
HAL Id: hal-00797814
https://hal.science/hal-00797814

Submitted on 11 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear Versus Nonlinear PCA for the Classification of
Hyperspectral Data Based on the Extended

Morphological Profiles
Giorgio Licciardi, Prashanth Reddy Marpu, Jocelyn Chanussot, Jon Atli

Benediktsson

To cite this version:
Giorgio Licciardi, Prashanth Reddy Marpu, Jocelyn Chanussot, Jon Atli Benediktsson. Lin-
ear Versus Nonlinear PCA for the Classification of Hyperspectral Data Based on the Extended
Morphological Profiles. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (3), pp.447-451.
�10.1109/LGRS.2011.2172185�. �hal-00797814�

https://hal.science/hal-00797814
https://hal.archives-ouvertes.fr


LINEAR VERSUS NONLINEAR PCA FOR THE CLASSIFICATION OF

HYPERSPECTRAL DATA BASED ON THE EXTENDED MORPHOLOGICAL

PROFILES

Giorgio Licciardi ∗, Prashanth Reddy Marpu †, Jocelyn Chanussot (IEEE Senior Member) ∗, Jon Atli Benediktsson (IEEE Fellow) †

∗ GIPSA-Lab. Grenoble Institute of Technology, Grenoble, France
† Faculty of Electrical and Computer Engineering. University of Iceland, Reykjavik, Iceland

E-mail: Giorgio-Antonino.Licciardi@gipsa-lab.grenoble-inp.fr

Abstract—Morphological profiles have been proposed in
recent literature, as aiding tools to achieve better results for
classification of remotely sensed data. Morphological profiles
are in general built using features containing most of the in-
formation content of the data, such as the components derived
from principal component analysis (PCA). Recently, non-linear
PCA (NLPCA), performed by auto-associative neural network,
has emerged as a good unsupervised technique to fit the
information content of hyperspectral data into few components.
The aim of this paper is to investigate the classification
accuracies obtained using extended morphological profiles built
from the features of non-linear PCA. A comparison of the two
approaches has been validated on two different datasets having
different spatial and spectral resolution/coverage, over the
same ground truth, and also using two different classification
algorithms. The results show that the NLPCA permits to obtain
better classification accuracies than using linear PCA.

Keywords-Extended Morphological Profiles; Neural Net-
works; Nonlinear Principal Component Analysis; Classifica-
tion.

I. INTRODUCTION

Morphological profiles (MP), which combine spectral and

spatial information, have been shown to be effective tools for

classification of remote sensing data [1] [2] [3] [4] [5] [6].

An MP of a gray-level image (or a feature) can be defined

as a sequence generated with the morphological opening

by reconstruction and closing by reconstruction operations,

using structuring elements of increasing size. An extended

morphological profile (EMP) is constructed by stacking the

MPs built using different features.

Building EMP from the spectral bands of hyperspectral

images (HS) can be not convenient due to their huge number

of bands, so a reduction of the number of bands preserving

the information contents became important. It was suggested

in [4] to build the EMP from the top few components

obtained from the principal component analysis (PCA) trans-

formation which retain most of the variance of the image.

This approach was successfully applied in classification of

hyperspectral images, resulting in better accuracies com-

pared to simply using the spectral information only. Similar

approaches, using combinations of morphological operators

have been presented in literature [7] [3]. In particular it

has been observed that better classification accuracies can

be obtained using the nonlinear features from kernel PCA

(KPCA) instead of the features from PCA [8]. In both

cases, the derived components are ranked in terms of the

amount of variance. This means that the information content

is not equally distributed among the components, where

the first one is always more relevant than the others. The

dimensionality reduction using PCA or KPCA is achieved

by discarding the less relevant components. On the other

hand, Nonlinear Principal Component Analysis (NLPCA),

performed using Autoassociative Neural Networks (AANNs)

[9], produces a limited set of components in which the

information content tends to be uniformly distributed. The

purpose of this paper is to investigate the improvements

introduced by using EMP built from NLPCA and comparing

it with the results obtained with PCA and KPCA. The

paper is organized as follows. In sections II and III the

EMP and the NLPCA will be presented, respectively, while

a comparison of the classification results obtained using

EMP generated from NLPCA and PCA will be presented

in section IV. Finally, conclusions are drawn in Section V.

II. EXTENDED MORPHOLOGICAL PROFILE

In mathematical morphology, one of the most used ap-

proaches to analyze spatial inter-pixel dependency is the

morphological profile, which has been successfully used

to extract spatial information from high spatial resolution

images [1]. The idea at the base of the MP is to apply

geodesic closing/opening transformations of increasing size,

to build a certain set of opening profiles (OP) and closing

profiles (CP). The opening/closing profiles P at pixel x of

the image f are defined as a p-dimensional vectors:

Pi(x) = γ
(i)
R (x), ∀i ∈ [0, p] (1)

Where γ
(i)
R can be the opening or closing by reconstruc-

tion with a structuring element (SE) of size i.



By grouping the OP, CP and the image f(x), the (2p+1)-

dimensional vector is the MP which is defined as:

MP (x) = [CPp(x), ..., f(x), ...OPp(x)]. (2)

It is clear from the representation of MP in 2 that applying

MPs directly to the hyperspectral data with huge number of

bands leads to a huge increase in the number of features.

The stacking of the q(2p+1) MPs obtained with different

features (where q is the number of retained components), is

called Extended Morphological Profile (EMP).

III. NONLINEAR PRINCIPAL COMPONENT ANALYSIS

One of the main difficulties in processing HS images

is related to the very high number of spectral bands.

Applying any processing technique to each band of the

HS image, can lead to a non acceptable increase of the

computational time of the entire process. Therefore, it is

generally desirable that a reduction in the number of features

is achieved without loosing the relevant spectral information

of the original dataset. In the literature, there exist many

methods for representing the information content in lower

dimensionality domain, called feature extraction techniques

[10]. Two of the most popular feature extraction methods

for data representation are Principal Component Analysis

(PCA), where a set of uncorrelated transformed features is

generated and the Independent Component Analysis (ICA),

where a computational method for separating a multivariate

signal into additive subcomponents supposing the mutual

statistical independence of the non-Gaussian source signals

[11]. For these techniques, the dimensionality reduction is

obtained by discarding the components with the lowest infor-

mation content. Also, as most of them are linear methods,

the resulting components are linearly uncorrelated but the

physical representation of the image may be lost. NLPCA,

originally introduced by Kramer [12], is based on a multi-

layer perceptron (MLP) commonly referred as (AANN) or as

autoencoder [13] [14]. The AANNs are conventional Neural

Networks (NNs) featuring feedforward connections and sig-

moidal nodal transfer functions, trained by backpropagation

algorithm. The particular network architecture used employs

three hidden layers, including an internal bottleneck layer of

smaller dimension than either input or output. The network

is trained to perform identity mapping, where the input has

to be equal to the output. Since there are fewer units in

the bottleneck layer compared to the output, the bottleneck

nodes must encode the information obtained from the inputs

for the subsequent layers to reconstruct the input. In such

a way, the nonlinear principal components (NLPCs) can

be extracted from the bottleneck nodes, after the training

of the AANN. The main task in designing the AANN

is the selection of the number of nodes minimizing the

information losses of the training.This problem was solved

by a grid search algorithm varying recursively the number

of nodes and evaluating the respective error. The topology

producing the lowest error was then selected. Compared to

linear reduction techniques, NLPCA has many advantages.

First of all, while linear methods can detect and discard

linear correlations among spectral bands, NLPCA detects

both linear and nonlinear correlations. Moreover, in NLPCA

the information content is equally distributed among the

components [15].

In this paper we propose the use of NLPCs to form base

images for the EMP. The NLPCs are obtained from an

AANN having sigmoidal activation function, trained with

Scaled Conjugated Gradient algorithm (SCG). Once trained

the AANN, the output of the bottleneck layer will be used

as NLPCs and the resulting EMP, will be used as input for

the classification task.

IV. EXPERIMENTS

In this section we present results of the proposed approach

applied to two different HS images having different spatial

and spectral resolution/coverage, over the same ground truth.

In both experiments we classified the EMP built from the

NLPCs extracted from a HyMap image and from a CHRIS

image. HyMap is an airborne 4 spectrometers sensor (VIS,

NIR, SWIR1 and SWIR2), providing 128 bands across

the reflective solar wavelength region of 0.45-2.5 µm with

contiguous spectral coverage (except in the atmospheric

water vapor bands) and bandwidths between 15-20 nm (Fig.

1-a). The CHRIS image was acquired in Mode 1 configu-

ration, having 62 spectral bands, with a spatial resolution

of 34 m at nadir and a spectral coverage of 0.45-1.03

µm (Fig. 1-b). Both images were acquired over the same

area during the ESA - SPectra bARrax Campaigns 2003

(SPARC) campaign (http://www.uv.es/leo/sparc/) carried out

in Barrax, La Mancha, Spain, from 12 to 14 of July 2003.

The Barrax area is mainly used for agricultural cultivations

and has been investigated for many years. It is characterized

by a flat morphology and large, uniform land-use units,

mainly composed by different agricultural types. During the

campaign an extensive ground truth was produced (Fig. 1-

c) and was used to build the ground truth in this study.

The reference classes used for the classification are: Corn,

Papaver, Potatoes, Alfalfa, Wheat, Barley, Garlic, Vineyards,

Bare soils, Onion and Barley stubbles, resulting in about

60.500 and 2.500 pixels for Hymap and Chris, respectively,

equally distributed between training and test sets. To eval-

uate the effectiveness of the method, the classification was

performed by two different algorithms i.e. neural networks

(NN) and support vector machines (SVM). A comparison

with the classification accuracies obtained using standard

PCA and kernel PCA with the EMP, shows the enhancement

introduced by the nonlinear principal component analysis. In

PCA and KPCA, the dimensionality reduction is performed

discarding the features less informative, but while in PCA

most of the information content is retained in the first few



features, KPCA requires more components. This means that

kernel PCA needs a large number of components, increasing

the dimensionality of the data, resulting in a huge number of

features when building morphological profiles. Moreover, in

KPCA, the choices of the kernel parameter and the sample

size to perform kernel PCA are very important and determine

these parameters is not an easy task. In particular, for both

images, KPCA was performed with 1500 samples, and the

kernel parameter was selected as twice the average distance

between all the pixels. A tuning of these parameters was

not performed because, being strongly dependent on the

randomly selected sample set, it will require a further pro-

cessing step, that cannot be compared with other approaches.

The comparison was carried out in terms of (OA) overall

accuracy ( ratio between the total number of correctly

classified samples and total number of test samples), K

Kappa coefficient of agreement (percentage of agreement

corrected by the amount of agreement that could be expected

due to chance alone), and the class accuracy (percentage of

correctly classified samples for a given class).

(a) Hymap (b) Proba

(c) Ground truth

Figure 1. False color RGB of Hymap dataset (a) and CHRIS (b).
The map (c) shows the ground truth acquired during the ESA-
SPARC campaign.

A. Hymap dataset

The feature extraction from the HyMap image using

AANN was performed by a grid-search algorithm, varying

the number of nodes in the bottleneck and in the other two

hidden layers looking for the lowest Mean Square Error

(MSE). The optimal solution was found with 6 nodes in

the bottleneck layer, corresponding to 6 NLPCs and 55

nodes in the outer hidden layers. A circular SE with a step

size increment of 2 was used. Four openings and closings

were computed for each component, resulting in a EMP of

dimension 9X6 = 54. As for the PCA and KPCA, the EMPs

were constructed using the first components corresponding

to more than 99% of the cumulative variance, resulting

in 45 and 135 EMP, respectively. Analyzing the confusion

matrices in tables I-II and the classification maps in Fig.

2 it is evident that using NLPC to build EMP improves

the classification accuracy with both training algorithms.

Good accuracies were achieved in all classes except for

Alfalfa, that has good accuracy only using NN and NLPCA.

This problem raises from the small spectral differences

between Alfalfa and Potatoes cultivations that have not been

completely synthesized. KPCA reaches good accuracies for

all other classes except for Bare soil with SVM. This because

of the strong spectral similarity with Barley stubble.

Feature Raw PCA NLPCA KPCA

N. of features 126 5 6 15
N. of EMP 45 54 135

OA (%) 75.5792 74.1682 79.6533 73.1162
k 0.7252 0.7090 0.7654 0.6975

Corn 99.95 99.55 99.89 99.92
Papaver 100 99.52 100 100
Potatoes 96.12 99.21 99.98 100
Alfalfa 30.95 37.21 37.39 36.25
Wheat 99.28 95.02 99.29 99.96
Barley 100 99.66 99.74 99.57
Garlic 100 100 96.66 100

Vineyards 97.27 98.98 97.26 95.22
Bare soil 39.67 27.03 62.91 28.68

Barley stubbles 99.23 99.33 74.53 97.99
Onions 99.36 98.92 100 100

Table I
CLASSIFICATION RESULTS FOR THE HYMAP DATASET USING

SVM CLASSIFICATION ALGORITHM.

B. CHRIS dataset

Following the same procedures used in the previous

experiment, an AANN, having 4 nodes in the bottleneck

layer and 25 in the outer hidden layers, was used to extract

4 nonlinear principal components from the original 62 bands.

Also in this case a circular SE with a step size increment of

2 was used and four openings and closings were computed

for each component. The resulting dimensionality of EMP

was 9X4 = 36. The 99% of the cumulative variance of the

PCA was retained by the first 4 components, resulting in

a dimensionality of the EMP of 36 while KPCA needs 15

components, corresponding to 135 EMP. The results reported

in tables III-IV and in Fig. 3, show once again that the

best performances were obtained using NLPCs to build the

EMP for both NN and SVM classifications. Compared to the

HyMap experiments, it is evident that the highest accuracies



Feature Raw PCA NLPCA KPCA

N. of features 126 5 6 15
N. of EMP 45 54 135

OA (%) 79.6533 72.5309 81.9068 74.7217
k 0.7654 0.6912 0.7930 0.7147

Corn 99.89 99.55 99.73 99.48
Papaver 100 99.52 99.95 98.94
Potatoes 99.98 99.21 99.98 86.99
Alfalfa 37.39 37.51 75.15 27.06
Wheat 99.26 95.02 94.25 99.70
Barley 99.74 99.66 91.47 43.10
Garlic 96.66 100 99.64 99.64

Vineyards 99.81 98.98 99.18 93.29
Bare soil 39.67 27.03 79.14 82.27

Barley stubbles 99.33 68.76 75.57 99.97
Onions 100 98.92 98.66 97.96

Table II
CLASSIFICATION RESULTS FOR THE HYMAP DATASET USING A

NN CLASSIFICATION ALGORITHM.

Figure 2. Classification results obtained from the Hymap image
using SVM classification algorithm on EMPs built from PCA (a),
NLPCA (b) and KPCA (c), and using NN classification algorithm
on EMP built from PCA (d), NLPCA (e) and KPCA(f). The color
map is as follows: Corn, Papaver, Potatoes, Alfalfa, Wheat, Barley,
Garlic, Vineyards, Bare soil, Barley stubble, Onions.

are obtained with the CHRIS data. Because the low spatial

resolution of the CHRIS data is more suited to the chosen

class types. The ground truth pixels in the CHRIS image

are related to the same land cover type and hence have

more uniform values than those from HyMap. This effect,

on the other hand, produced poor results in some cases. In

particular NLPCA and KPCA approaches show poor results

for the classification of Barley stubble class. This problem is

related to the classification algorithm and can be explained

analyzing the spectral signature of pixels of Barley stubble

class, that is very similar to the bare soil signature. This

leads alternatively SVM and NN to consider Barley stubble

as Bare soil.

Feature Raw PCA NLPCA KPCA

N. of features 62 4 4 15
N. of EMP 36 36 135

OA (%) 78.6342 73.8019 85.2636 70.0080
k 0.7513 0.6945 0.8277 0.6525

Corn 100 100 100 31.77
Papaver 100 100 100 100
Potatoes 100 100 100 99.17
Alfalfa 75.46 72.2 77.87 65.57
Wheat 100 100 100 100
Barley 100 100 40.00 100
Garlic 79.89 79.84 96.12 50.37

Vineyards 74.89 69.36 49.36 100
Bare soil 100 78.69 100 100

Barley stubbles 100 68.76 61.16 32.34
Onions 100 50.37 100 95.14

Table III
CLASSIFICATION RESULTS FOR THE CHRIS DATASET USING

SVM CLASSIFICATION ALGORITHM.

Feature Raw PCA NLPCA KPCA

N. of features 62 4 4 15
N. of EMP 36 36 135

OA (%) 89.1342 70.4872 93.3706 74.2259
k 0.8694 0.6647 0.9209 0.7094

Corn 100 100 100 99.89
Papaver 100 100 100 100.00
Potatoes 95.80 100 82.09 99.96
Alfalfa 74.74 32.62 100 37.39
Wheat 100 100 99.34 98.87
Barley 100 38.57 61.43 99.74
Garlic 100 100 92.25 96.66

Vineyards 86.19 46.38 94.86 99.55
Bare soil 83.72 100 100 39.67

Barley stubbles 100 76.86 26.45 74.53
Onions 100 50.37 99.26 100

Table IV
CLASSIFICATION RESULTS FOR THE CHRIS DATASET USING A

NEURAL NETWORK CLASSIFICATION ALGORITHM.

V. CONCLUSIONS

This paper presented a novel classification approach with

two main issues: a feature extraction method based on

NLPCA as a tool which is able to maintain the informa-

tion content of hyperspectral remote sensing imagery into

few components, and the construction of EMP with the

NLPCs, to include spatial information in the classification

task. Comparisons in terms of classification accuracies with

standard PCA and KPCA approaches, using a SVM and

a NN classifiers, demonstrates that NLPCA extracts more

informative features and does not suffer from the noise

contained in the HS data. The poor results obtained by

KPCA can be explained by the fact that the sample size may

not be enough, and also by the fact that kernel PCs are more

influenced by noise than the other components. Moreover

kernel PCA results in a large number of features, thus

increasing the dimensionality of the data, which increases

many times when building morphological profiles, allowing



Figure 3. Classification results obtained from the CHRIS image
using SVM classification algorithm on EMPs built from PCA (a),
NLPCA (b) and KPCA (c), and using NN classification algorithm
on EMP built from PCA (d), NLPCA (e) and KPCA(f). The color
map is as follows: Corn, Papaver, Potatoes, Alfalfa, Wheat, Barley,
Garlic, Vineyards, Bare soil, Barley stubble, Onions.

the classification to be prone to the Hughes effect. A better

result in terms of accuracies using the KPCA features

could be obtained by selecting the best KPCA features This

required a further preprocessing steps that was not taken into

account being outside of the investigation of this study. A

further assessment of the NLPCA method was made up by

using two different HS images acquired on the same area

on the same days and thus sharing the same ground truth.

Both classifiers produced results of the EMP built with the

NLPCA that significantly outperforms those obtained with

the EMP with the PCA. The principal conclusion is that

NLPCA, extracting more useful features from a HS image,

permits to obtain better classification accuracies than using

linear feature extraction approaches. So, it is reasonable to

say that the features obtained with AANN are more reliable

compared to standard PCA and kernel PCA for the purpose

of classification with morphological profiles.
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