X1, Xo) ™% ug(X1) — ug(Xo)|

S 2[(”5)]2+a
< 2C[(ug): — L(X1)(uf)]a
< 20([(u€) — L(u)]a + 2C[(L(X1) — L) (ud)]a. (2.7)

We estimate successively the two terms of the right hand side of the last line.
First, we write

(u€)e — L(u§) = §f +u(§s — L) — 2ADu - D

since L(u€) = uLé + £Lu + 2ADu - DE. Using interpolation inequalities (1.3),
this implies

CON(fa + [ula + [Dula)
7 ul2ra + C(Y)([fla + [ulo) (2.8)

We next write
(L(X1) — L)(ug) = trace[(A(X1) — A(X))D?(ug)]

and for X such that p(X7,X) < 2v, we thus get thanks to interpolation in-
equalities (1.3)

[(L(X1) = L)(u)]a < Cy[D?(u€)]a + C|D*(ué)lo
< Oy [ul2+a + C(9)lulo- (2.9)
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Combining (2.7), (2.8) and (2.9), we finally get in the case where p(X1, X3) < 7,

[Ut]a, (.7 - xre < CY [ul21a + C(V)([fla + [uo)-

We conclude that we have in both cases

[Ut]a,(e,7—e)xrd < (CYY + 1/D)[ulata + C(Y)([fla + |ulo).

We can argue in a similar way to get

[D*u] g (e 7—eyxra < (C7* + 1/D) 240 + C()([fla + |ulo).

Adding these two inequalities yield

[ul24a,(e,r—e)xre < (CY* + 1/2)[ul21a + C(Y)([fla + [uo)-

Now choose « such that Cy* < 1/4 and get

[Wason e e < Silza + C([fla + ulo).

Taking the supremum over ¢ € (0,7/2) allows us to conclude in the case where
b=0and c=0.
If now b # 0 and ¢ # 0, we apply the previous result and get

[ula4a < C([f +b- Du+ cula + |ulo).

Use now interpolation inequalities once again to conclude. O

3 Viscosity solutions: a short overview

Viscosity solutions were first introduced by Crandall and Lions [6]. This notion
of weak solution enabled to characterize the value function of an optimal control
problem as the unique solution of the corresponding first order Hamilton-Jacobi
equation. An example of such an equation is the following one

ou 1 9 B
s + §|Du| +V(z)=0 (3.1)

for some continuous function V. The viscosity solution theory is also by now a
fundamental tool for the study of nonlinear elliptic and parabolic equations.

3.1 Definition and stability of viscosity solutions
3.1.1 Degenerate ellipticity

We recall that linear parabolic equations in non-divergence form have the fol-
lowing general form

ou
E—Lu—f

14



with
Lu = trace(AD?*u) +b- Du + cu

with A > 0 (in the sense of symmetric matrices).
We now consider very general nonlinear parabolic equation of the form

ou

5 + F(t,z, Du, D*u) = 0 (3.2)

where we assume that the nonlinearity F : (0,T) xQxR?xS,; — R is continuous
and satisfies the following condition

A< B= F(t,z,p,A) > F(t,z,p, B). (3.3)

In other words, the nonlinearity F' is non-increasing with respect to the matrix
variable. We say that F' is degenerate elliptic.

Remark 3.1. In the case of parabolic Monge-Ampére equations such as (1.1) or
(1.2), the nonlinearity is well-defined and degenerate elliptic only on a subset of
Sg; precisely, it is only defined either on the subset SZ; of semi-definite symmetric
matrices or on the subset S}'J’ of definite symmetric matrices. Hence, solutions
should be convex or strictly convex.

3.1.2 Semi-continuity

Consider an open set @ C R We recall that v is lower semi-continuous at
(t,x) if, for all sequences (sy,yn) — (¢, ),

u(t, ) < liminf u(sy, yn)-
n—oo
In the same way, one can define upper semi-continuous functions. Very often,
the previous inequality is written

u(t,z) < liminf wu(s,y).
(5,9) = (t,2)
If u is bounded from below in a neighbourhood of @), one can define the lower
semi-continuous envelope of w in @ as the largest lower semi-continuous func-
tion lying below w. It is denoted by wu,. Similarly, the upper semi-continuous
enveloppe u* of a locally bounded from above function u can be defined.

3.1.3 Definition(s)

In this paragraph, we give the definition of a viscosity solution of the fully
nonlinear parabolic equation (3.2). We give a first definition in terms of test
functions. We then introduce the notion of subdifferentials and superdifferen-
tials with which an equivalent definition can be given (see Remark 3.8 below).

In order to motivate the definition of a viscosity solution, we first derive
necessary conditions for smooth solutions of (3.2).

15



Consider an open set @ C R?*! and a function u : Q — R which is C! with
respect to t and C? with respect to 2. Consider also a function ¢ with the same
regularity and assume that v < ¢ in a neighbourhood of (t,z) € Q and u = ¢
at (t,z). Then

P ou

E(tvﬂf) a(t@)

Do(t,x) = Du(t,x)
D?¢(t,z) > D*u(t,x

Using the degenerate ellipticity of the nonlinearity F', we conclude that

99 4, 2) + F(t,2, D(t, z), D2(t, z))

ot
ou 9
< a(tm) + F(t,z, Du(t,z), D*u(t,z)) = 0.

A similar argument can be used to prove that if u > ¢ in a neighbourdhood of
(t,z) with u(t,z) = ¢(t,x) then the reserve inequality holds true. These facts
motivate the following definitions.

Definition 3.2 (Test functions). A test function on the set Q is a function
¢ : Q — R which is C'' with respect to t and C? with respect to z.

Given a function u : Q@ — R, we say that the test function ¢ touches u from
above (resp. below) at (t,x) if u < ¢ (resp. u > ¢) in a neighbourhood of (¢, x)
and u(t, x) = ¢(t, ).

Remark 3.3. If u — ¢ reaches a local maximum (resp. minimum) at (¢, o),
then ¢ + [u(to, zo) — ¢(to, 2o)] touches u from above (resp. below).

Definition 3.4 (Viscosity solutions). Consider a function u : @ — R for some
open set Q.

e u is a subsolution of (3.2) if u is upper semi-continuous and if, for all
(t,z) € @ and all test functions ¢ touching u from above at (¢, z),

9¢

5 (b@) + F(t, 2, Do(t,x), D*6(t, x)) < 0.

e v is a supersolution of (3.2) if u is lower semi-continuous and if, for all
(t,z) € Q and all test functions ¢ touching u from below at (¢, z),

%(t,x) + F(t,z,Do(t,x), D*¢(t,x)) > 0.

e u is a solution of (3.2) if it is both a sub- and a supersolution.

Remark 3.5. Remark that a viscosity solution of (3.2) is a continuous function.
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When proving uniqueness of viscosity solutions, it is convenient to work with
the following objects.

Definition 3.6 (Second order sub-/super-differentials). The following set
PE)(t,z) = {(a,p, X) ERx R x Sy :
(@, p, X) = (0u¢(t, 7), De(t, z), D*¢(t, 7))

s.t. ¢ touches u from above (resp. below) at (¢,z)}

is the super-(resp. sub-)differential of the function u at the point (¢,x).

Remark 3.7. Here is an equivalent definition: (o, p, X) € PTu(t, ) if and only
if

u(s,y) 2 u(t,2) +als—0)+p-(y—2)+ 5 X (=) (=) +o (s — o + [y — 2P

for (s,y) in a neighbourhood of (¢, x). A similar characterization holds for P~.

Remark 3.8. The definition of a viscosity solution can be given using sub- and
super-differentials of u. Indeed, as far as subsolutions are concerned, in view of
Definitions 3.4 and 3.6, u is a viscosity subsolution of (3.2) in the open set @ if
and only if for all (t,x) € Q and all (a,p, X) € PTu(t, x),

Oé+F(t7l‘7p,X) SO

When proving uniqueness, the following limiting versions of the previous
objects are used.
Definition 3.9 (Limiting super-/sub-differentials).

P () (t,2) = {(a,p, X) € R x RE x Sy : It 2n) — (¢, 2) 5.

(ns Py Xn) = (i, p, X)), ultn, ) = u(t, ),
(Ons Prs X)) € PEuu(t, )}
Remark 3.10. Since F' is assumed to be continuous, the reader can remark that
w is a viscosity subsolution of (3.2) in @ if and only if for all (¢,z) € @ and all
(a,p, X) € ﬁ+u(t7 x),
a+ F(t,x,p,X) <0.

An analogous remark can be made for supersolutions.

3.1.4 First properties

In this section, we state without proofs some important properties of sub- and
supersolutions. Proofs in the elliptic case can be found in [5] for instance. These
proofs can be readily adapted to the parabolic framework.

Proposition 3.11 (Stability properties). o Let (uq)a be a family of subso-
lutions of (3.2) in Q such that the upper semi-continuous envelope u of
Sup,, Uq s finite in Q. Then u is also a subsolution of (3.2) in Q.
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o If (un)n s a sequence of subsolutions of (3.2), then the upper relaxed-limit
u of the sequence defined as follows

a(t,z) = limsup  wun(s,y) (3.4)

(s,y)—(t,z),n—o00
is everywhere finite in Q, then it is a subsolution of (3.2) in Q.

Remark 3.12. An analogous proposition can be stated for supersolutions.

3.2 The Perron process

In this subsection, we would like to give an idea of the general process that
allows one to construct solutions for fully nonlinear parabolic equations.

3.2.1 General idea

The Perron process is well known in harmonic analysis and potential analysis.
It has been adapted to the case of fully nonlinear elliptic equations in non-
divergence form by Ishii [12].

The general idea is the following one: assume that one can construct a
subsolution 4~ and a supersolution u* to a nonlinear parabolic equation of the
form (3.2) such that v~ < w*. Using Proposition 3.11, we can construct a
maximal subsolution u lying between u~ and ut. Then a general argument
allows one to prove that the lower semi-continuous envelope of the maximal
subsolution w is in fact a supersolution.

Remark 3.13. Before making the previous argument a little bit more precise, we
would like to point out that the function u constructed by this general method
is not a solution in the sense of Definition 3.4. It is a so-called discontinuous
(viscosity) solution of (3.2). We decided to stick to continuous viscosity solu-
tion in these lecture notes and to state the result of the Perron process as in
Lemma 3.15 below. See also Paragraph 3.2.3.

Ezample 3.14. In many important cases, u* are chosen in the following form:

uo(x) £ Ct where ug is the smooth initial datum and C' is a large constant,
precisely:
C > sup |F(0,z, Dug(x), D*ug(z))|.
z€R4
If non-smooth/unbounded initial data are to be considered, discontinuous sta-
bility arguments can be used next.

3.2.2 Maximal subsolution and bump construction

We now give more details about the general process to construct a “solution”.
We consider a cylindrical domain @ = (0,7) x € for some domain Q C R

Lemma 3.15. Assume that u™ is a super-(resp. sub-) solution of (3.2) in Q.
Then there exists a function u : Q — R such that u= < u < ut and u* is a
subsolution of (3.2) and us is a supersolution of (3.2).

18



Proof. Consider
S={v:Q—Rst. u” <v<u' and v* subsolution of (3.2)}.

By Proposition 3.11, we know that the upper semi-continuous envelope u* of
the function

U = supv
veES

is a subsolution of (3.2).

We next prove that the lower semi-continuous envelope u, of u is a superso-
lution of (3.2) in Q). Arguing by contradiction, one can assume that there exists
(o, p, X) € P~ un(t, z) such that

a+ F(t,z,p,X) =: -0 < 0. (3.5)
Remark that at (¢,2), we have necessarily
uy(t,z) < ut(t, ).

Indeed, if this is not the case, then (a,p, X) € P~ut(t,z) and (3.5) cannot be
true since u™ is a supersolution of (3.2). Up to modifying the constant 6, we
can also assume that

uy(t,z) —ut(t,x) < -0 < 0. (3.6)

Without loss of generality, we can also assume that (¢,z) = (0,0) and u, (¢, z) =
0. Let us consider the following paraboloid

1 1
Pl =7+ pe+ 3 Xy y+ 8- (5l + 1))

with § and 7 to be chosen later. Compute next

oP
g(s, y) + F(s,y, DP(s,y), D*P(s,y))
s
=T + F(s,y,p+ Xy — vy, X — 1)
(if s =0, \%I should be replaced with any real number o € [—1,1]). Hence, for

r and v small enough, we have

oP ) 0
il < 2
5s T F(5:9,DQ,D°Q) < —5 <0

for all (s,y) € V.. Moreover, since (1,p, X) € P~ u.(t,x), we have
1
un(,y) = 75+ p-y+ 5 Xy -y +o(lyl” + |s))

1
> Plovy) =57 (Gl +161) + ol + D
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Choose now § = I and consider (s,y) € V. \ V,/2:

yr yr yr
u*<svy) > P(Svy) - Z + ? +O(T> :P(Say) + Z —|—O(’I").

Consequently, for r small enough,

u(s,y) = Pls,y) 2 g > 0in Vi \ Ve,

P(s,y) <ul(s,y) in V,

where we used (3.6) to get the second inequality.
We next consider

_ ) max{u(s,y), P(s,y)} if (s,9) €V,
Uls:y) = { u(s,y) if not.

On one hand, we remark that the function U* is still a subsolution of (3.2) and
U>u>u_ and U < u'. Consequently, U € S and in particular, U < u. On
the other hand, supg+ wga{U — u} > ¢; indeed, consider (¢,,x,) — (0,0) such
that u(tn, z,) = u«(0,0) = 0 and write

lim U(ty,xn) — w(tn, z,) > 1i_>m P(tn,xn) — u(ty,z,) = > 0.

n— oo

This contradicts the fact that U < u. The proof of the lemma is now complete.
O

3.2.3 Continuous solutions from comparison principle

As mentioned above, the maximal subsolution u* is not necessarily continuous;
hence, its lower semi-continuous envelope u, does not coincide necessarily with
it. In particular, we cannot say that u is a solution in the sense of Definition 3.4
(cf. Remark 3.13 above).

We would get a (continuous viscosity) solution if u* = u,. On one hand,
u* is upper semi-continuous by construction and on the other hand u, < u* by
definition of the semi-continuous envelopes. Hence, u is a solution of (3.2) if
and only if u* < u, in Q. Since u* is a subsolution of (3.2) in @ and u, is a
supersolution of (3.2) in @, it is thus enough that Equation (3.2) satisfies a com-
parison principle and that the barriers u® satisfy some appropriate inequality
on the parabolic boundary. More precisely, we would like on one hand that

Comparison principle. If u is a subsolution of (3.2) in Q and v is a super-
solution of (3.2) in @ and w < v on the parabolic boundary 0,Q, then u < v in

Q.

and on the other hand, we would like that ©* < w, on 9,Q. This boundary
condition would be true if

(ut)* < (u7)s on 9,Q.
We emphasize that the lower and upper semi-continuous envelopes appearing

in the previous inequality are performed with respect to time and space.
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Ezample 3.16. If for instance Q = (0,T) x R?, then barriers should satisfy
() (0,2) < (u)4(0,z) for z € RY.

This condition is fullfilled for such a @ if u* = ug & Ct (see Example 3.14).

In the next subsection, we will present general techniques for proving com-
parison principles. The reader should be aware of the fact that, in many practical
cases, general theorems from the viscosity solution theory do not apply to the
equation under study. In those cases, one has to adapt the arguments presented
below in order to take into account the specific difficulties implied by the specific
equation. The reader is referred to [5] for a large review of available tools.

3.3 Introduction to comparison principles

In this subsection, we present classical techniques to prove comparison principles
in some typical cases.

3.3.1 First order equations

In this paragraph, we first study first order Hamilton-Jacobi equations of the
following form

ou
s + H(z, Du) = 0. (3.7)

As we will see, a comparison principle holds true if H satisfies the following
structure condition: for all z,y, p € R?,

In order to avoid technicalities and illustrate main difficulties, we assume that
x — H(x,p) is Z%-periodic; hence, solutions should also be Z%periodic for
Z%-periodic initial data.

Theorem 3.17 (Comparison principle - II). Consider a continuous Z¢-periodic
function ug. If u is a Z%-periodic subsolution of (3.7) in (0,T) x R and v is
a Z4-periodic supersolution of (3.7) in (0,T) x R? such that u(0,z) < ug(z) <
v(0,z) for all v € RY, then u < v in (0,T) x R%.

Proof. The beginning of the proof is the same as in the proof of Theorem 2.4:
we assume that

M= sup {u(t,a:) —v(t,x) — 7} > 0.
te(0,T) v R T-t

Here, we cannot use the equation directly, since it is not clear wether u —
v satisfies a nonlinear parabolic equation or not (recall that the equation is
nonlinear). Hence, we should try to duplicate the (time and space) variables.
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Doubling variable technique. Consider

G s w )

M, = sup {U(t,x) —u(s,y) = 5 T—%

t,s€(0,T),z,ycR?

Remark that M, > M > 0. This supremum is reached since w is upper semi-
continuous and v is lower semi-continuous and both functions are Z%periodic.
Let (tc, Se, Ze, ye) denote a maximizer. Then we have

(ta - 35)2 |x£ — y6‘2
+

5 e S u(te, ) — v(se,y:) < [utlo +[v-]o

where we recall that |wlo = sup ,ye(0,r)xre [w(t )|. In particular, up to ex-
tracting subsequences, t. — t, s =t and 2. — z, y. = y and t. — s. = O(\/¢)

and z. — y. — O(\/2).
Assume first that ¢ = 0. Then

0 < M <limsup M, <limsupu(t.,z.)—liminf v(s., y:) < u(0,z)—v(0,2) < 0.
e—0 € €
This is not possible. Hence ¢ > 0.
Since t > 0, for € small enough, . > 0 and s. > 0. Now remark that the
function ¢,
(t—s)® | |z —yel?

n
t —
(,:E) U(567y5)+ 2% + 2% +T—t

is a test function such that u — ¢,, reaches a maximum at (¢.,z.). Hence (recall
Remark 3.3),
n le — Sc
H <0
Tt T THEep) <

Le—Ye

with p. = ==-¥=. Similarly, the function ¢,

(S_t€>2 . ‘y_-ra'Q . U
2e 2e T—t.

(s,y) = u(te, ) —

is a test function such that v — ¢, reaches a minimum at (s., y.); hence

te — S¢
P +H(ysvps) <0

with the same p.! Substracting the two viscosity inequalities yields

n

m < H(Ye,pe) — H(xe,pe).

In view of (3.8), we conclude that

Ui
ﬁ < O|xa - ye| = O(\/g)

Letting € — 0 yields the desired contradiction. O
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Remark 3.18. Condition (3.8) is satified by (3.1) if the potential V' is Lipschitz
continuous. On the contrary, if H(z,p) = c(z)|p|, then the Hamilton-Jacobi
equation is the so-called eikonal equation and it does not satisfy (3.8) even if ¢
is globally Lipschitz. Such an Hamiltonian satisfies

|H (z,p) = H(y,)| < C(1 +[p])]z -yl (3.9)

For such equations, the penalization should be studied in greater details in order
to prove that
|ze — ye|?
2e
With this piece of information in hand, the reader can check that the same
contradiction can be obtained for Lipschitz ¢’s. See for instance [2] for details.

—0ase—0.

Since we will use once again this additional fact about penalization, we state
it now in a lemma.

Lemma 3.19. Consider u(t,x) = u(t,r) —n(T —t)~'. Assume that
[z —yl* |t—s
2e 2e

M. = sup a(t,x)—v(s,y)
z,y€rd
t,s€(0,T)

is reached at (e, ye,te,Sc). Assume moreover that (x.,ye,te,s:) — (z,y,t, )
as € — 0. Then
‘xs - ye|2
€

—0ase— 0.

Remark 3.20. The reader can check that the previous lemma still holds true if
v(s,y) is replaced with v(¢,y) and if the term e~ 1|t — s|? is removed.

Proof. Remark first that ¢ — M, is non-decreasing and M, > M := supga (@ —
v). Hence, as ¢ — 0, M, converges to some limit { > M. Moreover,

2 2
N Te — te — s
Mo > i(te, 22) — vlse ) - e Vel e m o
[we =yl | Jte = scl?
> M, .
s Met T
Hence,
2 2
— t —
e = yel” Mo =5 pp a0
4e 4e
O
3.3.2 Second order equations with no x dependance
In this subsection we consider the following equation
ou
Fn + H(z,Du) — Au=0 (3.10)
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still assuming that o + H(z, p) is Z%periodic and satisfies (3.8). The classical
parabolic theory implies that there exists smooth solutions for such an equation.
However, we illustrate viscosity solution techniques on this (too) simple example.

Theorem 3.21 (Comparison principle - I11). Consider a continuous Z-periodic
function ug. If u is a Z%-periodic subsolution of (3.10) in (0,T) x R% and v is
a Z-periodic supersolution of (3.7) in (0,T) x R? such that u(0,z) < up(z) <
v(0,x) for all x € R, then u < v in (0,T) x R

Remark 3.22. A less trivial example would be

% + H(x, Du) — trace(AgD?*u) =0

for some degenerate matrix Ay € Sy, Ag > 0. We prefer to keep it simple and
study (3.10).

First attempt of proof. We follow the proof of Theorem 3.17. If one uses the
two test functions ¢,, and ¢, to get viscosity inequalities, this yields

1 n te —
(T - ts)z

% 4 H(z.,p.) < trace(e '),
€

te — Se

+ H(ye,p:) > — trace(c ).

Substracting these two inequalities, we get

2 <O(/A) + 2

and it is not possible to get a contradiction by letting ¢ — 0. O

In the previous proof, we lost a very important piece of information about
second order derivatives; indeed, assume that v and v are smooth. As far as
first order equations are concerned, using the first order optimality condition

Du(ts;zs) -p.=0 and — DU(Sane) +p.=0

is enough. But for second order equations, one has to use second order optimal-

ity condition
Duf(t.,x.) 0 < el —e
0 —Dv(sc,ye)) — \—e I eI )"

It turns out that for semi-continuous functions, the previous inequality still
holds true up to an arbitrarily small error in the right hand side.

Uniqueness of viscosity solutions for second order equations where first ob-
tained by Lions [22] by using probabilistic methods. The analytical break-
through was achieved by Jensen [15]. Ishii’s contribution was also essential [13].
In particular, he introduced the matrix inequalities contained in the following
lemma. See [5] for a detailed historical survey.

We give a first version of Jensen-Ishii’s lemma for the specific test function
(2) 1] — g
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Lemma 3.23 (Jensen-Ishii’s lemma - I). Let U and V be two open sets of
R? and I an open interval of R. Consider also a bounded subsolution u of
(3.2) in I x U and a bounded supersolution v of (3.2) in I x V. Assume that

u(t,x) —v(t,y) — % reaches a local mazimum at (to,xo,y0) € I x U x V.

Letting p denote e~ *(zg — yo), there exists T € R and X,Y € Sy such that

(T7p7X) € ﬁ+u(t05 ‘TO)v (Tvp7Y) € f71}(t0ay0)

_g (é ?) = (JO( —OY> = g <—II _II> (3.11)

Remark 3.24. As a matter of fact, it is not necessary to assume that u and v
are sub- and supersolution of an equation of the form (3.2). We chose to present
first the result in this way to avoid technicalities. Later on, we will need the
standard version of this lemma, so we will state it. See Lemma 3.30 below.

Remark 3.25. Such a result holds true for more general test functions ¢(¢, z,y)
than (2¢)~!|z — y|2. However, this special test function is a very important one
and many interesting results can be proven with it. We will give a more general
version of this important result, see Lemma 3.30.

Remark 3.26. The attentive reader can check that the matrix inequality (3.11)
implies in particular X <Y.

Remark 3.27. This lemma can be used as a black box and one does so very
often. But we mentioned above that some times, one has to work more to get a
uniqueness result for some specific equation. In this case, it could be necessary
to consider more general test functions, or even to open the black box and go
through the proof to adapt it in a proper way.

With such a lemma in hand, we can now prove Theorem 3.21.

Proof of Theorem 3.21. We argue as in the proof of Theorem 3.17 but we do
not duplicate the time variable since it is embedded in Lemma 3.23. Instead,
we consider

lz—y>
M. sup {U( o) —o(t,y) R T3

t€(0,T)

let (e, zc,ye) denote a maximiser and apply Lemma 3.23 with @(t, x) = u(t,z) —

7 and v and we get 7, X,Y such that

Ui

m7pE7X) €f+u(t5,$5),(7,pg,Y) Efiv(tavys)a X SY

(t+

(see Remark 3.26 above). Hence, we write the two viscosity inequalities
S A H(ze,pe) < trace X

(T —1)? -
T+ H(ye,pe) > traceY > trace X
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and we substract them in order to get the desired contradiction
v
73 < O(Ve).
The proof is now complete. O

3.3.3 Second order equations with x dependance

In this paragraph, we prove a comparison principle for the following degenerate
elliptic equation

— + H(z, Du) — trace(o(z)o” (x)D*u) = 0 (3.12)
under the following assumptions
o x— H(x,p) is Z%periodic and satisfies (3.9);

e 0 :R%— My, (R) is Lipschitz continuous and Z9-periodic, m < d.

Here, My ,,,(R) denotes the set of real d x m-matrices. We make precise that
o7 denotes the transpose matrix of the d x m-matrix o.

The following theorem is, to some respects, the nonlinear counterpart of the
first comparison principle we proved in Section 2 (see Corollary 2.6). Apart from
the nonlinearity of the equation, another significant difference with Corollary 2.6
is that Equation (3.12) is degenerate elliptic and not uniformly elliptic.
Theorem 3.28 (Comparison principle - IV). Consider a continuous Z-periodic
function ug. If u is a Z%-periodic subsolution of (3.10) in (0,T) x R% and v is
a Z-periodic supersolution of (3.7) in (0,T) x R? such that u(0,z) < up(z) <
v(0,) for all x € R, then u < v in (0,T) x RZ.

Proof. We argue as in the proof of Theorem 3.21. The main difference lies after
writing viscosity inequalities thanks to Jensen-Ishii’s lemma. Indeed, one gets
n

ﬁ <- H(maps) + H(yg,pg) + trace(g(zs)UT(Is>X) - trace(g(ys)aT(ys)Y)

<C (1 + u;y') e — vl

+ trace(o(z:)o T (x.)X) — trace(o(y=)o” (y=)Y).
The first term can be handled thanks to Lemma 3.19. But one cannot just use
X <Y obtained from the matrix inequality (3.11) to handle the second one.
Instead, consider an orthonormal basis (e;); of R™ and write
trace(o(z:)o” (z.)X) — trace(o(y.)o? (y.)Y)
=trace(c” (z.)Xo(x.)) — trace(o” (y.)Y o (ye))

m

= (Xa(xs)ei ) U(‘rs)ei - YJ(ys)ei : U(ys)ei)

1

m

Z |U(zs)€i - U(ye)ez"Q;
=1

<.

<

™l w
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we applied (3.11) to vectors of the form (o (x.)e;, o (ye)e;) € R x R? to get the
last line. We can now use the fact that ¢ is Lipschitz continuous and get

a2
trace(a ()0 (2.)X) — oy )0 (1)) < L2 ¥L
€
We thus finally get
U |ze — |
T2 < C|xe - y6| + 0.
We can now get the contradiction < 0 by using Lemma 3.19 and letting € — 0.
The proof is now complete. U

3.4 Holder continuity through the Ishii-Lions method

In this subsection, we want to present a technique introduced by Ishii and Lions
in [14] in order to prove Holder continuity of solutions of very general fully
nonlinear elliptic and parabolic equations. On one hand, it is much simpler
than the proof we will present in the next section; on the other hand, it cannot
be used to prove further regularity such as Holder continuity of the gradient.

The fundamental assumptions is that the equation is uniformly elliptic (see
below for a definition). For pedagogical purposes, we do not want to prove a
theorem for the most general case. Instead, we will look at (3.12) for Sg-valued
o’s and special H’s

0
a%‘ + ()| Du| — trace(o(z)o (z) D?u) = 0 (3.13)
Assumptions (A).

e c is bounded and Lipschitz continuous in @;

e 0:(Q — Sy is bounded and Lipschitz continuous in x and constant in t;

e There exists A > 0 such that for all X = (¢,z) € Q,

A(z) :=o(x)o(z) > M.

Under these assumptions, the equation is uniformly elliptic, i.e. there exist two
positive numbers 0 < A < A, called ellipticity constants, such that

VX = (tx) €Q, M < A(z) <Al (3.14)

Theorem 3.29. Under Assumptions (A) on H and o, any viscosity solution u
of (3.13) in an open set Q C R is Hilder continuous in time and space.

When proving Theorem 3.29, we will need to use Jensen-Ishii’s lemma for a
test function which is more general than (2¢)~!|z — y|?>. Such a result can be
found in [5].
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Lemma 3.30 (Jensen-Ishii’s lemma - IT). Let U and V be two open sets of
R? and I an open interval of R. Consider also a bounded subsolution u of
(3.2) in I x U and a bounded supersolution v of (3.2) in I x V. Assume that
u(t,x) —v(t,y) — p(x — y) reaches a local maximum at (to,zo,yo) € I X U X V.
Letting p denote Do (xg—1yo), for all B > 0 such that Z < I, there exists T € R
and X, Y € Sy such that

(Tapv X) € ﬁ—‘ru(th CC()), (T7p7 Y) € ﬁ_v(t% yO)

3606 D% H) e

where Z = D*¢(xg — yo) and Z° = (I — BZ)~1Z.
We can now turn to the proof of Theorem 3.29.

Proof of Theorem 3.29. We first prove that u is Holder continuous with respect
to x. Without loss of generality, we can assume that @ is bounded. We would
like to prove that for all X = (to,z9) € Q and (t,z), (t,y) € Q,

ult, @) = ult,y) < Lilr — y|* + Lol — ol* + La(t — to)?
for L1 = L1(Xo) and Ly = Lo(Xp) large enough. We thus consider

M= suwp Au(t,z) —u(t,y) — ¢(z —y) =Tt 2)}
(t.2).(t9)€Q

with ¢(2) = L1|z|* and T'(t,z) = La|z — z0|* + La(t — tg)? and we argue by
contradiction: we assume that for all & € (0,1), L1 > 0, L > 0, we have M > 0.

Since @ is bounded, M is reached at a point denoted by (Z,Z, 7). The fact
that M > 0 implies first that T # . It also implies

75 < (352)" =4 < d%,00),

X = Xo| < y/24ee = R, < 45000

if L1 and Ly are chosen so that

(3.16)

2Julo,@ I,> _ Shoe
(d(Xo,0Q))" ~ (d(X0,0Q))?
In particular we have Z,y € €. We next apply Jensen-Ishii’s Lemma 3.30 to
a(t,z) = u(t,z) — T'(t,x) and v(s,y). Then there exists 7 € R and X,Y € Sy
such that

Ly >

(T +2La(f—to), p+2La(Z — x0), X +2Lo0) € P u(t,z), (1,5,Y) € P u(L,q)

where p = D¢(z — ) and Z = D?¢(z — ¢) and (3.15) holds true. In particular,
X <Y. We can now write the two viscosity inequalities

2L2(t77 t()) + 7+ H(J_?,ﬁ + 2L2(j — Io)) S trace(A(f)(X =+ 2L2I))
T+ H(y,p) > trace(A(y)Y)
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and combine them with (3.16) and (3.14) to get
— CLy < 2Ls(t — to) < c(y)|p| — c(2)|p + 2L2(Z — o)
+ CLy + trace(A(Z)X) — trace(A(7)Y). (3.17)

We next estimate successively the difference of first order terms and the differ-
ence of second order terms. As far as first order terms are concerned, we use
that ¢ is bounded and Lipschitz continuous and (3.16) to get

c(@)|pl = e(Z)|p + 2La(Z — wo)| < Clz — gl|p| + CLa|Z — o
< Clz —gllp[ + CLy. (3.18)

As far as second order terms are concerned, we use (3.14) to get

trace(A(Z)X) — trace(A(7)Y) < trace(A(Z)(X —Y)) + trace((A(Z) — A(§))Y)
< Atrace(X —Y)

+D (@)Y o@)e; e —o(mYo(G)e: e
< Atrace(X —Y) + C|[Y]|z — y|.

We should next estimate |p|, trace(X —Y) and [|Y||. In order to do so, we
compute D¢ and D?¢. It is convenient to introduce the following notation

. a
a=z—7, a=-—, e =|al.
lal
= Dé(a) = Liala]*2a (3.19)
7Z = D*¢(a) = Lia(|a|* T + (a — 2)|a|* *a ® a)
=y I -(2-a)a®a). (3.20)

with v = (L1a)~'e2=%. The reader can remark that if one chooses 8 = 7/2,

then

8 _ (1 1 72 _ 2—a,.
z° =(I-B2) Z_'y<l 23_aa®a>. (3.21)

Since Y is such that 7%1 <-Y< Zﬁ7 we conclude that

2
<.
Y
We next remark that (3.15) and (3.21) imply that all the eigenvalues of X — Y
are non-positive and that one of them is less than

1—
1z%a— 212
v3 -«
Hence 81
trace(X —Y) < Lo a
¥3 -«
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Finally, second order terms are estimated as follows

C € C
trace(A(z)X) — trace(A(9)Y) < —— +C— < —— 3.22
(A(z)X) (A@®)Y) 5 5 % (3.22)

(choosing L; large enough so that ¢ < 1/2). Combining now (3.17), (3.18) and
(3.22) and recalling the definition of v and e, we finally get
crL, C

<< _cry.

—CLy < Ce™ —
2=V T ama =

Since Lo is fixed, it is now enough to choose L large enough to get the desired
contradiction. The proof is now complete. O

4 Harnack inequality

In this section, we consider the following special case of (3.2)

Gu + F(D*u) = f (4.1)
ot

for some uniformly elliptic nonlinearity F' (see below for a definition) and some
continuous function f. The goal of this section is to present and prove the
Harnack inequality (Theorem 4.35). This result states that the supremum of
a non-negative solution of (4.1) can be controlled from above by its infimum
times a universal constant plus the L4t '-norm of the right hand side f.

We will see that it is easy to derive the Holder continuity of solutions from
the Harnack inequality, together with an estimate of the Holder semi-norm.

The Harnack inequality is a consequence of both the L-estimate (Theo-
rem 4.15) and of the local maximum principle (Proposition 4.34). Since this
local maximum principle is a consequence of the Lf-estimate, the heart of the
proof of the Harnack inequality thus lies in proving that a (small power of)
non-negative supersolution is integrable, see Theorem 4.15 below.

The proof of the L® estimate relies on various measure estimates of the
solution. These estimates are obtained through the use a mazimum principle
due to Krylov in the parabolic case.

The proof of the L® estimate also involves many different sets, cylinders
and cubes. The authors are aware of the fact that it is difficult to follow the
corresponding notation. Some pictures are provided and the authors hope they
are helpful with this respect.

Pucci’s operators. Given ellipticity constants 0 < A < A, we consider

PT(M)= sup {-trace(AM)},
AT<A<AI

P~ (M) = MglngAI{—trace(AM)}.
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Some model fully nonlinear parabolic equations are

ou

ot PH(D?u) = f, (4.2)
ou _
ST (D%u) = . (4.3)

Remark that those nonlinear operators only depend on ellipticity constants A\, A
and dimension d. They are said universal. Similarly, constants are said universal
if they only depend on A, A and d.

Uniform ellipticity. Throughout the remaining of this section, we make the
following assumptions on F: for all X,Y € S, and (¢,z) € (a,b) x Q,

P (X-Y)<F(X)—F(Y)<PHX-Y).

This condition is known as the uniform ellipticity of F. Remark that this
condition implies in particular that F' is degenerate elliptic in the sense of Para-
graph 3.1.1 (see Condition 3.3).

4.1 A maximum principle

In order to state and prove the maximum principle, it is necessary to define
first the parabolic equivalent of the convex envelope of a function, which we will
refer to as the monotone envelope.

4.1.1 Monotone envelope of a function

Definition 4.1 (Monotone envelope). If 2 is a convex set of R? and (a, b) is an
open interval, then the monotone envelope of a lower semi-continous function
w: (a,b) x Q — R is the largest function v : (a,b) x Q — R lying below « which
is non-increasing with respect to ¢ and convex with respect to x. It is denoted

by I'(u).

Combining the usual definition of the convex envelope of a function with
the non-increasing envelope of a function of one real variable, we obtain a first
representation formula for I'(uw).

Lemma 4.2 (Representation formula - I).
D(u)(t,z) =sup{€-x+h:£- x4+ h <u(s,x) for all s € (a,t],x € Q}.

The set where I'(u) coincides with u is called the contact set; it is denoted
by C,. The following lemma comes from convex analysis, see e.g. [10].

Lemma 4.3. Consider a point (t, ) in the contact set Cy, of u. Then &-x+h =
[(u)(t,x) if and only if € lies in the convex subdifferential Ou(t,x) of u(t,-) at
x and —h equals the convex conjugate u*(t,x) of u(t,-) at x.
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Recall that a convex function is locally Lipschitz continuous and in partic-
ular a.e. differentiable, for a.e. contact points, (§,h) = (Du(t,z),u(t,x) — x -
Du(t,z)). This is the reason why we next consider for (¢,z) € (a,b) x Q the
following function

G(u)(t,x) = (Du(t,z),u(t,z) — x - Du(t,x)).
The proof of the following elementary lemma is left to the reader.

Lemma 4.4. Ifu is C1'! with respect to x and Lipschitz continuous with respect
to t, then the function G : (a,b) x Q — Rt is Lipschitz continuous in (t, )
and for a.e. (t,z) € (a,b) x Q,

det Dy ,G(u) = uy det D?u.

We now give a second representation formula for I'(w) which will help us next
to describe viscosity subdifferentials of the monotone envelope (see Lemma 4.6
below).

Lemma 4.5 (Representation formula - II).

d+1 d+1

['(u)(t, z) = inf { Z Aiu(si, ;) :Z i = x,8; € [a,t],
i=1 i=1

d+1
dAi=1N¢€, 1]}. (4.4)

In particular, if
d+1

T(u)(to, x0) = Y _ Ault), o),
=1

then
o foralli=1,...,d+1, T(u)(t;, z;) = ulty, z;);

e I'(u) is constant with respect to t and linear with respect to x in the convex
set co{(t,x?), (t9,29),i=1,...d + 1}.

(s 7

Proof. Let T'(u) denote the function defined by the right hand side of (4.4).
First, we observe that f‘(u) lies below u» and is non-increasing with respect to
t and convex with respect to . Consider now another function v lying below
u which is non-increasing with respect to ¢ and convex with respect to z. We
then have

u(t, z) > P(u)(t,2) > Tt 2) > v(t, 2).

The proof is now complete. O
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We next introduce the notion of harmonic sum of matrices. For A1, As € Sy
such that A1 + As > 0, we consider

(A10A42)¢- ¢ = clirclzfzc{Algl <G+ Ao - (o}

The reader can check that if A; and Ay are not singular, A100A; = (Af1 +
A;H) 1. We can now state and prove

Lemma 4.6. Let (a,p, X) € P~ T'(u)(to,z0) and

d+1

to,.TO Z)\u i z (45)

Then for all € > 0 such that I +eX > 0, there exist (o, X;) € (—00,0] X Sq,
i1=1,...,d+ 1, such that

(i, p, Xi) € P u(t97 1)
Ed+1 s az —a (4.6)
Xe < AT X0 0N Xa

where X, = XOe ' = (I +eX) 1 X.

Proof. We first define for two arbitrary functions v, w : R? — R,

vOdw(z) = inf v(z —y) + w(y).
y€ER
For a given function v : [0, +00) x R? — R, we also consider the non-increasing
envelope M[v] of v:
Mv)(t,x) = inf v(s,x).
s€[0,t]

‘We now can write

T(u)(t,z) :1<i|§d+1 Mui](t, z)

x
ui(t, ) = \u <t, )\i) .

Consider also t9 € [0,to] such that

where

0
Mo, ) = et o) = (. 52).

7

Lemma 4.6 is a consequence of the two following ones.

Lemma 4.7. Consider (o, p, X) € P~V (to,x0) where

V(ta)= 0 wilta)
1<i<d+1
d+1
V(to, o) = sz‘(towg)-

i=1
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Then for all € > 0 such that I +eX > 0, there exist (5;,Y;) € R x Sy such that
we have

(/Bi7pa YZ) S 5_’117;(750, ‘T?)
d+1

Zﬂi =«
i=1

X. <OFY

Proof. We consider a test function ¢ touching V from below at (o, xg) such
that

(avpv X) = (atd)a D(b? D2¢)(t07 .’E0)~
We write for (¢, ;) in a neighborhood of (tg,z?),

d+1 d+1 d+1 d+1

(ﬁ(t,Zl‘ﬂ — ¢(t0, Zl‘?) S Z’Ui(t,l‘i) — Zvi(t0,$?).

Following [1, 11], we conclude through Jensen-Ishii’s lemma for d + 1 functions
and general test functions (see Lemma A.6 in Appendix) that for all € > 0 such
that deX < I, there exist (8;,Y;) € R xSy, ¢ =1,...,d+ 1 such that

(6i7pa }/z) € f_vi(t()a ‘T(z))
d+1

Zﬁi =«
i=1

and
Y1 0 0
X ... X
: P < 0
X ... X/ - 0
O 0 Yd+1

where, for any matrix A, A. = (I + €A)~'A. A small computation (presented
e.g. in [11, p.796]) yields that the previous matrix inequality is equivalent to

the following one
d+1

XaeC- ¢ <D Vili -G

i=1

where ( = Z‘j;l ;. Taking the infimum over decompositions of {, we get the
desired matrix inequality. O

Lemma 4.8. Consider sy € [0, so] such that
M{v](s0,90) = v(s1,90)-
Then for all (8,q,Y) € P~ MIv](so0,%0),
(B,q,Y) € P~ v(s1,50) and B <0.
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Proof. We consider the test function ¢ associated with (8,¢,Y) and we write
for h and § small enough

M[U](SO + h7y0 + 5) - M[’U}(So,yo)

B(s0 + h,yo +9) — ¢(s0,%0) <
S U(Sl + h’a Yo + 5) - ’U(Sl,yo).

This implies (5,q,Y) € P~ v(s1, o). Moreover, choosing § = 0, we get

B(s0 + h,yo) < ¢(s0,Y0)
and 8 < 0 follows.

The proof is now complete.

4.1.2 Statement

The following result is the first key result in the theory of regularity of fully
nonlinear parabolic equations. It is the parabolic counterpart of the famous
Alexandroff estimate, also called Alexandroff-Bakelman-Pucci (ABP) estimate,
see [3] for more details about this elliptic estimate. The following one was first
proved for linear equations by Krylov [16] and then extended by Tso [24]. The
following result appears in [25].

Theorem 4.9 (Maximum principle). Consider a supersolution of (4.2) in Q, =
Q,(0,0) such that u>0 on 0,(Q,). Then

4T
supu~ < Cp7it (/ (f*)”l) (4.7)
u=I"(u)

Qp

where C' is universal and T'(u) is the monotone envelope of min(0,u) extended
by 0 to Q2.

Remark 4.10. This is a maximum principle since, if f > 0, then u cannot take
negative values.

Proof. We prove the result for p = 1 and the general one is obtained by consid-

ering v(t,x) = u(p?t, px). Moreover, replacing u with min(0,u) and extending

it by 0 in Q2 \ Q1, we can assume that v =0 on 9,Q1 and v =0 in Q2 \ Q1.
We are going to prove the three following lemmas.

Lemma 4.11. The function T'(u) is CY! with respect to x and Lipschitz con-
tinuous with respect to t in Q1. In particular, GT'(u) := G(I'(u)) is Lipschitz
continuous with respect to (t,x).

The second part of the statement of the previous lemma is a consequence of
Lemma 4.4 above. We will prove the previous lemma together with the following
one.
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Lemma 4.12. The partial derivatives (9,I'(u), D*T'(u)) satisfy for a.e. (t,x) €

Ql N Cuy
=0T (u) + AA(T (u) < fH(2)

where Cy, = {u =T(u)}.
The key lemma is the following one.

Lemma 4.13. If M denotes supg, u™, then
{(&;h) e R |¢] < M/2 < —h < M} C GT(u)(Q1 N Cl)

where Cy, = {u=T(u)}.

Before proving these lemmas, let us derive the conclusion of the theorem.
Using successively Lemma 4.13, the area formula for Lipschitz maps (thanks to
Lemma 4.11) and Lemma 4.4, we get

CMTY = [{(&,h) e R¥TL . €| < M/2 < —h < M}
< |GT(u)(Q1 N Cy)|

< / | det GT (u)|
Q1NCy

< / —0,T'(u) det(DT(u)).
Q1NCy
Now using the geometric-arithmetic mean inequality and Lemma 4.12, we get

CM*TL < )\~ —0,T(u) det(AD?T'(u))
Q1NCYy

< 7)\61(0“}1)(”1 -/chu(—atf(u) + )\A(I‘(u))d+1

<C (f+)d+1
Q1NCy

where C’s are universal. O
We now turn to the proofs of Lemmas 4.11, 4.12 and 4.13.

Proof of Lemmas 4.11 and 4.12. In order to prove that I'(u) is Lipschitz con-
tinuous with respect to t and C'! with respect to z, it is enough to prove that
there exists C' > 0 such that

V(t,z) € Qq, V(a,p, X) € P~ T(u)(t,x),

{ —as0 (4.8)

X <ClI.
Indeed, since I'(u) is non-increasing with respect to ¢ and convex with respect

to x, (4.8) yields that I'(u) is Lipschitz continuous with respect to ¢ and C'1!
with respect to z. See Lemma A.8 in Appendix for more details.
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In order to prove (4.8), we first consider (a,p, X) € P~T'(u)(t, z) such that
X > 0. Recall (cf. Lemma 4.6 above) that a < 0. We then distinguish two
cases.

Assume first that T'(u)(t,z) = u(t,x). In this case, (a,p,X) € P u(t,x)
and since u is a supersolution of (4.2), we have

a— Mrace(X) = a+ PH(X) > f(z) > -C

where C' = |f]o.0,. Hence, we get (4.8) since X > 0 implies that X < trace(X)I.

We also remark that the same conclusion holds true if (o, p, X) € P T'(u)(t,z)
such that X > 0.

Assume now that T'(u)(t,z) < u(t,z). In this case, there exist \; € [0, 1],
i=1,....,d+1,and z; € Q2,i=1,...,d+ 1, such that (4.5) holds true with
(to, o) and (t?,29) replaced with (¢,2) and (;,x;). If (t;,2;) € Q2 \ Q1 for
two different ¢’s, then Lemma 4.5 implies that M = 0 which is false. Similarly,
t; > —1 for all . Hence, there is at most one index i such that (¢;,z;) € Q2\ Q1
and in this case (t;,2;) € 9,Q2 and t; > —1. In particular, |z;| = 2. We thus
distinguish two subcases.

Assume first that (t441, za+1) € 9pQ2 with tq11 > —1 and (¢;, x;) € @y for
i=1,...,d. In particular |x44+1| = 2 and since © € Q1, we have Ag11 < % This
implies that there exists A; such that A\; > (3d)*1. We thus can assume without
loss of generality that A; > (3d)~!. Then from Lemma 4.6, we know that for
all £ > 0 such that I +eX > 0, there exist (a;, X;) E Rx Sg, i =1,...,d+1
such that (4.6) holds true. In particular,

1
X, < - X; <3dX;.
A1

Since (a1,p, X1) € P u(ts, ;) and T(u)(t1,z1) = u(ty, 1), we know from the
discussion above that X; < CI. Hence for all £ small enough,

X, <3dC1I.
Letting ¢ — 0 allows us to conclude that X < 3dC1T in the first subcase. As far
as « is concerned, we remark that g1 =0and —a; < Cforalli=1,...,d+1
so that

d+1

—Q = Z)\i(—ai) S C.
i=1

Assume now that all the points (¢;,2;),i=1,...,d+ 1, are in Q7. In this case,
we have for all i that —a; < C and X; < CTI which implies

d+1

- = Z/\i(—ozi) S C,
i=1

X. <OHtor=cr
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We thus proved (4.8) in all cases where X > 0. Consider now a general sub-
differential (a,p, X) € P~ T'(u)(t,z). We know from Lemma A.9 in Appendix
that there exists a sequence (ay,, pn, Xy ) such that

(an, Py X)) € P T(w)(tn, 1)
(tn, Tny Qny Pr) — (L2, D)
X < X, + 0p(1), X, > 0.

From the previous discussion, we know that

a=a,+o,(1) <(C+1)
X <X,+o0,(1)<(C+DI
for all n. The proof is now complete. O

Proof of Lemma 4.13. The supersolution v < 0 is lower semi-continuous and
the minimum —M < 0 in Qs is thus reached at some (tg, o) € Q1 (since u =0
outside @1). Now pick (£, h) such that

€l < M/2 < —h < M.

We consider P(y) = £ -y + h. We remark that P(y) < 0 for y € Q1, hence
P(y) < u(0,y) in Q1. Moreover, since |zg| < 1,

P(z0) —u(to,w0) =& w0+ h+M >h— ||+ M >0
hence sup, g, (P(y) — u(to,y)) > 0. We thus choose

t1 =sup{t >0:Vs € [O,thgp(P(y) —u(s,y)) < 0}.

We have 0 < t; <tp and

0= sgp(P(y) —u(t1,y)) = P(y1) — u(ty, y1)-
In particular, & = Du(ty,y1) and h = u(ty,z1) — & - 21, that is to say, (&, h) =
G(u)(t1,y1) with (t1,y1) € Cy. O

4.2 The Lf-estimate

This subsection is devoted to the important “L® estimate” given in Theo-
rem 4.15. This estimate is sometimes referred to as the weak Harnack inequality.

Theorem 4.15 claims that the L°-“norm” in a neighbourhood K of (0,0) of
a non-negative (super-)solution u of the model equation (4.2) can be controlled
by its infimum over a neighbourhood K5 of (1,0) plus the L4 !-norm of f.

Remark 4.14. Since € can be smaller than 1, the integral of u° is in fact not the
(e-power of) a norm.
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We introduce the two neighbourhoods mentioned above.
K = (0,R?*/2) x (R, R)?,
Ky = (1-R*1)x (—R,R).

Theorem 4.15 (L° estimate). There exist universal positive constants R, C
and €, such that for all non-negative supersolution u of

0
a—;‘ +PH(D?u) > f in (0,1) x By (0),
the following holds true
</ UE) < Clinfu+ | fllLari0,1xB, (0))- (4.9)
K K> R

The proof of this theorem is difficult and lengthy; this is the reason why we
explain the main steps of the proof now.

First, one should observe that it is possible to assume without loss of general-
ity that infz u <1 and ||fHLd+1((071)XB%(O)) < ¢ (for some universal constant

€0 to be determined) and to prove

/~ u®(t,x)de < C

K

where € > 0 and C' > 0 are universal. We recall that a constant is said to be
universal if it only depends on ellipticity constants A and A and dimension d.
Getting such an estimate is equivalent to prove that

{u>t}NK| <Ct*

(see page 51 for more details). To get such a decay estimate, it is enough to
prove that ~
Hu>NFYN K| <CN*

for some universal constant N > 1. This inequality is proved by induction
thanks to a covering lemma (see Lemma 4.27 below). This amounts to cut the
set {u > N*} N K, in small pieces (the dyadic cubes) and make sure that the
pieces where u is very large (u > t, ¢ > 1) have small measures.

This will be a consequence of a series of measure estimates obtained from
a basic one. The proof of the basic measure estimate is a consequence of the
maximum principle proved above and the construction of an appropriate barrier
we will present soon. But we should first introduce the parabolic cubes we will
use in the decomposition. We also present the choice of parameters we will
make.
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4.2.1 Parabolic cubes and choice of parameters

We consider the following subsets of Q1(1,0).

K, = (0,R%) x (-R,R)%,
K, = (R?,10R?) x (—3R, 3R),
K3 = (R?,1) x (=3R,3R)".

The constant R will be chosen as follows

. 1 1
R = min <m, 3 — 2\/5, 10(7”4_1)) (410)

where m will be chosen in a universal way in the proof of the L® estimate.

4.2.2 A useful barrier

The following lemma will be used to derive the basic measure estimate. This
estimate is the cornerstone of the proof of the L® estimate.

Lemma 4.16. For all R € (0, min((3v/d)™', (10)~1/2)), there exists a nonneg-
ative Lipschitz function ¢ : Q1(1,0) — R, C? with respect to x where it is
positive, such that

9¢

o +(P2
o T (D7¢)<g

for some continuous bounded function g : Q1(1,0) = R and such that

suppg C K;
Qf) =0 in 817@1(170)

Remark 4.17. Recall that

K3
K, = (07R2) X (_Rv R)dv
t K,
Ko = (R?,10R?) x (—3R,3R)?,
K3 = (R% 1) x (—3R,3R)". K| O
T € By

The proof of the lemma above consists in constructing the function ¢ more
or less explicitly. It is an elementary computation. However, it is an important
feature of non divergence type equations that this type of computations can be
made. Consider in contrast the situation of parabolic equations with measurable
coefficients in divergence form. For that type of equations, a result like the one
of Lemma 4.16 would be significantly harder to obtain.
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Proof. We will construct a function ¢ which solves the equation
pi + PT(D?*p) <0 (4.11)

in the whole cylinder @1(1,0), such that ¢ is positive and unbounded near (0, 0)
but ¢ =0 in 0,Q1(1,0) away from (0,0), and moreover ¢ > 0 in K5. Note that
if the equation were linear, ¢ could be its heat kernel in the cylinder. Once we
have this function ¢, we obtain ¢ simply by taking

o) = 2280 g 12y e\,

ming, @

and making ¢ equal any other smooth function in K3 which is zero on {t = 0}.
We now construct this function ¢. We will provide two different formulas
for ¢(t,x). The first one will hold for t € (0,T) for some T € (0,1). Then the
second formula provides a continuation of the definition of ¢ on [T} 1].
For some constant p > 0 and a function ® : R — R, we will construct the
function ¢ in (0,7") with the special form

o(t,z) =t 7D (\2) :

Let us start from understanding what conditions ® must satisfy in order for
¢ to be a subsolution to the equation (4.11).

Lee(z)rwn(3)

Therefore, we need to find a function ® : R — R and some exponent p such
that

1
—p®(z) — 3 V& (z) + PT(D?®)(x) < 0. (4.12)
For some large exponent g, we choose ® like this

something smooth and bounded between 1 and 2 if |z| < 3v/d,
P(z) = (6Vd)?(27 — 1)~ (|x|—q — (6\/&)—‘1) if 3v/d < |z| < 6v/4d,
0 if |z| > 6Vd.

For 3v/d < |z| < 6v/d, we compute explicitly the second and third terms in
(4.12),

5 V(@) = (6VA)I(20 1) a0
PHD*®) () = (6v/d)*(27 — 1) q(A(d — 1) = Aq + 1))[| 2.
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By choosing ¢ large enough so that A(g +1) > A(d — 1) + 18d, we get that
1
5% V&(z)+ PTo(z) <0.

In order for the equation (4.12) to hold in B;. /g, we just have to choose the
exponent p large enough, since at those points ® > 1. Furthermore, since & > 0
everywhere and ® = 0 outside By /;, then the inequality (4.12) holds in the full
space R? in the viscosity sense.

Since @ is supported in By g, then ¢ = 0 on (0,7) x 9By, for T =
(36d)~1.Thus, ¢ = 0 on the lateral boundary (0,T) x dB;. Moreover,

Jim o(t,z) =0,

uniformly in By \ B. for any € > 0.

We have provided a value of ¢ up to time T € (0,1). In order to continue

@ in [T, 1] we can do the following. Observe that by the construction of ®, we

have PT(D?*p(T,z)) < 0 for ¢ € By \ By and p(z,T) > TP for € Bys.
Therefore, let

O sy PHDPAT2)

< 400,
r€B; CP(T7:E)

then we define ¢(t,2) = e~ (T, z) for all t > T, which is clearly a positive
subsolution of (4.11) in (7, 1] x By with ¢ =0 on [T, 1] x 0B;.

The constructed function ¢ vanishes only on the set {(t,z) : t < T and |z| >
6v/dt}. Since the set K3 = (R?,1) x (—=3R,3R)? has no intersection with this
set, then

gr(lgfgo > 0.

This is all that was needed to conclude the proof. O

4.2.3 The basic measure estimate

As in the elliptic case, the basic measure estimate is obtained by combining
the maximum principle of Theorem 4.9 and the barrier function constructed
in Lemma 4.16. For the following proposition, we use the notation from Re-
mark 4.17.

Proposition 4.18 (Basic measure estimate). There exist universal constants
g0 € (0,1), M > 1 and p € (0,1) such that for any non-negative supersolution

of
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Ou + PT(D%u) > f in Q1(1,0),

ot
K3 the following holds true: if
t Ky { infr,u<1
1f 1l La+1(Qi (1,0) < €0
‘Kl‘ Q1(1,0) then

T € B
{u < M}N K| > plKyl

Remark 4.19. Since Ko C K3, the result also holds true if infg, u is replaced
with infx, w. This will be used in order to state and prove the stacked measure
estimate.

Remark 4.20. If u is a non-negative supersolution of

% + PT(D*u) > fin (0,T) x By,

for some T' € (R?,1), we still get

inf e au <1
(R2,T)x(—3R,3R)? U = < -
£ llLa+1 (0, % B < €0 } = {u < M} Ki| > pl K.

K,
’K—l‘ Ql(LO)

T € By

The reason is that such a solution could be extended to Q1(1,0) (for example
giving any boundary condition on (7', 1) x9B; and making f quickly become zero
for t > T), and then Proposition 4.18 can be applied to this extended function.
This remark will be useful when getting the “stacked” measure estimate in the
case where the stack of cubes reaches the final time.

Proof. Consider the function w = u — ¢ where ¢ is the barrier function from
Lemma 4.16. Then w satisfies (in the viscosity sense)

ow PPN ou T2 ¢ (2
> - — - >f—g.
8t+P (Dw)*at—’_P (D*u) ot PT(D*¢)>f—g

Remark also that
e w>u>0on d,Q:(1,0);
o infr, w <infr, u—2< —1so that supy,, w™ > 1;

o {T'(w) =w} C{w <0} C{u<ep}
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We recall that I'(w) denotes the monotone envelope of min(w, 0) extended by 0
to Q2(1,0). We now apply the maximum principle (Theorem 4.9) and we get

1

a+1

1 <supw™ <supw™ < Crax|fllLa+1(05(1,0) + Crmax (/ |gd+1> :
K3 Q1 {u<o}

Remember now that suppg C K; and get
1< C’mang + Omax'{u < M} N K1|

with M > max(supK]1 ¢,1). Choose now &g so that Cpaxeo < 1/2 and get the

result with p = fEsTommyevl The proof is now complete. O

Corollary 4.21 (Basic measure estimate scaled). For the same constants eg,
M and p of Proposition 4.18 and any vo € R%, tg € R and h > 0, consider any
nonnegative supersolution of

0
371; + P+(D2u) > fin (to,wo) +pQ1(170)'

If
Il a1 ((tor0) +0@1 (0,1) < O Q@)

then
h .
[{u > h}N{(to, x0)+pK1}| > (1—p)|(to, o) +pK1| = u > o (to, o)+ pKs.

Here, we recall that by pK we mean {(p*t, pz) : (t,z) € K}.

Remark 4.22. As in Remark 4.20, (to,x0) + p(0,1) X B% (0) can be replaced
with (to,z0) + p(0,T) x B1(0) for any T' € (0,1).

Proof. We consider the scaled function
v(t,x) = Mh™ u(ty + p°t, zo + px).
This function solves the equation

% + PT(D%*) > f in Q(1,0)

where f(t,x) = Mh=p? f(to + pt, zo + px). Note that

Il La+1(@u 1,09 = MATpY D) Il Lata (o m0)+p@r (1,0)) < €0-

We conclude the proof applying Proposition 4.18 to v. O
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4.2.4 Stacks of cubes

Given p € (0,1), we consider for all k € N, k > 1,
K = (apR2, appy1 R?) x (—3¥R,3FR)?

k—1qi _ 9%—
where oy, = Y, 9" = 2L

The first stack of cubes that we can consider is the following one

UkZlKék).

This stack is obviously not contained in (1(1,0) since time goes to infinity.
It can spill out of @Q1(1,0) either on the lateral boundary or at the final time
t = 1. We are going to see that at the final time, the “z-section” is contained
in (—3,3)4.

We consider a scaled version of K; included in K; and we stack the corre-
sponding KQ(k)’s. The scaled versions of K1, K5 and Kék) are

pKy = (07p2R2) X BPR(O)v
pKs = (p°R?,10p° R?) x B,g(0),
pKék) = (axp®R? oy 10°R?) x (—3%pR, 3" pR)%.

‘We now consider
Ly = (to, z0) + pK1 C K

and . i
LY = (to, x0) + pkyY.

Lemma 4.23 (Stacks of cubes). Choose R < min(3 — 2v/2, \/%) =3 - 2V2.
For all Ly = (to,z0) + pK1 C K1, we have

K, C (UkzlLék)) N(0,1) x (—3,3)d = (Ukzngk)) N{0<t<1}.
In particular, if moreover R < (3\/3)_1,
(k)
Uk21L2 - (O, 1) X B%(O)
Moreover, the first k* =k such that Lgkﬂ) N{t =1} = 0 satisfies

p2R2 S i
Q%
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(to, o) + S—

Proof. We first remark that the stack of cubes lies between two “square” paraboloids
(to,mp) +S- C Ukzngk) C (to,zo) + S+

where
d

S:t = UsZsi {pi(s)} X (_87 S)
and p(s1+) = p?R? and pi(2) = a+2? + by p? R? are such that
p+(3"pR) = ap’R?
p-(3"pR) = ay1p°R>.

This is equivalent to

a+:é and a,zg and by =0b_=— and si:\/ng.
Remark now that
[(t0,20) + S4] N Q1(1,0) € [0,1] x (=R —a;?, R+a,? )%
We thus choose R such that (R + a;%) < 3. This condition is satisfied if
R<3-2V2.
Remark next that
(to, 20) + S— D Nye(—r,rya[(R?, ) + 5_].

Hence R
[(to,20) + S-]NQ1(1,0) D K,
as soon as
ay(2R)* <1 —2R%

It is enough to have

gRQ = (4ay +2)R* < 1.

Finally, the integer k* satisfies
to + ak*RQpQ <1<ty+ OzkmrlRQpQ.
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4.2.5 The stacked measure estimate

In this paragraph, we apply successively the basic measure estimate obtained
above and get an estimate in the finite stacks of cubes we constructed in the
previous paragraph.

Proposition 4.24 (Stacked measure estimate). For the same universal con-
stants €9 € (0,1), M > 1 and p € (0,1) from Proposition 4.18, the following
holds true: consider a non-negative supersolution u of

% +P(D%u) > fin (0,1) x B4 (0)

and a cube Ly = (to,x0) + pK1 C K;. Assume that for some k > 1 and h > 0

Il 0,18, @) < €03 g7y

Then b
{u>h}NLi|>(1—p)|li]= inf u> —.
L n{o<t<1} M*
-
K
K
e
i)

Remark 4.25. Thanks to Lemma 4.23, we know that Lgk) N{0 <t< 1} C
(0,1) x B%(O).

Proof. We prove the result by induction on k. Corollary 4.21 corresponds to
the case k = 1 if we can verify that

h
||f||Ld+1((to,mo)+pQ1(L0)) < EOW'

It is a consequence of the fact that L; C Ky C (0,1) x B%(O).
For k > 1, the inductive hypothesis reads

u >

in —_—.
o k—1
L& Ynfo<t<1} M
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If Lgkil) is not contained in (0,1) x B (0), there is nothing to prove at rank k

since Lék) N{0 <t <1} = 0. We thus assume that Lék_l) C (0,1) x B1(0).
In particular
h

Mk—1

Note that L™ = (#1,0) + p1K; and L& = (£1,0) + p1 Ky with 1 = to +
arp_1R%p? and p; = 3*"!p. In particular (4.13) implies

{u > yn LY = LY. (4.13)

> S 0000+ oK} > (1= 0)l(12,0) + puFl.

So we apply Corollary 4.21 again to obtain

inf u = inf u>—.
L A{o<t<1} {(t1,0)+p1 K2}N{0<t<1} M

We can do so since p; > p and Lemma 4.23 implies that Lgk) C (0,1)x (—3,3)%.
In particular, the corresponding domain in which the supersolution is considered
is contained in (0,1) x By (0). We used here Remark 4.20 when (¢1,0) + p1 Ko
is not contained in {0 < ¢ < 1}. Thus, we finish the proof by induction. O

Before turning to the proof of Theorem 4.15, we observe that the previous
stacked measure estimate implies in particular the following two results.

Corollary 4.26 (Straight stacked measure estimate). As-
sume that R < ————. Under the assumptions of Proposi- L_I(S)

/10(m+1)
tion 4.24 with k = m, for any cube L1 C K;

h —m
{u> B} OLa| > (1= p)|Ly] = w > - in "™ ¢ Q.(1,0).

Proof. Apply Proposition 4.24 with k = m and remark that fl(m) C Lgm). The
fact that fl(m) C Q1(1,0) comes from the fact that 10(m + 1)R? < 1. O

4.2.6 A stacked covering lemma

When proving the fundamental L°-estimate (sometimes called the weak Har-
nack inequality) for fully nonlinear elliptic equations, the Calderén-Zygmund
decomposition lemma plays an important role (see [3] for instance). It has to
be adapted to the parabolic framework.
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We need first some definitions. A cube Q is a set of the form (¢g, z9)+(0, s?) x
(—s,5)%. A dyadic cube K of Q is obtained by repeating a finite number of times
the following iterative process: @ is divided into 2972 cubes by considering all
the translations of (0,s2/4) x (0,5)? by vectors of the form (I(s?/4), sk) with
k € Z% and | € Z included in Q. When a cube K is split in different cubes
including K>, K is called a predecessor of Ks.

Given m € N, and a dyadic cube K of Q, the set K™

_ i (3)
is obtained by “stacking” m copies of its predecessor K. K
More rigourously, if the predecessor K has the form (a, b) x
L, then we define K™ = (b,;b+ m(b — a)) x L. The figure
corresponds to the case m = 3.
K

Lemma 4.27 (Stacked covering lemma). Let m € N. Consider two subsets A
and B of a cube Q. Assume that |A| < §|Q| for some § € (0,1). Assume also
the following: for any dyadic cube K C Q,

|[KNA|l>0|Al= K™ C B.
Then |A| < 6™ B.
Remark 4.28. This lemma is implicitely used in [25] (see e.g. Lemma 3.23 of
this paper) but details of the proof are not given.

The proof uses a Lebesgue’s differentiation theorem with assumptions that
are not completely classical, even if we believe that such a generalization is well-
known. For the sake of completeness, we state and prove it in Appendix (see
Theorem A.1 and Corollary A.2).

Proof of Lemma 4.27. By iterating the process described to define dyadic cubes,
we know that there exists a countable collection of dyadic cubes K; such that

where K; is a predecessor of K;. We claim that thanks to Lebesgue’s differ-
entiation theorem (Corollary A.2), there exists a set N of null measure such
that

Indeed, consider (¢,z) € A\ U2, K;. On one hand, since (t,z) € Q, it belongs
to a sequence of closed dyadic cubes of the form L; = (t;,2;)+[0,r2] x [—r;, 7]
with r; — 0 as j — +oo such that

|AN Lj| <d|Ly]
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that is to say

][ 14 <d6<1.
L.

J

On the other hand, for (¢,z) € A\ U2, K,

0<1—(5§1—][ 1A:][ |1A—1A(t,x)|.
Lj Lj

We claim that the right hand side of the previous equality goes to 0 as j — oo
as soon as (t,z) ¢ N where N is a set of null measure. Indeed, Corollary A.2
implies that for (¢,2) outside of such a set NV,

][ 14 — 14(t, 2)| §][~ 14 —14(t,z)] =0

L; L;

where L; = (t,2) 4 [0,4r%] x [~2r;, 2r;]%. We conclude that A\ U;K; C N.
We can relabel predecessors K; so that they are pairewise disjoint. We thus

have A C U2, K; UN with K]* C B thanks to the assumption; in particular,

ACUXK;UN CU® K, UK™UN
with U2, K™ C B. Classically, we write

A <) JANE;| <6 |K;| < 6| UR, Kl (4.14)
i>1 i>1

In order to conclude the proof of the lemma, it is thus enough to prove that for

a countable collection (K;); of disjoint cubes, we have

m

\Uf;f(iUKﬂSmH

Uz, K. (4.15)

Indeed, combining (4.14) and (4.15) yields the desired estimate (keeping in mind
that U; K™ C B).

Estimate (4.15) is not obvious since, even if the K;’s are pairwise disjoint,
the stacked cubes K™ can overlap. In order to justify (4.15), we first write

U;?i1ki @] Klm = U;‘;le x L;
where L; are disjoint cubes of R? and J; are open sets of R of the form
J = Upli(ak, ar + (m + 1)hg).

Remark that - R
U(;ilK;m = Ujo-iljj X Lj

where jj has the general form
J = U2 (ag, + by, a + (m+ 1)hy).

Hence, the proof is complete once Lemma 4.29 below is proved. O
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Lemma 4.29. Consider two (possibly infinite) sequences of real numbers (ak)f;’:l

and (hi)Y_, for N € NU {00} with hy >0 for k=1,...,N. Then

m
mol (URS, (ak + P, ak + (m+ 1)hy) |

|UR 1 (ak, ar, + (m + Dhy)| <

Proof. We first assume that N is finite. We write US_, (aj + hy, ax + (m+1)hg)
as Ulelll where I; are disjoint open intervals. We can write them as

I = Ut (bl b+ (mA1)) = (inf (b 41g), sup (b + (m+1)lg)).
1, N1 k=1,...,N;

Pick k; such that infr—1 . N, (bx + k) = b, + l,. In particular,

[I;|= sup (bp+ (m+ 1)) — inf (br+1g)
k=1,....N; k=1,...,N;
2 mlkl.

Then

m
Ui hi, hy)| > Iy = —— 1)y, .

Ukt (ak + P, ax + (m + 1)) | 7mzz: ki m+1§l:(m+ )k,

It is now enough to remark that (m + 1)l, coincide with the length of one of
the intervals {(ax, ax + (m + 1)hy)}x and they are distinct since so are the I;’s.
The proof is now complete in the case where N is finite.

If now N = oo, we get from the previous case that for any V € N,
m
m+1
m
m+1

|Uny (ak, ar, + (m + D)hy)| <

UL (ak + o, g, + (m+ 1)hy) |

|Upza (ak + A, ax + (m + 1) k)]

It is now enough to let N — oo to conclude. O

4.2.7 Proof of the L*-estimate

The proof of the L® estimate consists in obtaining a decay in the measure of the
sets {u > Mk}ﬁffl. As in the elliptic case, the strategy is to apply the covering
Lemma 4.27 iteratively making use of Corollary 4.26. The main difficulty of the
proof (which is not present in the elliptic case) comes from the fact that if K is
a cube contained in K7, then nothing prevents K™ to spill out of K;.

Proof of Theorem 4.15. First, we can assume that

infu<1 and |[fllzat1(0,1)xB, (0) < €0
Ko R

(where g¢ comes from Proposition 4.24) by considering
u

Ué(tam) = -1 .
infz, u+ g ”fHL‘“'l((O,l)xB%(O)) +0
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We thus want to prove that there exits a universal constant C' > 0 such that

/_ u®(t,x) dtdx < C. (4.16)
K

In order to get (4.9), it is enough to find universal constants m,ky € N and
B > 1 such that for all & > kg,

{u > M*¥™} (0, R?/24+ C1B7F) x (=R, R)¥| < C(1 — p/2)* (4.17)

where C' is universal and M and p comes from Proposition 4.24. Indeed, first
for t € [MF™ M*F+1m) we have

{u>t}N(0,R*/2+C1B7%) x (-R,R)¥| < C(1 — pu/2)F < Ct~°

with € = —ln(mlf# > 0. We deduce that for all ¢+ > 0, we have

Hu>t}N K| <Cte.

Now we use the formula

/us(t,x)dtdarze/ = Wu > 7} N K|dr

K 0
< el K| /01 ¢ dr +5/100 = Wu > 7N Ky |dr
and we get (4.16) from (4.17).
We prove (4.17) by induction on k. For k = ko, we simply choose
C > (1—p/2)7%|(0,R*/2+ C1B™") x (—R, R)%).

Now we assume that k& > kg, that the result holds true for k£ and we prove it for
k + 1. In order to do so, we want to apply the covering lemma 4.27 with

A= {u>M*I™yn(0,R?/2+ C,B~F1) x (=R, R)?

B ={u>M""}n(0,R*/2+ CiB~*) x (-R, R)?

Q=K =(0,R?) x (—R,R)*

for some universal constants B and C to be chosen later. We can choose kg
(universal) so that @ C K. For instance

2C, B~ < R?.
The induction assumption reads

1Bl < C(1— u/2)".
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Lemma 4.30. We have |A] < (1 — p)|Q)|.

Proof. Since, inf U< 1, we have in particular inf x, v < 1. The basic measure
estimate (Proposition 4.18) then implies that

Al < {u>M}N K} < (1= p)Ka| = (1 - p)|Q

Lemma 4.31. Consider any dyadic cube K = (t,x) + pK;y of Q. If
|KN{u>M*EI™LN(0,R?/2+C1B™* 1) x (=R, R)*}| > (1 —p)| K|, (4.18)

then
K™ c {u>M""}n(0,R?/2+ CiB~%) x (-R, R)*

where K™ is defined at the beginning of Paragraph 4.2.6.

Proof. We remark first that the straight stacked measure estimate, Corollary 4.26,
applied with h = M*+Dm > A implies

K™ {u> M""}.
We thus have to prove that
K™ cC [0,R*/2+ C1B7%] x (=R, R)“. (4.19)
Because of (4.18), we have
KN(0,R*/24+ CiB7* 1) x (=R, R)? # 0.
Hence
K™ C [0,R?/2+ Ci B~ "' 4 height(K) + height(K™)] x (—R, R)*

where height(L) = sup{¢ : 3z, (¢,x) € L} —inf{t¢ : Iz, (t,x) € L}. Moreover,

height(K) = R?p?

height(K) = 4 height(K)
height(K™) = m height(K).

Hence, (4.19) holds true if
R?/2+C1B7* '+ 4(m+1)R*p* < R?*/2+ C1B™*

ie.
-1
R2 ,02 < CI(B )
4(m+1)
In order to estimate R?p? we are going to use the stacked measure estimate

given by Proposition 4.24 together with the fact that K is a cube for which
(4.18) holds.

B~FL (4.20)
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On one hand, Proposition 4.24 and (4.18) imply that as long as | < (k+1)m,
we have
w> MEDm=Lin 1A L0 <t <1,

in particular,
in u > 1.
Ukt L nfo<i<1}

On the other hand, using notation from Lemma 4.23,

inf u<infu <1
Ukt L n{o<t<1} K,

Hence (k4 1)m < k* 4+ 1. Moreover, Lemma 4.23 implies

B 9
R p* < (1= to) (o)™ < sy
36(m+1) 0

Hence, we choose B = 9™ and C7 = —g5—7-.

We can now apply the covering lemma and conclude that

1
1A < 5%|B|.

We choose m large enough (universal) such that

m+1

- <1,

Recalling that we chose p such that /% = 14 2C . R¥2 (where Chyax is the
universal constant appearing in the maximum principle), the previous condition

is equivalent to
m > 4C’made+2.

Since R < 1, it is enough to choose m > 4Cpax.
Thanks to the induction assumption, we thus finally get

{u > MFED™y 0 (0, R?/2 + C1B~*1) x (=R, R)?| < C(1 — p/2)**1.

The proof is now complete. O

4.3 Harnack inequality
The main result of this subsection is the following theorem.

Theorem 4.32 (Harnack inequality). For any non-negative solution u of (4.1)
n @1, we have

supu < C(jnf ut [ fle0s(g,)

Ky Qr2

where K, = (—R% + %R4, —R% 4+ %R4) X BR\izf (0).
2vV2
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Remark 4.33. The case where u solves (4.1) in @, instead of @, follows by
scaling. Indeed, consider v(t,z) = u(p>t, pz) and change constants accordingly.

We will derive Theorem 4.32 combining Theorem 4.15 with the following
proposition (which in turn also follows from Theorem 4.15).

Proposition 4.34 (Local maximum principle). Consider a subsolution u of
(4.1) in Q1. Then for all p > 0, we have

C?,Qup u<C ((/ (u+)p> + ||f|Ld+1(Q1)> :
1/2 1

Proof. First we can assume that u > 0 by remarking that u™ is a subsolution
of (4.1) with f replaced with | f].
Let ¥ be defined by

U(t,x) = hmax((1 —|z) ™, (1 +)77)
where v will be chosen later. We choose h minimal such that
U >y in Q1.

In other words

: u(t, )
min .
(t,r)€Qr max((1 — |z[)=27, (1 +1)77)

h:

We want to estimate h from above. Indeed, we have

supu < Ch
94

for some constant C' depending on ~ and Q%.
In order to do estimate h, we consider a point (to, z¢) realizing the minimum
in the definition of h. We consider

62 = min((1 — |zo])?, (1 + o).

In particular
U(to,l‘o) = h5*27

and Qs(to, 20) C Q1.
We consider next the function v(t,x) = C — u(t, z) where

C= sup V.
Qps(to,zo)

for some parameter 5 € (0,1) to be chosen later. Remark first that

ho~* < C < h((1-p)8)~>
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Remark next that v is a supersolution of

%+P+(D2fu)+|f| >0 in@

and v > 0 in (to — (RBJ)?,to) x Bgs(xo) C Qps(to, o). From the L estimate
(Theorem 4.15 properly scaled and translated), we conclude that

/LUS < C(Bs)**? <( inf v+ (55)#1||de+1(@1)> :

to—B8,20)+BOK>
where L = (tg — 86, x0) + B8K;. Moreover,

inf ~ v < w(tg, xo)
(to—pB0,20)+BOK2
= C — u(to, (L‘Q)
< h((l - B~ — 1> 5.

Hence, we have

[ <@ |a(a-p 1)o@l | @)
L
‘We now consider the set

1 1
A= {(t,x) € L:u(tz) < Eu(to,mo) = 2h6_27} .

1 S —2y £
/ v® > |4 <h6‘27 - hé—”) = |A] (h(S ) .
4 2 2

We thus get from (4.21) the following estimate

We have

A< otnf(@-a7-1) + @ s, |

Finally, we estimate | 0, u® from below as follows

[z [z el japz e e
1 L\A

Hence, choosing v = ‘%2 and combining the two previous inequalities, we get

gricu <L e () < [

+ ﬂ2+d02h5 ((1 _ ﬂ)—Q’Y _ 1)5

_de
+ BT G| 1|41
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We used § < 1. Choose now 3 small enough so that

Cy ((1 - B)" — 1)6 < Cy/2

and conclude in the case p = e. The general case follows by interpolation. [
Theorem 4.32 is a direct consequence of the following one.

Theorem 4.35. For any non-negative solution u of (4.1) in (—1,0) X B%(O),
we have

supu < C(infu + || fllpar1((—1,00x B, (0)))
s Qr )3

where K3 = (—1+ 2R%, —1+ R%/2) x B_x_(0).

o

(—1,0) x B1(0)

[ ¥
I

Bl

ﬁéﬂ

Proof of Theorem 4.35. One one hand, from Theorem 4.15 (the L¢ estimate)
applied to u(t + 1, z) we know that

1/e
/ u(z)*dx < C(infu+ || fllLariqy))- (4.22)
(—1,—1+R2/2)xBp, /5 Qr

On the other hand, we apply Proposition 4.34 to the scaled function v(t,z) =
u((t+1— R?/2)/(R?/2),v/2x/R) > 0 and p = € to obtain

supv < C (/ Ug) + 1 fllza+iqy ) -
Q1 Q1

Scaling back to the original variables, we get

1
supu < C / ut |+ [ fllpation) | - (4.23)
Rs (~1,—1+R2/2)x B, /5

Combining (4.22) with (4.23) we get
supu < C (infu + |f||Ld+1(Ql)> ,
K Qr

which finishes the proof. O
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4.4 Holder continuity

An important consequence of Harnack inequality (Theorem 4.32) is the Holder
continuity of solutions of (4.1).

Theorem 4.36. If u is a solution of (4.1) in Q, then u is a-Hélder continuous
in Q, and

_ _d_
[ta, < Cr~ (luloq, +p7 T Ifler1(g,)) -

Proof. We only deal with p = 1. We prove that if u is a solution of (4.1) in @
then v is a-Holder continuous at the origin, i.e.

Ju(t, ) —u(0,0)] < C (Julo,gu + Il La+i(q)) (2] + V). (4.24)

To get such an estimate, it is enough to prove that the oscillation of the function
u in @, decays as p“; more precisely, we consider
M, = supu,
Qo
m, = inf u,
I3

oscq, u = M, —m,.
Then (4.24) holds true as soon as

oscq, u < C (Julo,q, + IfllLarr(qy)) P*- (4.25)

Indeed, consider (t,z) € Q, \ Q,/2 and estimate |u(t,z) — u(0,0)| from above
by oscq, u and p/2 from above by |z|s + V.

In order to prove (4.25), we consider the two functions u — m, > 0 and
M,—u>0in Q,. The first one solves (4.1) in ), and the second one solves the
same equation in @), with F and f replaced with G(X) = —-G(—X) and g = —f,
which equation is still uniformly parabolic. From the Harnack inequality, we
thus get

sup(u —m,,) < C(inf (u—m,) + pT[|fllar1)

pKy Q@r2,

. _d_
sup(M, —u) < C(me (Mp —u) + pT || flla+1)
pK4 R2p

where pK’4 C Q, follows from K, C (=1,0) x B;. We next add these two
inequalities which yields

oscq, u < C(oscq, u —oscq., u+ pﬁﬂf”d_ﬂ)

with C' > 1 and where v denotes R?. Rearranging terms, we get

_d_
oscq,, u < oscq, U+ pT || flla41

where C'is universal. Then the elementary iteration lemma allows us to achieve
the proof of the theorem; see Lemma A.13 in Appendix with h(p) = oscq, u
and 6 = (C —1)/C and g =d/(d+1). O
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A Technical lemmas

A.1 Lebesgue’s differentiation theorem

The purpose of this Appendix is to prove a version of Lebesgue’s differentiation
theorem with parabolic cylinders. Recall that the usual version of the result
says that if f € L}(Q,dt ® dz) where () is a Borel set of R4*1 then for a.e.
(t,x) € Q,

lim £ [f = f(t,2)] =0

as long as the sequence of sets G; satisfies the regularity condition:

Gj C Bj
|G| = c|Bj]

where Bj is a sequence of balls B, (t,z) with r; — 0.

A sequence of parabolic cylinders @, (t,x) cannot satisfy the regularity
condition because of the different scaling between space and time. Indeed
|Qn, (t, )| = r§*? which is an order of magnitude smaller than r{™.

Fortunately, the classical proof of Lebesgue’s differentiation theorem can be

repeated and works for parabolic cylinders as well, as it is shown below.

Theorem A.1 (Lebesgue’s differentiation theorem). Consider an integrable
function f € LY(Q,dt @ dx) where Q is an open set of R4TL. Then for a.e.
(t,z) €,

lim |f—f(t,l‘)|:0

=0+ J(t—r2 t)x B, (2)
where f, g = ﬁ Jo g for any Borel set O C R and integrable function g.
In the proof, we will in fact use the following corollary.

Corollary A.2 (Generalized Lebesgue’s differentiation theorem). Let G; be a
family of sets which is reqular in the following sense: there exists a constant
¢ >0 andr; — 0 such that

2
Gj C(t—rj,t) x By (z),
d+2
‘G]| Z CT’j+ .
Then, except for a set of measure zero which is independent of the choice of

{G;}, we have
im {7~ fta) =0,

j—+oo G,

Remark A.3. Tt is interesting to point out that if the parabolic cylinders were
replaced by other families of sets not satisfying the regularity condition, the
result of Lemma A.5 may fail. For example if we take

Mf(tx)=  sup ][ 5l
(a,b)x By (y)2(t,x)J (a,b)x B, (y)N
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then Lemma A.5 would fail for M f.

Proof of Corollary A.2. We obtain Corollary A.2 as an immediate consequence
of Theorem A.1 by noting that since G; C (t — 7“]2, t) X By, ().

r?| B,
][ |f = f(t,2)] < |C|:_| |f = f(t,z)].
G gl J(t=r2,t)xBr(x)

Thus, the result holds at all points where this right hand side goes to zero, which
2
is a set of full measure by Theorem A.1 and that T‘C‘;—Ijrl >c>0. O

In order to prove Theorem A.1, we first need a version of Vitali’s covering
lemma.

Lemma A.4 (Vitali’s covering lemma). Consider a bounded collection of cubes
(Qa)a of the form Qo = (to—72,ta) X By, (74) and a set A such that A C UsQq -
Then there is a finite number of cubes Q1, . ..,Qn such that A C U;V:15Qj where
5Q; = (ta — 2512, t0) X By, (Ta)-

Consider next the maximal function M f associated with a function f €
LY(Q,dt ® dr)

Mf(t,z) = sup ][ |f]
Q3(t,z)J QN

where the supremum is taken over cubes @ of the form (s,y) + (—r2%,0) x B,..

Lemma A.5 (The maximal inequality). Consider f € L*(Q, dt®dx), f positive,
and A > 0, we have

C
Mf > 2} < Sl
for some constant C' depending only on dimension d.

Proof. For all x € {M f > A}, there exists Q > x such that
A
inf f > —|Q]|.
inf f > 51Q|

Hence, the set {Mf > A} can be covered by cubes @. From Vitali’s covering
lemma, there exists a finite cover of {M f > A} with some 5@Q’s:

{Mf >\ CUL,5Q,

with @; that are disjoint and such that

A
/ [z §|Qjm9|-
QjﬂQ
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Hence

572 L =3

A A

A
x @| U; 5Q; N Q| = 5|{Mf > A}
with C' =2 x 542, O
We can now prove Lebesgue’s differentiation theorem (Theorem A.1).

Proof of Theorem A.1. We can assume without loss of generality that Q is
bounded. We first remark that the result is true if f is continuous. If f is
not continuous, we consider a sequence ( f,,), of continuous functions such that

C
— 1< —.
”f anL = on

Moreover, up to a subsequence, we can also assume that for a.e. (¢,x) € Q,
falt,z) = f(t,x) asn — oc.
Thanks to the maximal inequality (Lemma A.5), we have in particular

M~ ) > M < 5o

By Borel-Cantelli’s Lemma, we conclude that for all A > 0, there exists n) € N
such that for all n > ny,

M(f—fn) <X ae inQ.

We conclude that for a.e. (t,x2) € Q and all k& € N, there exists a strictly
increasing sequence ny, such that for all » > 0 such that Q,.(¢,z) C €,

x| =

f 1 = fonl < M(f = fur) <
Qr(t,x)

Moreover, since f, is continuous and {2 is bounded, there exists r; > 0 such
that for r € (0,7%), we have

f o — Fun ()] <
Qr(t,x)

Moreover, for a.e. (t,x) € €,

T =

| fn.(t,2) — f(t,z)] = 0 as k — oo.

These three facts imply that for a.e. (t,z) € Q, for all € > 0, there exists r. > 0
such that r € (0,7.),

‘f - f(t,.’L')| S €.
Qr(t,)

This achieves the proof of the lemma. O
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A.2 Jensen-Ishii’s lemma for N functions

When proving Theorem 4.9, we used the following generalization of Lemmas 3.23
and 3.30 whose proof can be found in [5].

Lemma A.6 (Jensen-Ishii’s Lemma - III). Let U;, i = 1,..., N be open sets of
R? and I an open interval of R. Consider also lower semi-continuous functions
u; : I x Uy = R such that for allv =w;, i = 1,...,N, (t,z) € I x U;, there
exists r > 0 such that for all M > 0 there exists C' > 0,

(S?y) G Qr(t7x)
(B,q,Y) e P u(s,y) p=—-B<C.
lv(s,y)| +1q| + Y| < M

Letx = (z1,...,zn) and zg = (29,...,2%). Assume that Zf\il w;i(t, x;)—o(t, )
reaches a local minimum at (to,x0) € I x ILU;. If a denotes 0pd(to, xo) and
pi denotes D, d(xo) and A denotes D*¢(to, ), then for any B > 0 such that
I+ BA > 0, there exist (15,X;) € Rx Sy, i = 1,...,N, such that for all
i=1,...,N,

(75,0, X5) € P ulto,x?)

N
E Q; =«
i=1

and
I 0 0 X1 0 0
10 S| 0 y
0 ... 0 I 0o ... 0 Xy

where Ag = (I + BA)1A.

Remark A.7. The condition on the functions wu; is satisfied as soon as the u;’s
are supersolutions of a parabolic equation. This condition ensures that some
compactness holds true when using the doubling variable technique in the time
variable. See [5, Theorem 8.2,p. 50] for more details.

A.3 Technical lemmas for monotone envelopes

When proving the maximum principle (Theorem 4.9), we used the two following
technical lemmas.

Lemma A.8. Consider a convex set Q of R? and a lower semi-continuous
function v : [a,b] x Q — R which is non-increasing with respect to t € (a,b) and
convez with respect to x € Q. Assume that v is bounded from above and that for
all (a,p, X) € Pu(t,x), we have

—a<C and X <C(CI.
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Then v is Lipschitz continuous with respect t € (a,b) and C11 with respect to
x € Q.

Proof of Lemma A.8. We assume without loss of generality that 2 is bounded.
In this case, v is bounded from above and from below, hence is bounded. Next,
we also get that v is Lipschitz continuous with respect to x in [a,b] x F for all
closed convex set F' C 2 such that d(F,0Q) > 0.

Step 1. We first prove that v is Lipschitz continuous with respect to ¢: for all
(to,xo) S (a, b) x Q,

L
M= sup {v(t,x)—v(s,y)—L|t—s| — |z —y|* - Le
s,t€(a,b),z,yeN 4de
— L0|J3 — 3;‘0‘2 — Lo(t — t0)2} S 0
for L large enough only depending on C' and the Lipschitz constant of v with
respect to z around (¢, xo) and for Ly large enough. We argue by contradiction
by assuming that M > 0. Consider (3,1, Z, §) where the maximum M is reached.
Remark first that
- 2 - 2 o L o r = z =
Lo|lg — zol® + Lo(3 — t9)” + L|t — 3| + 4—8\33 —g|° 4+ Le <v(t,%) —v(5,7)
<200l (a5 x0-

In particular, we can choose Lo and L large enough so that (3,%), (¢,%) € (a,b) x
Q. Remark next that ¢ # 5. Indeed, if £ = 5, then

_ - L
0<M <u(t,z) —v(t,g) - |z —gl* - Le

and choosing L larger than the Lipschitz constant of v with respect to x yields
a contradiction. Hence the function v is touched from below at (S, g) by the test
function

L _
(5,5) = Co— I~y — LIF s
where C is a constant depending on (¢, Z). In particular,
(Lsign(f — 3), L(4e) Y& — §), L(4)~'I) € P~ v(3,%).

We thus should have L < C. Choosing L > C' yields also the desired contradic-
tion.

Step 2. In order to prove that for all ¢ € (a,b), u(t,-) is C1'! with respect to
z, it is enough to prove that for all (p, X) € D*~u(t, ) (see below), X < C1I.
Indeed, this implies that u(t,-) + §| - | is concave [1]. Since u(t,-) is convex,
this implies that it is C1 [4].

63



(p, X) € D?>~u(t,z) means that there exists ¢ € C?*(R?) such that p =
Dy(z) and X = D?(x) and

P(y) = ¥(2) <ult,y) —ult,z)

for y € B,(z). We can further assume that the minimum of u(¢,-) — 1 is strict.
We then consider the minimum of u(s,z) —¢(z) +e (s — )2 in (t —r,t +71) ¥
B, (z). For £ small enough, this minimum is reached in an interior point (t., z.)
and (t.,z.) = (t,z) as e = 0. Then

(e (s — t), DY(z.), D*)(x.)) € P ulte, xo).

Hence, D?y(x.) < CI. Letting ¢ — 0 yields X < CI. This achieves Step 2.
The proof of the lemma is now complete. O

Lemma A.9. Consider a convez set Q of R and v : (a,b) x Q — R which is
non-increasing with respect to t € (a,b) and convex with respect to x € Q. Then
for all (a,p, X) € P~ o(t,x), that there exists (o, Pn, Xy) such that

(ns Py Xn) € PT0(tn, Tn)
(tnaxnaanypn) % (t7x7a7p)
X < X, +0p(1), X, > 0.

The proof of this lemma relies on Alexandroff theorem in its classical form.

A statement and a proof of this classical theorem can be found for instance in
[8]. We will only use the following consequence of this theorem.

Theorem A.10. Consider a convex set Q of R% and a function v : (a,b) x
Q — R which is convex with respect to (t,x) € (a,b) x Q. Then for almost
(t,z) € (a,b) x Q, there exists (a,p, X) € P~ NPYo(t,z), that is to say such
that for all (s,y) € (a,b) x Q,

(s, y) = o(t, w)+a(8—t)+p'(y—w)+%X(y—x)'(y—w)+0(|s—t|+|y—xlz)~ (A1)

Jensen’s lemma is also needed (stated here in a “parabolic” version for the
sake of clarity).

Lemma A.11 (Jensen). Consider a conver set ) of R and a function v :
(a,b) x Q — R such that there exists (1,C) € R? such that u(t,z) + 7t* + C|z|?
is convex with respect to (t,x) € (a,b) x Q. If u reaches a strict local maximum
at (to,zo), then for r >0 and 6 > 0 small enough, the set

K={(t,x) € (to —r,to+ 1) X B.(x0) : I(7,p) € (-6,0) X Bs,

(s,y) = u(s,y) — 78 — p -y reaches a local maximum at (t,x)}

has a positive measure.
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See [5] for a proof. We can now turn to the proof of Lemma A.8. The proof
of Lemma A.9 below mimics the proof of [1, Lemma 3] in which there is no time
dependence.

Proof of Lemma A.9. Consider a test function ¢ such that u — ¢ reaches a local
maximum at (¢,z) and

(Ck,p7 X) = (at¢v D¢v D2¢)(t7 .’E)

Without loss of generality, we can assume that this maximum is strict; indeed,
replace ¢ with ¢(s,y)—|y—x|>—(s—t)? for instance. Then consider the function

1 1
(t,z) = inf , “ly—xP+=(s—t)?.
ve(t, ) yeﬂég’szo{v(s y)+Zly—al®+ (s =) }

One can check that v, is still convex with respect to « and non-increasing with
respect to ¢ and that

1 1
(t,x) = ve(t, ) + = |z|* + ~t*
€ €
is concave with respect to (¢, z). Moreover, v. < v and
li t,x) =v(t,x).
61_1%1)5( ,x) =v(t,x)

This implies that there exists (t.,z:) — 0 as ¢ — 0 such that v. — ¢ reaches a
local maximum at (t.,x.). Remarking that v. — ¢ satisfies the assumptions of
Jensen’s Lemma, Lemma A.11 above, we combine it with Theorem A.10 and we
conclude that we can find slopes (7, p,) — (0,0) and points (¢, x,) — (te, zc)
as n — oo where v, — ¢ satisfies (A.1) and v. — ¢ — 7,8 — p,y reaches a local
maximum at (¢,,z,). In other words,

(Tn + at¢(tn,7 xn)vpn + D¢(tna $n), Dzvs(tna mn)) S Pive(tnv xn)
with
D2v5(tn,xn) >0
and
D2¢(tn, xn) < Dzve(tna xn)-
In order to conclude, we use the classical following result from viscosity solution

theory (see [5] for a proof):

Lemma A.12. Consider (Sp,yn) such that

Ve(tn, Tn) = v(Sn,Yn) + 571‘7!% - xn|2 + 571(tn - Sn)z-

Then
[Yn — $n|2 + (tn — Sn)z < 5|U+|0,(a,b)><9
and
P uc(tn, ©n) C P u(Sn, Yn)-

We used in the previous lemma that v is bounded from above since (Q is
bounded. Putting all the previous pieces of information together yields the
desired result. O
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A.4 An elementary iteration lemma
The following lemma is classical, see for instance [9, Lemma 8.23].

Lemma A.13. Consider a non-decreasing function h : (0,1) — RT such that
for all p € (0,1),
h(vp) < 8h(p) + Cop”

for some 6,7, € (0,1). Then for all p € (0,1),
h(p) < Cop®
for all a = L min(122 3) € (0,1).

2 In~v?

Proof. Consider k € N, k > 1, and get by induction that for all pg, p; € (0,1)
with P1 < Po,

k—1
h(v*p1) < 6% hl(p1) + Copi D+
7=0

Then write
Pl
1—~8
N pﬁ
< (1) h(po) + Co
-7
2a

< (1) h(po) + Cop™ 5

h(v*p1) < 6"h(po) + Cy

where 3 = %. Now pick p € [v**1p1,7*p1) and choose p; = \/pop and get
from the previous inequality the desired result for p € (0, pp). Choose next

po = % and conclude for p € (0,1). O
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