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A hierarchical model to estimate the abundance
and biomass of salmonids by using removal
sampling and biometric data from multiple
locations

Philippe Ruiz and Christophe Laplanche

Abstract: We present a Bayesian hierarchical model to estimate the abundance and the biomass of brown trout (Salmo
trutta fario) by using removal sampling and biometric data collected at several stream sections. The model accounts for (i)
variability of the abundance with fish length (as a distribution mixture), (ii) spatial variability of the abundance, (iii) varia-
bility of the catchability with fish length (as a logit regression model), (iv) spatial variability of the catchability, and (v) re-
sidual variability of the catchability with fish. Model measured variables are the areas of the stream sections as well as the
length and the weight of the caught fish. We first test the model by using a simulated dataset before using a 3-location, 2-
removal sampling dataset collected in the field. Fifteen model alternatives are compared with an index of complexity and
fit by using the field dataset. The selected model accounts for variability of the abundance with fish length and stream sec-
tion and variability of the catchability with fish length. By using the selected model, 95% credible interval estimates of
the abundances at the three stream sections are (0.46,0.59), (0.90,1.07), and (0.56,0.69) fish/m2. Respective biomass esti-
mates are (9.68, 13.58), (17.22, 22.71), and (12.69, 17.31) g/m2.

Résumé : Nous présentons un modèle hiérarchique bayésien pour estimer l’abondance et la biomasse de truites brunes
(Salmo trutta fario) basé sur un échantillonnage par retraits et des données biométriques récoltées sur plusieurs sections de
cours d’eau. Le modèle tient compte de (i) la variabilité de l’abondance en fonction de la longueur des poissons (comme
une distribution de mélange), (ii) la variabilité spatiale de l’abondance, (iii) la variabilité de la capturabilité en fonction de
la longueur du poisson (comme modèle de régression logit), (iv) la variation spatiale de la capturabilité et (v) la variabilité
résiduelle de la capturabilité en fonction des poissons. Les variables mesurées du modèle incluent les surfaces des sections
de cours d’eau, ainsi que la longueur et la masse des poissons capturés. Nous testons le modèle à l’aide d’une banque de
données simulées avant d’utiliser un ensemble de données récoltées à trois sites et en deux échantillonnages par retraits en
nature. Nous comparons quinze modèles de rechange avec un indice de complexité et d’ajustement aux données de terrain.
Le modèle retenu tient compte de la variabilité de l’abondance en fonction de la longueur des poissons et de la section de
cours d’eau, ainsi que de la variabilité de la capturabilité en fonction de la longueur des poissons (sans la variabilité spa-
tiale ou résiduelle de la capturabilité). Dans le modèle retenu, les estimations de l’intervalle crédible au niveau de 95 % de
l’abondance dans les trois sections de cours d’eau sont (0,46; 0,59), (0,90; 1,07) et (0,56; 0,69) poissons/m2. Les estima-
tions de biomasses correspondantes sont (9,68; 13,58), (17,22; 22.71) et (12,69; 17,31) g/m2.

[Traduit par la Rédaction]

Introduction
Alpine freshwater systems are subject to anthropogenic

disturbances, e.g., power dams (Petts 1984; The World
Commission on Dams 2000; Petts and Gurnell 2005) and
global warming (Xenopoulos et al. 2005; Buisson et al.
2008; Jonsson and Jonsson 2009). Fish can be used as a bio-
indicator of the health of freshwater sytems, and for that
purpose freshwater ecologists have considered various varia-

bles indicative of fish populations, for instance abundance
(number of fish per area unit of stream) (Heimbuch et al.
1997; Wyatt 2002), biomass (mass of fish per area unit of
stream) and growth rate (Penczak et al. 1981), mortality
rate (Gouraud et al. 2001), recruitment (Lobón-Cerviá
2009), or production (Kwak and Waters 1997).

Fish ecologists can use removal sampling by electrofish-
ing to derive estimates of fish abundance (Lobón-Cerviá
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1991). Fish ecologists have created various Bayesian hier-
archical models to statistically relate removal sampling data
to abundance. The most simple model considers removal
sampling data collected at a single stream section and bears
on the assumption that catchability is equal among fish and
across removals (Moran 1951; Cowx 1983; Bedrick 1994).
This model has been popular among fish ecologists since
the work of Carle and Strub (1978) who presented an algo-
rithm to efficently compute a maximum likelihood estimate
of the abundance. This approach actually provides inaccu-
rate estimates of fish abundance (Riley and Fausch 1992;
Peterson et al. 2004; Laplanche 2010). The main source of
inaccuracy is unaccounted variability of the catchability or
of the abundance. Several authors have therefore presented
more advanced hierarchical models to estimate fish abun-
dance from removal sampling data. Such models consider
variability of the catchability between stream sections
(Wyatt 2002, 2003), residual among fish (Dorazio et al.
2005; Mäntyniemi et al. 2005; Laplanche 2010), and varia-
bility of the abundance between stream sections (Wyatt
2002, 2003; Dorazio et al. 2008).

Catchability (Mahon 1980; Anderson 1995) and abun-
dance (Pauly and Moreau 1997; Pitcher 2002) also fluctuate
with fish length. The motivations to account for such varia-
bilities within a Bayesian hierarchical model to derive abun-
dance estimates are 3-fold. First, unaccounted variability of
the catchability with fish length could lead to inaccurate
abundance estimates. In the aim of providing accurate esti-
mates, such a variability should be included (or at least its
significance evaluated) within a removal sampling model.
Second, the Bayesian approach makes possible the handling
of complex mixed-effect, multilevel, nonlinear models (Con-
gdon 2006). In this case, it is possible to consider multilevel,
nonlinear length–catchability and length–abundance relation-
ships. Variability of the abundance with fish length can be
modeled as a mixture of distributions (Pauly and Moreau
1997; Pitcher 2002). Freshwater biologists usually decom-
pose the length–abundance plots by using the method sug-
gested by Bhattacharya (1967). Such a decomposition could
be efficiently carried out within a Bayesian framework
(Marin et al. 2005). Third, the description of the abundance
as a function of fish length is the key to derive other varia-
bles indicative of fish populations, for instance growth rate
(Pauly and Moreau 1997). Since weight plots from samples
of fish populations show a well-pronounced linear relation-
ship on a log–log scale (Cone 1989; Reiss 1989), i.e., fish
weight is proportional to a power of fish length, biomass
can be computed as the cross-product of the estimated abun-
dance by the expected fish weight (Kwak and Waters 1997;
(Lobón-Cerviá 2009).

We present a hierarchical Bayesian model that we use to
estimate the abundance and the biomass of fish in an alpine
stream by sampling at several stream sections. The model
accounts for (i) variability of the abundance with fish length,
(ii) random spatial variability of the abundance, (iii) varia-
bility of the catchability with fish length, (iv) random spatial
variability of the catchability, and (v) residual variability of
the catchability with fish. The data that is required to run the
model is first described. The model is the combination of
three submodels (abundance, weight, biomass) that are pre-
sented one after the other. We use the model with two data-

sets: a simulated dataset and a dataset collected in the field.
We use the simulated dataset to compare parameter esti-
mates with true values. We use the dataset collected in the
field to illustrate the capability of the model to estimate the
abundance and the biomass of brown trout in alpine streams.
The model could be extended to estimate additional varia-
bles indicative of fish populations, such as growth rate,
which is discussed.

Materials and methods

Measured variables
We consider s sections of a stream. Each stream section is

depleted by electrofishing in r removals (Lobón-Cerviá
1991). Let Ah (m2) be the area of the stream section h [ {1,
. . ., s}. Let Ch,j be the number of fish caught during removal
j [ {1, . . ., r} in section h and Ch ¼

Pr
j¼1 Ch;j be the total

number of fish caught in section h. Let Lh,j,f (mm) and Wh,j,f
(g) be the length and the weight of the fish f [ {1,. . ., Chj}
caught in section h during removal j. Fish are grouped by
length class of width Dl (mm). The class width Dl can be
equal to the measurement accuracy of the fish length (e.g.,
1 mm) or larger. Let m be the number of length classes,
[(i – 1)Dl, iDl[ the classes, and Li = (i – 1/2)Dl the class
centers (i [ {1, . . ., m}). Let Ch,i,j be the number of fish of
length class i caught during removal j in section h. The
measured variables considered in the following are Ah, Ch,i,j,
Li, Lh,i,j, and Wh,j,f (Table 1).

Model structure
The model is structured in six hierarchical levels: stream

(the all-embracing level), stream section (h [ {1, . . ., s}),
mixture component (k [ {1, . . ., q}), length class (i [ {1,
. . ., m}), removal (j [ {1, . . ., r}), and fish (f [ {1, . . .,
Ch,j}). The mixture component level (defined later) is part
within the stream and section levels. Parameter notations
are brought together (Table 1). Parameters at the stream
(stream–component), section (section–component), length,
and removal levels are of dimension 1 (q), s (sq), sm, and
smr, respectively.

The model is the combination of three submodels (abun-
dance, weight, and biomass) that are presented successively.
The abundance and the biomass submodels are illustrated as
directed acyclic graphs (DAG) (Figs. 1 and 2, respectively).
The measured variables Ah, Ch,i,j, and Li are used in the
abundance submodel. The measured variables Lh,j,f and Wh,j,f
are used in the weight submodel. The biomass submodel
uses the measured variables Ah and Li plus six variables (tk,
th,k, nh,i, ch, dh, s2h) of the abundance and weight submodels.

Abundance submodel
The submodel (Fig. 1) combines 22 mono- and multi-di-

mensional stochastic nodes: 13 at the stream level (l, tk,
mk, sk, a, b, h, pl, pt, pm, ps, pa, pb), 6 at the section level
(lh, th,k, mh,k, sh,k, ah, bh), 1 at the length level (nh,i), and 1 at
the removal level (Ch,i,j). The model comprehends 8 addi-
tional deterministic nodes: 1 at the stream level (lk), 2 at
the section level (Ah, lh,k), 3 at the length level (Li, lh,i,
lh,i,k), and 2 at the removal level (nh,i,j, ph,i,j).



Removal sampling
Let nh,i be the number of fish of length class i in section

h, and nh,i,j be the number of fish of length class i remaining

in section h before removal j, i.e., nh,i,l = nh,i and nh,i,j =
nh,i,j–1 – Ch,ij–1 for j ‡ 2. Let ph,i,j be the expectation of the
catchability ph,i,j,f of the fish f [ {1, . . ., nh,i,j} of length class

Fig. 1. Directed acyclic graphs of the abundance submodel. Frames indicate hierarchical levels: section (h [ {1, . . ., s}), length class (i [ {1,
. . ., m}), removal (j [ {1, . . ., r}), and mixture component (k [ {1, . . ., q}). Variables outside frames are variables at the stream hierarchical
level. Rectangles, deterministic nodes; ellipses, stochastic nodes; dark filled nodes, observed variables; light filled nodes, output variables
(tk, th,k, nh,i) to the biomass submodel.

Table 1. Model parameters.

Parameter Stream Section Size class Component Removal Fish
Index — h [ {1, . . ., s} i [ {1, . . ., m} k [ {1, . . ., q} j [ {1, . . ., r} f [ {1, . . ., nh,ij}

Measured variables*
Area — Ah — — — —
Catch — Ch Ch,i — Ch,i,j —
Class center — — Li — — —
Fish length — — — — — Lh,i,j,f

Fish weight — — — — — Wh,i,j,f

Abundance{

Population size — nh nh,i — nh,i,j —
Abundance l, lk lh, lh,k lh,i, lh,i,k lk, lh,k, lh,i,k — —
Comp. proportion tk th,k — tk, th,k — —
Comp. center mk mh,k — mk, mh,k — —
Comp. bandwidth sk sh,k — sk, sh,k — —
Precisions pl, pt, pm, ps — — — — —

Catchability{

Catchability — — — — ph,i,j ph,i,j,f

Slope, intercept a, b ah, bh — — — —
Variability 1/h 1/hh 1/hh,i — 1/hh,i,j —
Precisions pa, pb — — — — —

Biomass{

Allometric param. c, d ch, dh — — — —
Residual variance s2 s2h — — — —
Biomass biom, biomk biomh, biomh,k biomh,i biomk, biomh,k — —

Note: Parameters at the stream (stream–component), section (section–component), length, removal, and fish are of dimension 1 (q), s (sq), sm, smr,
smrnh,i,j, respectively.

*Measured variable.
{Latent variable.



i remaining in section h before removal j. Under several hy-
potheses (given later), the number of fish of length class i
caught during removal j in section h is a binomial

ð1Þ Ch;i;jjph;i;j; nh;i;j � Binomialðph;i;j; nh;i;jÞ 8h; i; j

The modeling of the variability of the catchability ph,i,j,f
(between length class, stream section, and residual) and of
the population sizes nh,i (between length class and stream
section) is detailed below.

Heterogeneity of the catchability between length class
We model variability of the catchability with fish length.

To also model residual variability of the catchability be-
tween individuals of a same length class, we model variabil-
ity with length of the expectation of the catchability during
the first removal ph,i,l. It is related to fish length by the logit
regression model

ð2Þ logitðph;i;1Þ ¼ ahLi þ bh 8h; i

The catchability ph,i,l increases with fish length if ah > 0,
decreases if ah < 0, and does not vary with fish length if ah
= 0. The catchability ph,i,l = 1/2 at the (algebraic) length –bh/
ah.

Heterogeneity of the catchability within length class
We model residual individual variability of the catchabil-

ity within a length class by assuming that the probabilities
ph,i,l,f of capturing the fish f [ {1, . . ., nh,i} (of length class i
in section h) during the first removal are independent and
beta distributed. We also assume that the probabilities of
capturing any fish f during removal j ‡ 2 given that the fish
has not been captured earlier is equal to ph,i,l,f. Under such
hypotheses, Mäntyniemi et al. (2005) have shown that ph,i,j,f
for j ‡ 2 are still independent and beta distributed. As a re-
sult the number of caught fish Ch,i,j is a binomial (hence
eq. 1). Mäntyniemi et al. (2005) have shown that the expect-
ation of ph,i,j,f is

ð3Þ ph;i;j ¼
ph;i;1

1þ ðj� 1Þ=hh;i;1

8h; i; j

where ph,i,l = ah,i,l/hh,i,l, hh,i,l = ah,i,l + bh,i,l, ah,i,l, and bh,i,l are

the shape parameters of the beta distribution of ph,i,l,f. For
practical reasons, we parametrize the beta distribution of
ph,i,l,f by using ph,i,l and 1/hh,i,1 instead of ah,i,1 and bh,i,1. In-
deed, 1/hh,i,1 = dh,i,1 /[ph,i,1 (1 – ph,i,1) – dh,i,1] where dh,i,1 is
the variance of ph,i,l,f, 1/hh,i,1 = 0 if there is no variability of
the catchability between individuals. We assume in the fol-
lowing that the parameters 1/hh,i,1 are equal for all size
classes and stream sections, hence 1/hh,i,1 = 1/hh = 1/h.

Size structure
The population sizes nh,i are taken to be independent Pois-

son random variables (Wyatt 2002)

ð4Þ nh;ijlh;i;Ah � Poissonðlh;iAhÞ

where lh,i and lh,iAh are the abundance and the expected
number of fish of length class i in section h. We model
variability of the abundance with fish length as a mixture of
distributions (Pitcher 2002). We consider several distribu-
tions (Epanechnikov, biweight, triweight, and Gaussian) and
denote K the respective kernels (Wand and Jones 1990). For
instance, the Gaussian kernel is

ð5Þ KðlÞ ¼ 1ffiffiffiffiffiffi
2p

p exp
l2

2

� �
8l 2 R

The expected number of fish of length class i in section h is

ð6Þ lh;iAh ¼ lhAhDl

Xq

k¼1

th;k

sh;k
K

Li � mh;k

sh;k

� �
8h; i

where lh and lhAh are the abundance and the expected num-
ber of fish in section h, q is the number of mixture compo-
nents, mh,k, sh,k, and th,k (k [ {1, . . ., q}) are the centers, the
bandwiths, and the relative proportions of the mixture com-
ponents, respectively. We also define lh,k = lhth,k as the
abundance of fish in section h of mixture component k. In
the case of a Gaussian kernel, the centers and the band-
widths are expectations and standard deviations. The propor-
tions are related by the constraint

Pq
k¼1 th;k ¼ 1 for all h.

We sort the mixture components by increasing center, i.e.,
mh,k < mh,k+1 for all h and all k [ {1, . . ., q – 1}.

Variability among stream sections
We consider random variations among sections of the pa-

rameters related to the catchability (ah, bh) and the abun-
dance (lh, th,k, mh,k, sh,k). We provide additional expert

Fig. 2. Directed acyclic graphs of the biomass submodel. Hierarch-
ical levels: section (h [ {1, . . ., s}), length class (i [ {1, . . ., m}),
and mixture component (k [ {1, . . ., q}). Light filled nodes, input
variables (tk, th,k, nh,i) from the abundance submodel and input
variables (ch, dh, sh) from the weight submodel.

Table 2. Conditional distribution of the parameters at the section
level.

Parameters

log(lh)|l, pl * Normal [log(l), pl]
logitðt 0h;kÞjtk;pt * Normal [logit(tk), pt]

logit
mh;k�mlim

k�1

mlim
k
�mlim

k�1

� �
jmk;pm * Normal logit

mk�mlim
k�1

mlim
k
�mlim

k�1

� �
;pm

h i
log(sh,k)|sk, ps * Normal[log(sk),ps]
log(ah)|a, pa * Normal[log(a), pa]
log(bh)|b,pb * Normal[log(b), pb]

Note: The mixture component proportions are th;k ¼ t 0h;k=
Pq

k0¼1 t
0
h;k0

(h [ {1, . . ., s}, k [ {1, . . ., q}).



knowledge that the definition sets of the mixture component
centers do not overlap and have boundaries common for all
sections. As a result, we add the constraints
mlim
k�1 < mh;k < mlim

k for all section h and mixture component
k, with mlim

0 ¼ 0. The parameters at the section level are
therefore bound to the constraints: 0 < lh, 0 < th,k < 1 withPq

k¼1 th;k ¼ 1, mlim
k�1 < mh;k < mlim

k , 0 < sh,k. We log-trans-
form, scale, and logit-transform the above parameters and
assign normal distributions of expectations the respective
values at the stream level (Table 2). We label pl, pt, pm,
ps, pa, pb the precisions (i.e., the inverse of the variances)
of the normal distributions. We assume that the precisions
of the normal distributions related to th,k, mh,k, and sh,k are
equal for all k.

Priors
The free parameters are l, tk, mk, sk, a, b, h, and the pre-

cisions pl, pt, pm, ps, pa, pb. We apply the constraints
mlim
k�1 < mk < mlim

k on the mixture component centers. We as-
sign vague priors to all free parameters (Table 3). The abun-
dance of fish of mixture component k is lk = ltk.

Weight submodel
We relate the weight and the length of the fish f [ {1, . . .,

Ch,j} caught during removal j in section h by the allometric
relationship

ð7Þ Wh;j;f ¼ chLdh

h;j;f exp ðeh;j;f Þ 8h; j; f

with ch|c, pc ~ Normal(c, pc) and dh|d, pd ~ Normal(d, pd),
i.e., over- or under-weight of fish is allowed to vary between
stream sections. The error in eq. 7 is lognormal,
eh;j;f js2h � Normalð0; 1=s2hÞ. The error terms ch – c|pc, dh –
d|pd, and eh;j;f js2h are taken independent. Log-transformed,
the weight submodel is a two-level linear mixed-effect
model with a normal, heteroscedastic residual error (Pin-
heiro and Bates 2000).

The weight submodel that has just been described applies

to a subset of Ch fish among the nh fish present in section h.
We assume that the fish used for model selection and pa-
rameter estimation are representative, in terms of length and
weight, of the fish present in section h. In that case, the
weight of the fish f [ {1, . . ., nh} of section h are provided
by the same weight submodel.

Biomass submodel
The biomass biomh,i of fish of length class i in section h is

ð8Þ biomh;i ¼
Xr

j¼1

Xnh;i

f¼1

Wh;j;f =Ah 8h; i

which is approximately equal to eq. 9 (as shown in Appen-
dix A and discussed later)

ð9Þ biomh;i ¼ nh;ichLdh

i exp ðs2
h=2Þ=Ah 8h; i

The biomass of fish in section h is

ð10Þ biomh ¼
Xm

i¼1

biomh;i 8h

The average biomass of fish (stream level) is

ð11Þ biom ¼
Xs

h¼1

biomhAh=
Xs

h¼1

Ah

and the biomass of fish in mixture component k is biomk =
tkbiom. The relationship between the biomass variables, the
measured variables (Ah, Li), and the input variables from the
abundance submodel (tk, th,k, nh,i) and from the weight sub-
model (ch, dh, s2h) are illustrated by a DAG (Fig. 2).

Computations
Computations of the three submodels can be carried out

simultaneously by merging the submodels into a single hier-
archical model. Computations of the three submodels can
also be carried out successively. We chose to first carry out

Table 3. Free parameters (stream level) are assigned vague priors.

Parameter Prior Marginal posterior
l Gamma(0.001, 0.001) Lognormal(–0.35, 4)
t 0k Uniform(0,1) Beta([27, 21, 11], [35, 39, 38])
mk Uniformðmlim

k�1;m
lim
k Þ Normal([53, 121, 188], [0.1, 0.3, 0.03)]

s2
k

InvGamma(0.001, 0.001) Lognormal([3.9, 5.4, 6.9], [37, 29, 15])
a Normal(0, 0.001) Normal(7.6, 0.14)
b Normal(0, 0.001) Normal(0.44, 6.6)
1/h InvGamma(0.001, 0.001) Beta(0.2, 1.4)
pl Gamma(0.001, 0.001) Gamma(0.9, 0.09)
pt Gamma(0.001, 0.001) Gamma(1.2, 0.25)
pm Gamma(0.001, 0.001) Gamma(2.0, 0.06)
ps Gamma(0.001, 0.001) Gamma(0.4, 0002)
pa Gamma(0.001, 0.001) Gamma(0.1, 0.001)
pb Gamma(0.001, 0.001) Gamma(0.3, 0.001)

Note: Parameters are shape and rate for gamma distributions, expectation and precision for normal
and lognormal distributions, and shapes for b-distributions. The mixture component proportions are tk ¼
tk0=
Pq

k 0¼1 t
0
k0 (k [ {1, . . ., q}). The last column provides the approximate distribution of the marginal

posteriors of the free parameters (values within brakets refer to the first, second, and third mixture com-
ponents, respectively) by using model alternative 1 with the Neste d’Oueil dataset.



the computations related to the weight submodel, before
jointly carring out the computations related to the abundance
and biomass submodels (referred to in the following as the
abundance–biomass model).

Models have been implemented by using OpenBUGS,
open source version of WinBUGS (Lunn et al. 2009;
Ntzoufras 2009). Computations of the weight submodel
could, however, have been carried out by using R (Pinheiro
and Bates 2000). Samples of the posterior are generated by
using a Markov chain Monte Carlo (MCMC) method
(Robert and Casella 2004). Samples are processed by using
R (Crawley 2007). WinBUGS and R scripts are, together
with data files, available online in the supplementary data2,
see Appendix S1. Reported point estimates of the parameters
are posterior expectation estimates. Interval estimates are
2.5% and 97.5% quantile estimates of marginal posteriors.
Convergence was investigated by using the ANOVA-type
diagnostic described by Gelman and Rubin (1992) with
three chains. Independent samples were obtained by thin-
ning, guided through the examination of the autocorrelation
functions of the posterior samples. One thousand independ-
ent posterior samples were generated for each model.

Alternative models are compared in terms of the Deviance
Information Criterion, DIC ¼ �Dþ pD, where �D is the poste-
rior expectation of the deviance statistics and pD is a count
of effective parameters (Spiegelhalter et al. 2002). Weight

submodel alternatives are compared by using the DIC rou-
tine provided by OpenBUGS. The computation of the DIC
is, however, not straightforward when using discrete varia-
bles. The conditional distribution of Ch,i,j is discrete (bino-
mial), for that reason we have not compared abundance–
biomass models by using the DIC routine provided by
OpenBUGS. We have computed approximate DIC estimates
by approximating the count of effective parameters pD by
the true number of parameters.

Datasets

Simulated dataset
We simulate a removal sampling dataset (s = 3, m = 299,

r = 4, q = 3 Gaussian components, Dl = 1 mm). The areas of
the stream sections are A1 = A2 = A3 = 500 m2. We set the
values of the free parameters (stream level) to simulate pa-
rameter values at the section, length, and removal levels.
The weight of the fish are simulated by using the weight
submodel with parameter values found by using the field da-
taset (described below). The number of caught fish are C1 =
496, C2 = 474, and C3 = 434. The number of caught fish
Ch,i,j, as well as the true value of the expected population
sizes lh,iAhDl, are illustrated by a length–abundance plot
(Fig. 3).

Fig. 3. Number of caught fish Ch,i,j per Dl = 10 mm length class (simulated dataset). The catch Ch,i,j is the jth stacked sub-bar making up the
bar of ith length class (x-axis) of the hth subplot. The true (broken line) and estimated (unbroken line) value of the expected population
sizes lh,iAhDl are computed by using eq. 6 with the true value and the point estimates of the parameters lh, th,k, mh,k, and sh,k (Table 6).

2 Supplementary data for this article are available on the journal Web site (http://cjfas.nrc.ca).



We investigate the consequences of degrading the infor-
mation brought by the data by lowering the number of re-
movals and enlarging the length class width. For that
purpose, we reduce the original Dl = 1 mm, 4-removal sam-
pling dataset into 14 additionnal datasets (r [ {2, 3, 4}, Dl [
{1, 2, 5, 10, 20} mm, Table 4).

Field dataset
Data were collected in July 2006 at three locations on the

Neste d’Oueil stream (Haute-Garonne, Pyrénées mountain
range, France): Cires (h = 1), Mayrègne (h = 2), and Saint-
Paul (h = 3). Stream sections are described elsewhere (Lap-
lanche 2010). The stream has been electrofished in r = 2 re-
movals. Only brown trout (Salmo trutta fario) are

considered (Klemetsen et al. 2003). The number of caught
fish per 10 mm length class are illustrated by a length–
abundance plot (Fig. 4). The total number of fish caught are
C1 = 246, C2 = 509, and C3 = 341, respectively. We
weighed only a fraction of the caught fish in July 2006. The
weight dataset was enlarged by using fish caught in October
2006, leading to 133, 271, and 132 weight measurements at
Cires, Mayrègne, and Saint-Paul, respectively.

Results

Length–weight relationship
Seven model reductions are considered, depending which

constraints among ch = c, dh = d, and s2h ¼ s2 are considered

Table 4. Abundance point estimates (section level) by using the simulated dataset with r [ {2,
3, 4} removals and length class widths Dl [ {1, 2, 5, 10, 20} mm.

r = 2 r = 3 r = 4

Dl bl1
bl2

bl3
bl1

bl2
bl3

bl1
bl2

bl3

1 1.02 1.01 0.94 1.00 0.97 0.94 1.01 0.97 0.95
2 1.04 1.02 0.96 1.01 0.97 0.94 1.01 0.97 0.95
5 1.05 1.04 0.97 1.01 0.97 0.94 1.01 0.97 0.95

10 1.04 1.02 0.97 1.01 0.97 0.94 1.01 0.97 0.95
20 1.04 1.00 0.96 1.03 0.97 0.95 1.04 0.97 0.97

Note: True values are l1 = 0.98, l2 = 0.97, and l3 = 0.87 fish/m2.

Fig. 4. Number of caught fish Ch,i,j per Dl = 10 mm length class at the Neste d’Oueil in July 2006 at Cires (a), Mayrègne (b), and Saint-
Paul (c). The estimated expected population sizes (solid curve) is computed by using eq. 6 with the point estimates of the parameters lh,
th,k, mh,k, and sh,k (Table 8).



(Table 5). Burn-in (2500 iterations) and thinning (500) was
investigated by using the most expanded model (alternative
1). The DIC estimates of the alternative weight submodels
are also provided (Table 5). Alternative models can be clas-
sified into two groups: Models 4 and 8 of high DIC [
{2617, 2619} and remaining models (1–3, 5–7) of lower
DIC [ {2551, 2552}. DIC results suggest that variability of
ch and (or) dh should be considered, by rejecting models 4
and 8. Results also suggest that it is not relevant to include
variability among sections of the residual variance in the
weight submodel, in favor of models 5–7. Given that DIC
results cannot discriminate among the remaining alternative
models, we choose the most expanded model 5, i.e., model
of eq. 7 with homoscedastistic residual error. Point (and in-
terval) parameter estimates are bc1 ¼ 6:42 (4.93, 8.08),bc2 ¼ 8:65 (7.36, 10.19), bc3 ¼ 7:77 (6.35, 9.34) mg/mm3 andbd1 ¼ 3:088 (3.041, 3.138), bd2 ¼ 3:030 (2.997, 3.062),bd3 ¼ 3:063 (3.025, 3.102) at Cires, Mayrègne, and Saint-
Paul, respectively. The residual variance is bs2 ¼ 0:0047
(0.0042, 0.0053).

Simulated dataset
Abundance is estimated by using the 4-removal, 3-re-

moval, and 2-removal simulated dataset with Dl [ {1, 2, 5,
10, 20} mm (Table 4). It is not possible to use an index of
complexity and fit to select the number of removals or the
length class width, since the measured variables of models
with different number of removals or class widths are dis-
tinct. Results show that, in the case of this dataset, abun-
dance point estimates are not sensitive to the choice of the
width of the length class, given that the width is small
enough (Dl £ 10 mm). This result also applies to the remain-
ing parameters as well as interval estimates (available online
in Supplemental Appendix S1). Given that processing is
faster (approximately 2, 5, 10, and 20� as fast) by using
larger widths (Dl [ {2, 5, 10, 20} mm), following computa-
tions are carried out by using a Dl = 10 mm class width.
Results also show that the degradation of the information
by using 3 removals is in this case negligible. Point and in-
terval estimates of the parameters at the stream and section
levels by using the 2-removal dataset with Dl = 10 mm are
provided (Burn-in: 50 000, thinning: 500) (Table 6). The es-
timated expected population sizes lh,iAhDl are illustrated
(Fig. 3).

Field dataset
Fifteen abundance-biomass model alternatives are consid-

ered (Table 7). The first alternative (baseline model) is the
abundance–biomass model that has been previously de-
scribed with q = 3 Gaussian components (mlim

1 ¼ 100,
mlim

2 ¼ 150, mlim
3 ¼ 250 mm). The second alternative (as

well as the remaining alternatives) do not consider residual
variability among fish of the catchability. In that case, 1/h =
0 and eq. 3 simplifies into ph,i,j = ph,i,1, i.e., catchability is
constant across removals. The third alternative describes the
size structure as a mixture of triweight kernels, K(l) = (35/
32)(1 – l2)3 for l [ [–1, 1] and K(l) = 0 elsewhere. The
fourth alternative describes the size structure as a mixture
of q = 4 Gaussian components. In that case the boundaries
of the mixture component centers are mlim

1 ¼ 100,
mlim

2 ¼ 150, mlim
3 ¼ 200, and mlim

4 ¼ 250 mm. The remain-
ing alternatives are model reductions that do not consider
variability of the catchability with fish length (in that case
ah = a = 0 and eq. 2 becomes logit(ph,i,1) = bh) and (or) do
not consider variability among stream sections of the param-
eters lh, th,k, mh,k, sh,k, ah, and bh. Deviance, complexity, and
DIC of model alternatives 2–15 are compared with respec-
tive values of the baseline model (Table 7). Burn-in (5000)
and thinning (100) for alternative 2 were used for alterna-
tives 3–15. Computations of the most expanded model (al-
ternative 1) required larger burn-in (50 000) and thinning
(500).

Results suggest that, in this case study, residual variability
among fish of the catchability is not significant (by compar-
ing alternatives 1, 2), the use of the Gaussian or triweight
kernel are comparable (2, 3), and the use of 4 Gaussian
components is ill-advised (2, 4). Results suggest that it is
not relevant to consider variability among locations of ah,
bh, th,k, sh,k, (2, 7, 9, 10). Results strongly suggest that vari-
ability with fish length of the catchability and variability
among locations of lh and mh,k should be considered (2, 5,
6, 8). Remaining results (11, 12, 13, 14, 15) are in favor of
model alternative 12, i.e., the abundance submodel described
earlier with q = 3 Gaussian components without variability
among locations of ah, bh, th,k, sh,k nor residual variability
of the catchability.

Point and interval estimates of the parameters at the
stream and section levels are computed by using model al-
ternative 12 (Table 8). The estimated abundances at Cires,
Mayrègne, Saint-Paul (section level) and the Neste d’Oueil
(stream level) are bl1 ¼ 0:53, bl2 ¼ 0:98, bl3 ¼ 0:62, and bl ¼
0:83 fish/m2, respectively. The estimated biomasses are
11.50, 19.88, 14.76, and 15.47 g/m2, respectively. Estimated
expected population sizes are represented together with Ch,i,j
(Fig. 4).

Discussion
Point (and interval) estimates of the abundance of 0+

trout parrs at Cires, Mayrègne, and Saint-Paul arebl1;1 ¼ 0:24 (0.21,0.28), bl2;1 ¼ 0:45 (0.40,0.50), bl3;1 ¼ 0:29
(0.25,0.32) fish/m2. These results are similar to those found
by Laplanche (2010): bl1;1 ¼ 0:18 (0.15,0.24), bl2;1 ¼ 0:49

(0.45,0.58), bl3;1 ¼ 0:29 (0.26,0.36) fish/m2. Laplanche
(2010) presented a hierarchical model accounting for ran-

Table 5. Weight submodel reductions and respective DIC.

Alternative ch = c dh = d s2h ¼ s2 DIC
1 – – – 2552
2 x – – 2551
3 – x – 2552
4 x x – 2619
5 – – x 2552
6 x – x 2551
7 – x x 2551
8 x x x 2617

Note: Alternative 1 is the model of eq. 7 with variability among
stream sections of the parameters ah, bh, and s2h. Alternative 8 is the
most reduced model, by assuming that the parameters ch, dh, and s2h
are equal for all sections; x, constrained; –, not constrained.



Table 6. True value and parameter estimates (stream and section levels) by using the simulated data-
set with r = 2 removals and a Dl = 10 mm class width.

Unit Parameter q2.5% Truth Estimate q97.5%

— 1/h 0.00 0.10 0.11 0.66
— pa 0.0 10 122.5 1068.0
— pb 0.2 10 79.3 707.3
— pl 4.5 50 350.4 1746.0
— pm 1.9 10 16.6 60.2
— ps 1.8 10 10.0 26.5
— pt 0.5 10 4.2 13.7
g/m2 biom 29.53 31.63 31.34 37.74
Fish/m2 l 0.80 1 1.02 1.46
— t1 0.32 0.50 0.45 0.58
— t2 0.16 0.30 0.27 0.40
— t3 0.16 0.20 0.28 0.41
mm m1 44.7 50 55.2 64.9
mm m2 113.5 125 120.4 127.6
mm m3 191.3 200 203.6 214.0
mm s1 5.2 10 8.5 13.1
mm s2 15.6 20 26.6 43.8
mm s3 16.1 30 27.3 42.9
— b –1.25 0 –0.17 0.74
Per metre 103a 2.8 5 6.7 10.8
g/m2 biom1 25.1 26.8 26.9 32.8
Fish/m2 l1 0.90 0.98 1.04 1.47
— t1,1 0.43 0.44 0.48 0.55
— t1,2 0.27 0.32 0.32 0.37
— t1,3 0.15 0.18 0.20 0.24
mm m1,1 59.4 60.7 60.2 61.0
mm m1,2 116.4 119.4 120.0 123.6
mm m1,3 203.2 209.0 209.3 214.5
mm s1,1 5.1 5.4 5.7 6.4
mm s1,2 17.0 18.9 20.1 23.8
mm s1,3 18.1 22.4 22.3 27.4
— b1 –1.06 0.01 –0.07 0.56
Per metre 103a1 2.5 4.9 6.4 10.2
g/m2 biom2 41.33 43.83 43.59 51.35
Fish/m2 l2 0.89 0.97 1.02 1.43
— t2,1 0.33 0.43 0.40 0.47
— t2,2 0.15 0.21 0.22 0.31
— t2,3 0.30 0.39 0.39 0.46
mm m2,1 46.5 49.1 48.9 51.3
mm m2,2 113.7 126.8 121.1 129.0
mm m2,3 200.3 208.4 206.7 212.7
mm s2,1 11.7 13.8 13.3 15.3
mm s2,2 17.6 20.8 26.6 43.8
mm s2,3 23.9 30.5 28.1 32.9
— b2 –1.02 0.44 0.01 0.70
Per metre 103a2 3.3 4.7 6.7 10.3
g/m2 biom3 21.2 24.3 23.5 30.1
Fish/m2 l3 0.80 0.87 0.97 1.38
— t3,1 0.47 0.45 0.54 0.61
— t3,2 0.15 0.20 0.25 0.35
— t3,3 0.14 0.17 0.22 0.30
mm m3,1 55.8 56.9 56.9 58.2
mm m3,2 110.2 125.4 119.9 129.6
mm m3,3 182.5 189.9 194.9 205.9
mm s3,1 6.5 7.1 7.6 8.7
mm s3,2 20.0 42.0 33.3 48.2
mm s3,3 24.3 30.4 30.4 38.4
— b3 –1.31 –0.11 –0.45 0.20
Per metre 103a3 3.4 4.8 7.1 12.0

Note: —, no unit.



dom spatial variability of the abundance, random spatial var-
iability of the catchability, and residual variability of the
catchability with fish. By using an index of complexity of
fit, Laplanche (2010) suggested that a reduction with no var-
iability of the catchability (among stream sections and resid-
ual) should be preferred. We have attained similar
conclusions (ah = a, bh = b, and 1/h = 0). Results show,
however, that heterogeneity of the catchability between indi-
viduals is significant, and would be explained by heteroge-
neity of the catchability due to fish length. Once
heterogeneity of the catchability due to fish length is ac-
counted for, we find no significant decrease of the catchabil-
ity across removals due to (residual) between individual
variability of the catchability. Such a result does not hold
the possibility of different sources of alteration of the catch-
ability across removals, e.g., owing to adjustments of the be-
havior of the fish or of the electrofisher to depletion (Mahon
1980; Schnute 1983; Peterson et al. 2004). The extension of
the current model together with model selection could help
in evaluating the value of the consideration of additional
sources of variability of the catchability.

Model selection suggests that variability between stream
sections of the abundances (lh), the component centers
(mh,k), and the allometric parameters (ch and (or) dh) are sig-T
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Table 8. Parameter estimates at the stream level
(Neste d’Oueil) and section level [Cires (h = 1),
Mayrègne (h = 2), and Saint-Paul (h = 3)] by using
model alternative 12 (Table 7).

Parameter q2.5% Estimate q97.5%

103a 3.9 7.7 11.5
b 0.17 0.59 1.03
pl 0.3 9.6 37.6
pm 1.8 22.3 76.3
s1 6.5 7.1 7.7
s2 12.2 14.1 16.5
s3 28.2 40.0 48.7
t1 0.43 0.46 0.49
t2 0.23 0.29 0.36
t3 0.18 0.25 0.32
biom 13.95 15.47 17.07
l 0.31 0.83 1.50
m1 43.1 52.8 61.9
m2 115.4 120.4 125.4
m3 159.1 174.5 194.3
biom1 9.68 11.50 13.58
l1 0.46 0.53 0.59
m1,1 45.6 47.2 48.7
m1,2 117.6 121 124.3
m1,3 160.5 176.6 195.7
biom2 17.22 19.88 22.71
l2 0.90 0.98 1.07
m2,1 51.4 52.4 53.3
m2,2 117.6 120.3 123.0
m2,3 155.0 169.8 192.3
biom3 12.69 14.76 17.31
l3 0.56 0.62 0.69
m3,1 57.9 59.0 60.2
m3,2 115.8 119.5 123.3
m3,3 161.1 177.0 193.7



nificant. Biomass estimates are at Cires, Mayrègne, and
Saint-Paul: 11.50 (9.68, 13.58), 19.88 (17.22, 22.71), and
14.76 (12.69, 17.31) g/m2, respectively. Differences of total
abundance (Bayley and Dowling 1993), growth (Ebersole et
al. 2009), and as a result biomass (Bowlby and Roff 1986)
are likely due to habitat variability. We believe that extend-
ing the current model by relating the above variables to key
physico-chemical habitat covariates is an interesting per-
spective. This issue is discussed more thoroughly later by
introducing several extensions of the current model.

The modeling of the length–abundance relationship as a
mixture of Gaussian distributions may be inappropriate since
the Gaussian probability density function is defined for all
lengths. In this case study, expected population sizes for
negative or large (>300 mm) length values are negligible.
The use of a Gaussian kernel might be in that case satisfac-
tory. We have also investigated the use of bounded, bell-
shaped kernels. The comparison of model fit by using such
a kernel (e.g., triweight) and the Gaussian kernel also sug-
gests that the Gaussian kernel is acceptable. The use of a
Gaussian kernel may, however, be problematic when mixing
components of large variance. The use of different kernels
has been suggested, for instance gamma kernels (Pitcher
2002). The current model can accustom any kernel given
that it is possible to provide to WinBUGS a closed form of
the probability density function of the kernel. We do not be-
lieve, however, that using a non-Gaussian kernel is the most
promising solution to handle this issue. We rather suggest
two different approaches. The first would be to extend the
current model by constraining the component bandwiths to
the centers, e.g., bandwiths proportionnal to centers. A sec-
ond approach would be to separate components of large
bandwiths into cohorts (of lesser bandwidths) by extending
the current model with a growth submodel (which is dis-
cussed more thoroughly later).

The length–abundance plots of the catch at the Neste
d’Oueil suggest that the use of three components would be
satisfactory. Model comparison suggests that, indeed, a de-
scription of the abundance as a mixture of three components
is fine. In this case study, the two first components unam-
biguously represent cohorts (0+ and 1+). The third compo-
nent is not a cohort (brown trout in the Neste d’Oueil living
longer than 3 years) but the mixture of several cohorts (2+
and older). Index of fit alone (deviance) suggests that the
uses of three or four cohorts are comparable, index of com-
plexity and fit (DIC) suggests that the use of three cohorts is
preferable, prior knowledge suggests that the use of four or
more cohorts is more realistic. One approach could be to set
the number (q) and the definition sets of the centers (mlim

c )
of the cohorts by using prior knowledge and not use an in-
dex of complexity and fit. Another approach could be (once
again) to extend the current model with a growth submodel
and let the model separate the cohorts.

The error resulting on biomh of approximating fish
weights Wh,i,f by expectations chL

dh
i exp ðs2h=2Þ is negligible

(as demonstrated in Appendix A). This holds if the popula-
tion sizes nh are sufficiently large. With lower population
sizes, the consequences of the above approximation on the
biomass estimate should be considered more closely. For
that purpose, we suggest two solutions. The first option is
to include the fish level within the biomass submodel and

simulate the fish weights Wh,i,f instead of the expected fish
weights Ef(Wh,i,f) to compute biomh,i. As a result, the poste-
rior distribution of the biomass variables (hence interval es-
timates) takes into account inter-individual variability of the
weight. The second option is to use an a posteriori Monte
Carlo run: (i) run the model to compute an estimate of lh,i,
(ii) simulate nh,i, (iii) compute biomh,i by using eq. 9, simu-
late the fish weights Wh,i,f, and compute biomh,i by using
eq. 8, (iv) compute both alternatives of biomh by using
eq. 10 and their difference Dbiomh, (v) repeat steps (ii–iv),
(vi) estimate the standard deviations of Dbiomh (h [ {1, . . .,
s}). By using the dataset collected in the field, we find that
the standard deviations of the error on biom1, biom2, and
biom3 by approximating the fish weights Wh,i,f by the ex-
pectations chL

dh
i exp ðs2h=2Þ are 0.09, 0.10, and 0.10 g/m2, re-

spectively.
We have assigned vague priors to all free parameters.

Laplanche (2010) conducted an informal sensitivity analysis
to evaluate the consequences of different selections of vague
priors. The author showed, in his case study, that only esti-
mates at the stream level are sensitive to the choices of
vague priors. The reason is that the author considered (as
we have done here) a hierarchical structure to model the
variability between three stream sections. The amount of in-
formation to provide estimates of parameters at the stream
level is limited. By extrapolating his results, in the case that
only interpretation of the data is inquired with minimum in-
fluence of prior knowledge, we would advise to use the
abundance submodel with vague priors and report parameter
estimates at the section level. In the aim of providing esti-
mates at the stream level with minimum influence of prior
knowledge, a larger number of sampling sections would be
required. In the prospect of using prior knowledge, we pro-
vide the (approximate) parametrized marginal posteriors of
the free parameters of the baseline abundance submodel.
Marginal posterior parameters that are reported are specific
to this case study. We could use the marginal posteriors re-
ported as priors to further study the Neste d’Oueil, by using
data collected in July of another year, for instance. One
could also adjust the parametrization of the posterior distri-
butions reported with expert knowledge to provide priors to
a different study area.

In the aim of using the approach presented by Marin et al.
(2005) to model abundance as a distribution mixture, we
first regarded fish length as a continuous variable. On the
other hand, to allow for random localization of the fish
within a stream section (eq. 4), to incorporate the removal
sampling model (eq. 1), and to compute biomass, we needed
to consider fish length as a discrete variable. By regrouping
fish within Dl = 1 mm length classes (equal to our measure-
ment accuracy of the fish length), we could attain both ob-
jectives. In view of the computation time required to
simulate the model with a Dl = 1 mm length class, we
adapted the model to consider larger class widths. Regroup-
ing fish counts within larger length classes results, however,
in a loss of information. Using smaller class widths in-
creases the number of measured variables but the complex-
ity of the parametrization of the distribution mixture (3q per
stream section) remains unchanged. In other words, using
larger class widths does not make the distribution mixture
model less complex and consequently more robust. Never-



theless, as reported, in the case of the simulated dataset,
point and interval estimates of the parameters are not sensi-
tive to the choice of the width of the length classes, given
that the width is small enough. The reason is that when us-
ing datasets with large catches, the relative loss of informa-
tion by grouping catches within larger size classes is
negligible. With poorer datasets, the relative loss of informa-
tion by grouping may not be negligible. Grouping catch
within larger size classes also diminishes the capability of
the model to detect variability of the catchability with
length. By grouping, the amount of variation in catchability
to be explained by length is reduced (since the amount of
variation to be explained by length within a size class is
null), consequently inflating the residual variability 1/h. For
such reasons, we recommend the use of a minimal class
width when possible. With large datasets, grouping within
larger size classes is conceivable.

We highlight some extensions to the current abundance-
biomass model. One could relate parameters at the section
level, either connected to catchability (hh, ah, bh) or abun-
dance (lh, th,k, mh,k, sh,k), to environmental variables. With
an appreciable number of sampling sections, parameters
could be empirically related to habitat covariates (Rivot et
al. 2008; Ebersole et al. 2009). Observations could be taken
as independent, or parameters could be spatially related by
using an auto-correlation model (Webster et al. 2008) com-
pleted by a Geographic Information System (Wyatt 2003).
Higher hierarchical levels could be incorporated into the
model to deal with a structured sampling strategy, like a
larger spatial scale (e.g., watershed) or by integrating a time
scale as done by Rivot et al. (2008). We believe that con-
necting the parameters of the distribution mixture through
the development of a discrete population dynamics submo-
del and a growth submodel are interesting perspectives. The
advantage of extending the abundance submodel with popu-
lation dynamics and growth submodels is to derive variables
(such as mortality, recruitment, and growth rates) more indi-
cative of fish populations than component mixture parame-
ters. The extensions suggested earlier (the use of
environmental covariates, GIS, structured sampling) would
in that case apply to the newly derived variables. As an il-
lustration, we have extended the current abundance submo-
del with a growth submodel by relating growth rate and
time of emergence to water temperature. An expanded hier-
archical model would provide a unified framework where
interval estimates of several variables indicative of fish pop-
ulations (abundance, biomass, growth, mortality, recruit-
ment, production, overweight, etc.) at a large spatial scale
could be computed and used to study the biological health
of freshwater sytems.
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Lobón-Cerviá, J. 1991. Dinámica de poblaciones de peces en rı́os:
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Appendix A
The weight of a fish of length class i in section h is lognor-

mally distributed of expectation Ef ðWh;i;f Þ ¼ chLdhi exp ðs2h=2Þ
and variance var f ðWh;i;f Þ ¼ ðchLdhi Þ2exp ðs2hÞ½exp ðs2hÞ � 1�.
By using central limit theorem, the variables biomh,i are ap-
proximately normally distributed of expectation nh,iEf(Wh,i,f)/
Ah and variance nh;ivar f ðWh;i;f Þ=A2

h. Since the biomh,i are inde-
pendent, the biomass biomh ¼

Pm
i¼1 biomh;i of fish in section

h is approximately normally distributed of expectationPm
i¼1 nh;iEf ðWh;i;f Þ=Ah and variance

Pm
i¼1 nh;ivar f ðWh;i;f Þ=A2

h.
With nh ¼

Pm
i¼1 nh;i sufficiently large, the coefficient of var-

iation of biomh is approximately null.
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