Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws

Abstract : We study the finite volume approximation of strong solutions to nonlinear systems of conservation laws. We focus on time-explicit schemes on unstructured meshes, with entropy satisfying numerical fluxes. The numerical entropy dissipation is quantified at each interface of the mesh, which enables to prove a weak–BV estimate for the numerical approximation under a strengthen CFL condition. Then we derive error estimates in the multidimensional case, using the relative entropy between the strong solution and its finite volume approximation. The error terms are carefully studied, leading to a classical $h^1/4$ estimate in $L^2$ under this strengthen CFL condition.
Type de document :
Article dans une revue
SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016, 54 (2), pp.1263-1287
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00798287
Contributeur : Clément Cancès <>
Soumis le : vendredi 5 février 2016 - 14:27:54
Dernière modification le : lundi 16 juillet 2018 - 11:58:02

Fichiers

Entrel-hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00798287, version 3
  • ARXIV : 1602.02128

Collections

Citation

Clément Cancès, Hélène Mathis, Nicolas Seguin. Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM Journal on Numerical Analysis, Society for Industrial and Applied Mathematics, 2016, 54 (2), pp.1263-1287. 〈hal-00798287v3〉

Partager

Métriques

Consultations de la notice

357

Téléchargements de fichiers

150