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Abstract

When solving certain evolution type PDE such as the Schrödinger equation, the Interaction Picture method is a valuablealternative
to Split-Step methods. The Interaction Picture method has good computational features when used together with the standard 4th
order Runge-Kutta scheme (giving rise to the RK4-IP method). In this paper we present an embedded Runge-Kutta scheme with
orders 3 and 4with the aim to deliver an estimation of the local error for adaptive step-size control purposes in the Interaction Picture
method. The corresponding ERK4(3)-IP method preserves thefeatures of the RK4-IP method and provide a local error estimate at
no significant extra cost.
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1. Introduction

Recently a “fourth-order Runge-Kutta method in the inter-
action picture” method (RK4-IP method) has been proposed
[1, 2] as a very promising alternative to the Split-Step meth-
ods for solving certain evolution type partial differential equa-
tions (PDE) such as the Gross-Pitaevskii equation (GPE) [3]
or the generalised non-linear Schrödinger equation (GNLSE)
[4]. The RK4-IP method has been developed in the 90’s by the
Bose-Einstein Condensate Theory Groupof R. Ballagh from
the Jack Dodd Centre at the University of Otago for solving the
GPE in the context of Bose condensation. It was described in
the Ph.D. thesis of B.M. Caradoc-Davies [1] and later in the
Ph.D. thesis of M.J. Davis [2]. In this latter work an embedded
Runge-Kutta (ERK) scheme was additionally used in conjunc-
tion with the RK4-IP method for adaptive step-size control pur-
poses but without the expected efficiency. Since, the RK4-IP
method has been widely used for numerical studies on Bose-
Einstein condensates, see e.g.[5–7].

The name “Interaction Picture” (IP) and the change of un-
known at the heart of the method originate from quantum me-
chanics [8, 9] where it is usual to choose an appropriate “pic-
ture” in which the physical properties of the studied systemcan
be easily revealed and the calculation made simpler. In a nu-
merical context the “Interaction Picture” approach is a wayof
solving certain PDE of evolution type by decoupling the linear
and non-linear terms in the equation in order to make the res-
olution simpler. Typically, the solution to the PDE is obtained
by solving a sequence of linear PDE problems and non-linear
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ordinary differential equations (ODE) in a given sequential or-
der. This approach is very similar to the one used in Split-Step
(SS) methods [10]. However while SS methods rely on an ap-
proximation formula such as the Strang formula [11] for the
Symmetric Split-Step method, the IP method can be considered
as exact since it amounts from a mathematical point of view to
a change of unknown. In the IP method as in the SS method, the
way the various terms in the PDE are “splitted” depends solely
on a particular application and no general method is known.
The motivation for using the IP or SS method for solving a PDE
is essentially numerical; the numerical approximation of the so-
lution to a linear PDE and to an ODE are easy, but a numerical
integration involving all terms together is more difficult since
CFL restrictions between time and spatial discretisation steps
apply in order to guarantee stability of the numerical approxi-
mation scheme. A method of choice for solving ODE in the IP
method is the fourth-order Runge-Kutta (RK4) method. Indeed
compared to other RK methods it can be implemented in the
context of the IP method to have very low memory consumption
and high computational efficiency thanks to the advantageous
position of the internal quadrature nodes of the RK4 scheme.

From a computational point of view the Interaction Picture
method is very close to the Symmetric Split-Step method based
on the Strang splitting formula widely used to solve the non-
linear Schrödinger equation [12, 13]. It has been for the first
time applied for solving the GNLSE in optics by J. Hult in [4]
where an experimental comparison of the RK4-IP method to
other SS methods based on their numerical efficiency on bench-
mark problems in optics is presented. The experimental in-
vestigation undertaken in [4] indicates that the RK4-IP method
exhibits interesting convergence properties and providesmore
accurate numerical results than comparable SS methods. This
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work on the RK4-IP for solving the GNLSE has come to our
attention while working on the numerical simulation of inco-
herent optical wave propagation in non-linear fibers [14]. In
[15] we have investigated the numerical properties of the RK4-
IP method and we have made a precise comparison between the
RK4-IP method and the Symmetric Split-Step Fourier method
with fourth-order Runge-Kutta scheme (S3F-RK4 method). We
have shown that the RK4-IP method has a cost very same to the
S3F-RK4 method due to a computational approach very similar
to the one involved in the SS methods but has order of conver-
gence 4 whereas the S3F-RK4 method is limited by the second
order accuracy of the Strang splitting formula.

At present time a limitation of the RK4-IP method is the lack
of a general automatic adaptive step-size control version of the
method. Some attempts for using an adaptive step-size con-
trol strategy in conjunction with the RK4-IP method have how-
ever been made. The well known step-doubling approach (or
Richardson extrapolation) is the more common way for local
error estimation and step-size control [16]. However its compu-
tational over cost may be considered as prohibitive. An adap-
tive step-size control strategy based on a conservation energy
principle has been proposed in [17] for the GNLSE. It is how-
ever only valid for lossless fibers. An embedded Runge-Kutta
(ERK) method based on the Fehlberg formula [18, 19] has also
been implemented in conjunction with the IP method in [2].
One major advantage of ERK methods for step-size control is
that they are independent of the particular equation to be solved
and therefore are very general. However the ease of implemen-
tation and the advantageous position of the internal quadrature
nodes of the RK4 formula liable for the efficiency of the RK4-
IP method (by reducing both memory consumption and compu-
tational time) is lost with the Fehlberg formula and erode any
benefit of the Fehlberg RK scheme for the IP method.

In this paper we present a 5 stage 3rd order RK scheme em-
bedding the standard 4th order RK scheme which possess the
same features as the standard 4th order RK scheme when used
in conjunction with the IP method. In particular this ERK4(3)
scheme preserves the ease of implementation and the advan-
tageous position of the internal quadrature nodes of the RK4
formula. Above all it delivers a local error estimate at no ex-
tra computational cost (at least when the current step is notre-
jected) for adaptive step-size control strategy.

The paper is organised as follows. In section 2 we present
an overview of the IP method together with the standard 4th
order RK method. In section 3 we recall the main features of
ERK methods for local error estimation purposes. Section 4 is
devoted to the building of an ERK scheme to obtain local error
estimate in the IP method while preserving all the numerical
advantages of the standard RK4 method. Last, in section 5 we
present numerical simulation results in order to illustrate the
features of the ERK4-IP method.

2. Overview of the Interaction Picture method

2.1. PDE problem setting

We first present a brief summary of the IP method for a gen-
eral evolution equation in the form

∂

∂s
u(s, r) = Du(s, r) +N(u)(s, r) (1)

whereD andN denote respectively linear and non-linear op-
erators (that usually do not commute to each other); the linear
differential operatorD includes all the derivation terms with
respect to the variabler but does not involve derivation with re-
spect tosand the non-linear operatorN does not involve deriva-
tion at all. This PDE is to be solved for the unknownu in a set
I ×Ωwhere typicallyΩ is an open subset inRd, d ∈ N∗, andI is
an open interval inR. Together with (1) we consider the initial
condition:u(s= 0, r) = ν0(r), ∀r ∈ Ω whereν0 is a sufficiently
regular function fromΩ to C.

For instance, for the cubic non-linear Schrödinger equation



∂

∂t
u(t, r) + i∆u(t, r) + iǫ|u(t, r)|2u(t, r) = 0 ∀r ∈ R

2 ∀t ∈ R

u(t = 0, r) = u0(r) ∀r ∈ R
2

whereǫ = ±1 and∆ stands for the Laplacian operator inR2, we
haveD : u 7→ i∆u andN : u 7→ iǫ|u|2u.

For the GNLSE in optics [14, 20] we are interested in solving
the following problem



∂

∂z
A(z, t) = DA(z, t) +N(A)(z, t) ∀z ∈ ]0, L[ ∀t ∈ R

A(0, t) = a0(t) ∀t ∈ R

(2)

where the unknownA corresponding to the slowly varying op-
tical pulse envelope is a function of timet and positionz along
the fiber; the linear operatorD is given by

D : A 7→ −
1
2
αA−

nmax∑

n=2

βn
in−1

n!
∂n

t A (3)

whereα is the linear attenuation coefficient andβn, n ≥ 2 are
the linear dispersion coefficients; the non-linear operatorN is
given by

N : A 7→ iγ

[
Id +

i
ω0

∂

∂t

]
·
(
(1− fR) A(z, t)

∣∣∣A(z, t)
∣∣∣2

+ fR A(z, t)
∫ ∞

0
hR(s) |A(z, t − s)|2 ds

) (4)

wherehR is the Raman time response function,fR represents
the fractional contribution of the delayed Raman response to
non-linear polarisation,γ is the non-linear parameter andω0

is the pulsation of the optical pulse assumed to be quasi-
monochromatic. We may notice that another splitting is pos-
sible for the GNLSE: the term− 1

2αA can be added to the non-
linear operatorN instead of the linear operatorD.

For the Gross-Pitaevskii (GP) equation used to explore the
dynamics of vortexes in Bose-Einstein condensates in 2 or 3
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space dimensions [1–3], the condensate wave functionψ is
given in the domainΩ occupied by the condensate by

∂

∂t
ψ(r, t) = i ∆ψ(r, t) +N(ψ)(r, t) (5)

where∆ is the Laplacian operator in 2 or 3 dimensions, and

N : ψ 7→ −i(Vψ +C|ψ|2ψ) (6)

whereV is the external potential applied (function of timet
and positionr) andC is a constant proportional to the number
of atoms in the condensate and to the scattering length. Equa-
tion (5) is to be solved to describe the condensate evolution
from a given initial condensate state.

2.2. The Interaction Picture method

The IP method for solving (1) may be understood as follows.
The intervalI =]0,S[ is divided intoK sub-intervals where the
grid points are denotedsk, k = {0, . . . ,K} such that ]0,S] =
∪K−1

k=0 ]sk, sk+1] where 0 = s0 < s1 < · · · < sK−1 < sK = S.
For all k ∈ {0, . . . ,K − 1} the step length betweensk andsk+1 is
denotedhk and we also setsk+ 1

2
= sk +

hk
2 .

Solving equation (1) for the initial conditionu(s = 0, r) =
ν0(r), ∀r ∈ Ω is equivalent to solving the following sequence of
connected problems:



∂

∂s
u0(s, r) = Du0(s, r) +N(u0)(s, r) ∀s ∈]s0, s1] ∀r ∈ Ω

u0(s0, r) = ν0(r) ∀r ∈ Ω
(7)

and∀k ∈ {1, . . . ,K − 1}


∂

∂s
uk(s, r) = Duk(s, r) +N(uk)(s, r) ∀s ∈]sk, sk+1] ∀r ∈ Ω

uk(sk, r) = uk−1(sk, r) ∀r ∈ Ω
(8)

Obviously for allk ∈ {0, . . . ,K − 1} the unknown functionsu
anduk are related by

∀s ∈ [sk, sk+1] ∀r ∈ Ω u(s, r) = uk(s, r).

Let us consider one of the problems defined in (7)–(8) for a
given value ofk ∈ {0, . . . ,K − 1}. Such problem reads



∂

∂s
uk(s, r) = Duk(s, r) +N(uk)(s, r) ∀s ∈]sk, sk+1] ∀r ∈ Ω

uk(sk, r) = νk(r) ∀r ∈ Ω
(9)

whereνk is a given function. We introduce as new unknown the
mapping

uip
k : (s, r) ∈ [sk, sk+1] ×Ω 7→ exp(−(s− sk+ 1

2
)D) · uk(s, r) (10)

where from a mathematical point of view the exponential terms
have to be understood in the sense of the continuous group gen-
erated by the unbounded linear operatorD [21]. From (9) one

can show [15] that the new unknownuip
k is solution to the fol-

lowing problem



∂

∂s
uip

k (s, r) = Gk(s, r, u
ip
k (s, r)) ∀s ∈]sk, sk+1] ∀r ∈ Ω

uip
k (sk, r) = exp(−(sk − sk+ 1

2
)D) · νk(r) ∀r ∈ Ω

(11)

whereGk(s, r, ·) = exp(−(s− sk+ 1
2
)D) ◦ N ◦ exp((s− sk+ 1

2
)D).

The major interest for using the change of unknown (10) is that
on the contrary to problem (9), problem (11) for the unknown
uip

k does not anymore involve explicitly partial derivation with
respect to the variabler. Partial derivation with respect to the
variabler now occurs through the operator exp(±(s− sk+ 1

2
)D)

which is computed separately. Thus problem (11) can be nu-
merically solved just as if it was a non-linear ODE withr as a
parameter using a standard quadrature scheme for ODE such as
Runge-Kutta (RK) methods.

2.3. The RK4-IP method

The “standard” Runge-Kutta (RK4) scheme is a method of
choice to be used in conjunction with the IP method due to its
convergence order 4 which offers a good compromise between
accuracy of the result and cost of the computations. Besides
the values of its internal quadrature nodes (0, 1/2, 1) imply by
symmetry some cancellations in the terms to be computed com-
pared to other 4th order RK schemes when used in conjunction
with the IP method, reducing the global computational cost of
the method. The standard RK4 method is defined by the fol-
lowing Butcher tableau [18]

c1

c2 a2,1

c3 a3,1 a3,2

c4 a4,1 a4,2 a4,3

b1 b2 b3 b4

=

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(12)

One step of the RK4 scheme defined by (12) is used to ap-
proach the solution to problem (11) for allk ∈ {0, . . . ,K − 1} as
follows: ∀r ∈ Ω

uip
k (sk+1, r) ≈ uip

k (sk, r) +
hk

6
(α1 + 2α2 + 2α3 + α4) (13)

where

α1 = Gk(sk, r, u
ip
k (sk, r)) = exp(hk

2D) · N(exp(− hk
2D) · uip

k (sk, r))

α2 = Gk(sk +
hk
2 , r, u

ip
k (sk, r) +

hk
2 α1) = N(uip

k (sk, r) +
hk
2 α1)

α3 = Gk(sk +
hk
2 , r, u

ip
k (sk, r) +

hk
2 α2) = N(uip

k (sk, r) +
hk
2 α2)

α4 = Gk(sk + hk, r, u
ip
k (sk, r) + hkα3)

= exp(− hk
2D) · N(exp(hk

2D) · [uip
k (sk, r) + hkα3]).

From the change of unknown (10) the solution to problem (9)
is approximated∀r ∈ Ω asuk(sk+1, r) ≈ vk+1(r) where

vk+1(r) = exp(hk
2D) ·

[
uip

k (sk, r) +
hk
6 (α1 + 2α2 + 2α3 + α4)

]
.

(14)
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Actually since we are interested in computingvk+1(r) rather
than uip

k (sk+1, r) which is a go-between in the computational
approach, we recast the above approximation scheme for all
k ∈ {0, . . . ,K − 1} in the following way to reduce its computa-
tional cost. We set

vip
k (r) = exp(h2D) · vk(r)

α1 = exp(h2D) · N(vk(r))

α2 = N(vip
k +

hk
2 α1)

α3 = N(vip
k +

hk
2 α2)

α′4 = N(exp(hk
2D) · [vip

k + hkα3])

and

vk+1(r) = exp(hk
2D)·

(
vip

k (r)+ hk
6 (α1 + 2α2 + 2α3)

)
+

hk
6 α
′
4. (15)

Of course, the crucial point in the above computational scheme
– referred as the RK4-IP method – is the way the 4 mappings
involving the exp(hk

2 · D) operator are computed. For a regular
functionϕ, the mappingr 7→ exp(hk

2D) · ϕ(r) coincides with
the solution fors= sk+ 1

2
to the following linear evolution prob-

lem [15]


∂

∂s
w(s, r) = Dw(s, r) ∀s ∈]sk, sk+ 1

2
] ∀r ∈ Ω

w(sk, r) = ϕ(r) ∀r ∈ Ω
(16)

In each stepk a major part of the computational effort lies in
the resolution of this linear PDE problem for 4 distinct initial
conditions. The numerical method used to solve it is strongly
dependent to the linear operatorD and domainΩ, that is to say
to the physical application under consideration. For the GPE
e.g. this PDE problem is a heat type problem set in a 2D or
3D domain. In [1–3] it is solved by a Fourier spectral method.
For the GNLSE, problem (16) whereΩ = R can be solved by
a direct use of Fourier transforms [4, 14]. Moreover the cost
of the evaluation of the 4 non-linear termsN(ϕ) is strongly
dependent to the physical application. Nevertheless it is adi-
rect function evaluation without intermediate PDE problemto
be solved. Thus, in designing a new ERK method for adap-
tive step-size control purposes we have to keep in mind that the
global computational cost of the method will be directly propor-
tional to the number of exponential operators exp(hk

2D) and to a
lower degree to the number of non-linear operatorsN involved.

Finally, an important point to be noticed concerns the values
of the coefficientsc1 = 0, c2 =

1
2, c3 =

1
2 andc4 = 1 of the RK4

scheme (12) in the efficiency of the RK4-IP method. Indeed,
in conjunction with the choice ofsk+ 1

2
= sk +

hk
2 in the change

of unknown (10), this particular choice of theci coefficients
enables the cancellation of 4 exponential operator terms in(15)
compared to other possible sets of values, and therefore save up
an important computational cost.

3. Local error estimate by using a 4th order embedded
Runge-Kutta method

3.1. Overview of embedded Runge-Kutta methods
Embedded Runge-Kutta (ERK) methods are special RK

methods designed to deliver two approximations of the solu-

tion of the ODE under consideration, corresponding to 2 RK
schemes of different convergence ordersp and q (q > p).
These 2 approximations of the solution can be considered as an
accurate approximate solution (the one computed with the nu-
merical scheme of higher orderq) and a coarse approximate so-
lution (the one computed with the one of lower orderp). These
2 approximate solutions obtained with RK schemes of different
orders can be combined in a specific way so as to deliver an
estimation of the local error committed while approaching the
solution with the lower order method.

Assuming that for problem (11) the solution value at grid
point sk is regarded as exact (because we are concerned by an
estimation of the local error), we denote byvip

k+1 (resp.̃vip
k+1) the

coarse (resp. accurate) approximate solution at grid pointsk+1

given by thep-th order RK (resp.q-th order RK) scheme. The
local errors for each of the 2 methods are respectively given
by [18]

ℓ
[p]
k+1 = uip(sk+1, r) − vip

k+1(r) = ψp(sk, r, v
ip
k ) hp+1

k +Ø(hp+2
k )

ℓ
[q]
k+1 = uip(sk+1, r) − ṽip

k+1(r) = ψq(sk, r, v
ip
k ) hq+1

k +Ø(hq+2
k )

whereψp (resp.ψq) is a function of the elementary differentials
of orderp (resp.q) of uip. By difference of this 2 relations we
obtain

ṽip
k+1(r) − vip

k+1(r) = ψp(sk, r, v
ip
k ) hp+1

k +Ø(hp+2
k ).

Thus the local error for the RK scheme of lower order at grid
point sk can be approximated, with an error in Ø(hp+2

k ), in the
following way

ℓ
[p]
k+1 = ψp(sk, r, v

ip
k ) hp+1

k +Ø(hp+2
k ) ≈ ṽip

k+1(r) − vip
k+1(r). (17)

In general, ERK methods are constructed withq = p+1. One
of the most famous ERK method is the Fehlberg 4(5) [18, 19].
It has 6 stages and delivers a RK approximation of order 4 with
an error estimate computed from a 5th order RK method. In
practise, even if the local error estimate (17) holds only for the
lower order method it is customary in practise to use values
given by the higher order method as the approximation of the
solution at grid pointsk since they are more accurate. This is
sometimes interpreted aslocal extrapolation. While in such a
case relation (17) is still used for step-size control purposes it is
no longer related asymptotically to the local error for the prop-
agated solution. One can report that there exists some ERK
methods such as the method of Dormand and Prince [22] that
are designed to minimise the local error of the higher order so-
lution.

Last, one has to point out that the main idea behind the con-
cept of ERK method is to have a large part of the internal com-
putations of the 2 RK schemes in common in order to have a
computational cost much lower than the one required when us-
ing 2 arbitrary RK methods of orderp andq.

3.2. Embedded Runge-Kutta methods for the IP method

When looking for an ERK method for using in conjunction
with the IP method, 2 different approaches can be explored:
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• the first one would be to look for a 4th order RK method
embedded in a 5th order RK method so as to design an
adaptive step-size strategy based on the estimation of the
local error of the 4th order RK method;

• the second one would be to look for a 3rd order RK method
embedded in a 4th order RK method and to use the local
extrapolation idea to propagate the solution computed with
the 4th order RK method.

The main drawback of the first approach lies in the number of
computational stages required by a 5th order RK method which
is 6 at least [18]. Even if part of the stages are in common be-
tween the 2 ERK methods, this approach implies a significant
extra cost of at least 2 stages. In the situation considered here,
each stage of the RK method requires one evaluation of func-
tionGk which itself involves 2 exponential operator evaluations
and one evaluation of the non-linear operatorN. The excess
computation may be regarded as prohibitive and we will con-
sider here the second approach mentioned above. There is an
infinite number of 3rd order RK method embedded in a 4th or-
der RK method and requiring 4 computational stages, see [18].
Now, we have to keep in mind that the efficiency of the RK4-IP
algorithm is partially due to the values of theci coefficients of
the RK4 scheme (c1 = 0, c2 = 1/2, c3 = 1/2 andc4 = 1). These
values are capitalised to reduce the number of exponential op-
erator terms to be computed. Other choices for the values of
the coefficientsci would lead to a larger number of exponen-
tial operator terms and therefore to an increase in the compu-
tational cost. We have to look for an embedded Runge-Kutta
method with this constraint in mind. Moreover we will only
consider here explicit Runge-Kutta methods because there is no
reason why using implicit RK methods which are more expen-
sive. Additionally, we will assume that the weight coefficients
bi , i = 1, . . . , 4 are nonnegative real numbers which corresponds
to an usual simplification assumption in the study of RK meth-
ods in order to avoid round off error issues for the method.

4. The ERK4(3) method

4.1. A 5 stage RK3 scheme

One can show that when imposing the valuesc1 = 0, c2 =

1/2, c3 = 1/2 andc4 = 1 for a 4 stage RK method, we can not
get a 4th order RK method embedding a 3rd order one whatever
the values of the coefficientsbi andai, j . We either obtain 2 RK
method of order 4 which is not suited for local error estima-
tion or a 2nd order RK method embedded in a 4th RK method
such as the standard ERK4(2) method defined by the following
Butcher tableau (the coefficients of the lower order RK method
are depicted in gray cells)

0
1
2

1
2

1
2 0 1

2

0 0 1



−→

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(18)

Thus the 3rd order RK method to be used together with the stan-
dard RK4 method given in (12) for local error estimation nec-
essarily implies 5 stages. We look for a 3rd order RK method
defined by a Butcher tableau in the following form:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
c5 a5,1 a5,2 a5,3 a5,4

b1 b2 b3 b4 b5

(19)

where the free coefficientsa5, j andb j, j = 1, . . . , 4 have to be
determined in order to improve the computational efficiency of
the method. It is customary for RK scheme to set the condition
c5 =

∑4
j=1 a5, j and therefore the value ofc5 is imposed by the

value of the other free coefficients.

The computational sequence for one step of the ERK method
given in (19) applied to problem (9) becomes (see (13) and (15)
for a comparison)

vip
k (r) = exp(hk

2D) · v[4]
k (r)

α1 = Gk(sk, r, v
ip
k (sk, r)) = exp(hk

2D) N(v[4]
k (r))

α2 = Gk(sk +
hk
2 , r, v

ip
k (sk, r) +

hk
2 α1) = N(vip

k (sk, r) +
hk
2 α1)

α3 = Gk(sk +
hk
2 , r, v

ip
k (sk, r) +

hk
2 α2) = N(vip

k (sk, r) +
hk
2 α2)

α4 = Gk(sk + hk, r, v
ip
k (sk, r) + hkα3)

= exp(− hk
2D) · N

(
exp(hk

2D) · [vip
k (sk, r) + hkα3]

)

α5 = Gk(sk + c5hk, r, v
ip
k (sk, r) + hk

4∑

j=1

α j a5, j)

= exp(−(c5 − 1
2)hkD) · N

(
exp((c5 − 1

2)hkD) · [vip
k (sk, r)

+ hk

4∑

j=1

α j a5, j]
)

and the RK3 and RK4 approximations to the solution to prob-
lem (9) at grid pointsk are given by

v[3]
k+1(r) = exp(hk

2D) ·
[
vip

k (r) + hk

5∑

j=1

b jα j
]

v[4]
k+1(r) = exp(hk

2D) ·
[
vip

k (r) + hk
6 (α1 + 2α2 + 2α3 + α4)

]
.

(20)
By choosinga5,1 =

1
6, a5,2 =

1
3, a5,3 =

1
3 anda5,4 =

1
6 andc5 =∑4

j=1 a5, j = 1, the same term appears above in the expression of

α5 as well as in the expression ofv[4]
k+1 and this can be capitalized

in order to reduce the computations. ERK methods having this
feature are said to satisfy the FSAL property (First Step At Last)
[18]. Thus it remains to determine the values of theb j , j =
1, . . . , 5 in order that the RK method (19) has order 3 (but not
order 4). The 4 condition equations for the method to be of the

5



3rd order read [18, 23]:



b1 + b2 + b3 + b4 + b5 = 1

1
2

b2 +
1
2

b3 + b4 + b5 =
1
2

1
4

b2 +
1
4

b3 + b4 + b5 =
1
3

1
4

b3 +
1
2

b4 +
1
2

b5 =
1
6

. (21)

The solution (b1, b2, b3, b4, b5) to this under-determined linear
system is (1/6, 1/3, 1/3, 1/6− b5, b5) where the free parameter
b5 can be arbitrarily chosen. One can check that whatever the
value ofb5 the set of condition equations for the fourth order is
not satisfied by the RK method (19) and therefore the method is
not of order 4. Finally, we have obtained a family of 3rd order
RK methods embedding the standard 4th order RK method (12)
and indexed by a free parameterλ. This family is given by the
following Butcher tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1

1 1
6

1
3

1
3

1
6

1
6

1
3

1
3 ( 1

6 − λ) λ

(22)

where the gray cells correspond to Butcher tableau for the stan-
dard RK4 method and the whole array is the Butcher tableau for
the RK3 method. This embedded RK4(3) method actually co-
incides with Dormand and PrinceRunge-Kutta 4(3) Tmethod
[24]. Suitable value forλ suggested in [24] isλ = 1

10.

4.2. Computational cost of the RK4(3) method

The computational sequence (20) for one step of the
ERK4(3) scheme defined in (22) can be improved as follows.
As before one can save the computation of the exp(− hk

2D) term
involved in the expression ofα4 andα5 since a cancellation
happens with the exp(hk

2D) term in the expression ofv[3]
k+1 and

v[4]
k+1. Moreover we recall that although the ERK4(3) method

appears as a 5 stages method, its effective cost is very similar to
the one of a 4 stages method since the computation of the first
coefficientα1 at stepk+1 shares the evaluation of the non-linear
operatorN in common with the coefficientα5 computed at step
k. Namely, the computational procedure (20) can be recast as

follows

vip
k (r) = exp(hk

2D) · v[4]
k (r)

α1 = exp(hk
2D) α′5,k

α2 = N(vip
k (sk, r) +

hk
2 α1)

α3 = N(vip
k (sk, r) +

hk
2 α2)

α′4 = N
(
exp(hk

2D) · [vip
k (sk, r) + hkα3]

)

β(r) = exp(hk
2D) ·

[
vip

k (r) + hk
6 (α1 + 2α2 + 2α3)

]

v[4]
k+1(r) = β(r) + hk

6 α
′
4

α′5,k+1 = N(v[4]
k+1)

v[3]
k+1(r) = β(r) + hk

30(2α′4 + 3α′5,k+1)

(23)

Compared to the computational procedure (15) of the standard
RK4 scheme for the IP method, the propound computational
procedure (23) has a very similar computational cost even ifthe
ERK4(3) scheme has 5 stages: the number of evaluations of the
non-linear operatorN is 4 in both cases and in both cases we
have 4 evaluations of the exp(hk

2D) operator. The extra cost is
limited to 2 additions and 3 multiplications and the need to keep
in memory 2 intermediate results.

4.3. Local error estimate for the ERK4-IP method

We consider the ERK4(3) method given by Butcher
tableau (22). The local errors at grid pointsk+1 for the RK3
and the RK4 schemes are respectively given by [18]

ℓ
[3]
k+1(r) = u(sk+1, r) − v[3]

k+1(r) = ψ3(sk, r, v
[3]
k ) h4

k +Ø(h5
k)

ℓ
[4]
k+1(r) = u(sk+1, r) − v[4]

k+1(r) = ψ4(sk, r, v
[4]
k ) h5

k +Ø(h6
k)

(24)

whereψ3 andψ4 are functions of the elementary differential of
order 3 and 4 respectively. By difference of these 2 relations we
obtain

v[4]
k+1(r) − v[3]

k+1(r) = ψ3(sk, r, v
[3]
k ) h4

k +Ø(h5
k).

Thus the local error for the 3rd order RK method at grid point
sk+1 can be approximated, with an error in Ø(h5

k), in the follow-
ing way:

ℓ
[3]
k+1(r) = ψ3(sk, r, v

[3]
k ) h4

k +Ø(h5
k) ≈ v[4]

k+1(r) − v[3]
k+1(r). (25)

TheL2-local error at grid pointsk+1 is then computed as follows

L[3]
k+1 = ‖ℓ

[3]
k+1‖L2(Ω,C) ≈

(∫

Ω

∣∣∣v[4]
k+1(r) − v[3]

k+1(r)
∣∣∣2 dr

) 1
2

(26)

where the integral is computed by means of a quadrature for-
mula (e.g. the rectangle quadrature rule for its simplicity). As
mentioned before, even if the local error estimate (25) holds
only for the 3rd order method, in practise we use the value given
by the 4th order method as the approximation of the solution at
grid point sk+1. In general, this approach overestimates the ac-
tual local error, which is safe but not of optimal efficiency.
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4.4. Step-size control

For step-size control, a tolerance “tol” is given as bound on
the local error estimate. A step-size control strategy [18]con-
sists in rejecting the current step-size if it gives an estimated
local error higher than the specified tolerance and in accepting
the solution computed with this step-size if otherwise. When
the current step-size is rejected, a new smaller step-size has to
be chosen to recompute the solution from the current grid point.
On the contrary, when the current step-size meets the tolerance
requirement for the local error it has to be scaled up for the
next step computations. In both cases, the new step-size hasto
be estimated using the available information from the previous
step computations. We consider the ERK4(3) method defined
by (22) and we assume that the leading term in the asymptotic
expansion (25) of the local error dominates the others for the
current value of the step-sizehk. From (25) and (26) there ex-
istsC ∈ R+ such that

L[3]
k+1 = ‖ℓ

[3]
k+1‖L2(Ω,C) = C h4

k.

The optimal step-sizehopt is the one for which the local error
estimateL[3]

k+1 is the closest to the prescribed tolerance tol,i.e.
C h4

opt = tol. By eliminating the constantC from these 2 rela-
tions we obtain

hopt = hk
4

√
tol

L[3]
k+1

.

For robustness the step-size control has to be designed in order
to respond as smoothly as possible with real or apparent abrupt
changes in behaviour. This means that the step-size should not
vary from one step to the other by an excessive ratio. That is the
reason why we impose that the new step-size does not exceed
2 times the current step-size above and half the current step-
size below. Following these requirements, we use the following
step-size control formula

hnew = max

0.5 , min

2.0 , 4

√
tol

L[3]
k+1



 hk (27)

where “tol” denotes the tolerance value specified by the useras
a bound on the local error andL[3]

k+1 is estimated by (26). The
constant values 0.5 and 2.0 are somewhat arbitrary and have
to be regarded as design parameters. Sometimes an additional
safety factor (typically a value such 0.9) is introduced in for-
mula (27) but it is omitted here since the method already over-
estimates the local error.

5. Numerical experiments

In the framework of a project on the numerical simulation
of incoherent optical wave propagation in non-linear fibers[14]
we have implemented the ERK4(3)-IP method for solving the
GNLS problem (2). We present in this section numerical results
from the ERK4(3) method on 2 selected applications in optics:

the propagation of optical solitons and the propagation of api-
cosecond pulse into a single-mode fiber where fiber losses, non-
linear Raman and Kerr effects and high order chromatic disper-
sion are taken into account. In both cases, the adaptive step-
size strategy using the ERK4(3) method is compared to the one
based on the step-doubling (SD) approach.

5.1. Local error estimation by step doubling

The idea behind the step doubling method (also known as
Richardson extrapolation method) for estimation of the local
error is the following [16]. The local errorℓ[4]

k+1 for the RK4
method (12) at grid pointsk+1 is given by (24). Letvk+1 be the
solution at grid pointsk+1 computed from grid pointsk using
one step of sizehk, and let̃vk+1 be the solution computed using
two steps of sizehk/2, in both cases assuming the solution at
grid point sk to be exact (since we are interested in the local
error). The local error at grid pointsk+1 can be approximated,
with an error behaviour in Ø(h6

k), in the following way:∀r ∈ Ω

ℓ
[4]
k+1(r) ≈

24 − 1
24

(̃vk+1(r) − vk+1(r)). (28)

TheL2-local error at grid pointsk+1 is then approximated by

L[4]
k+1 ≈

24 − 1
24

(∫

Ω

|̃vk+1(r) − vk+1(r)|2 dr

) 1
2

(29)

where the integral is computed by mean of a quadrature for-
mula. Relation (28) gives an approximation of the local error
corresponding to the solution computed over the coarse grid.
However, since the fine mesh grid solution is a better approx-
imation of the solution in practise it is kept as the approxi-
mate solution. The cost of estimating the local error by the SD
method is then the cost of the computation of the coarse mesh
grid solution and this cost is approximately half the cost ofthe
computation of the fine mesh grid solution since the step-size
is twice larger. Thus, estimating the local error using the SD
method is liable for an extra computational cost of 50% more
than the cost of the computation of the approximate solution
itself. Following the outline given in section 4.4, the step-size
control formula when using the SD method is

hnew = max

0.5 , min

2.0 , 0.9 5

√
tol

L[4]
k+1



 hk. (30)

5.2. Soliton solution to the NLSE in optics

We first consider the case of the non-linear Schrödinger equa-
tion (NLSE) in optics, a simplified version of the GNLSE (2)
whereα = 0, fR = 0, nmax = 2. The linear operator is
D : A 7→ iβ2∂ttA and the non-linear operator isN : A 7→
iγA(z, t)

∣∣∣A(z, t)
∣∣∣2. Whenβ2 < 0, there exists an exact solution

to the NLSE known as the optical soliton [20]. Namely, if the
source term is given by

∀t ∈ R a0(t) =
N
√
γLD

1
cosh(t/T0)

(31)
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whereN = 1 is the soliton order,T0 is the pulse half-width and
LD = −T2

0/β2 is the dispersion length then the solution to the
NLSE reads∀z ∈ [0, L]

∀t ∈ R A(z, t) =
N
√
γLD

eiz/2LD

cosh(t/T0)
. (32)

Furthermore, forN ∈ N,N ≥ 2, relation (32) gives the solution
to the NLSE in positionzmultiple of π2LD.

Fundamental soliton (N = 1) doesn’t provide a well suited
example for exploring the features of the ERK4(3) method
and for comparison purposes since its shape doesn’t change on
propagation. We therefore consider in the following a 3rd order
soliton (N = 3). In Fig. 1 we show for the 3rd order soliton the
adjustment of the step-size when using the ERK4(3) method for
evaluating the local error with a tolerance set to tol= 10−6 and
an initial step-size ofh = 1 m. The other physical parameters of
the numerical experiment areL = 637.21 m,γ = 4.3 W−1 km−1,
β2 = −19.83 ps2 km−1, T0 = 2.8365 ps. The number of discreti-
sation steps along the fiber is found to be 605 and the com-
putation time is 69 s on a Intel Core 2 Quad Q6600. At the
fiber end (z = L), the relative global error measured with the
quadratic norm is 1.12 10−4 whereas the maximum relative er-
ror is 1.89 10−4.

The same accuracy with a constant step-size computation
would have required a step size of 0.01 m for a total number
of step of 63722 and a computation CPU time of 5490 s.

For comparison, when using an adaptive step-size strategy
based on the SD approach with the same values of tolerance
and initial step-size, we obtain that the number of discretisa-
tion steps along the fiber is 396 (or 792 if we consider that it
is the accurate solution computed over the fine grid of step-size
hk/2 that is propagated) and the computation time is 148 s. At
the fiber end (z = L), the relative quadratic error is 8.83 10−6

whereas the maximum relative error is 1.48 10−5. The evolu-
tion of the step-size along the fiber is depicted in Fig. 1 for a
comparison with the ERK4(3) method. Now if we impose to
find with the ERK4(3) method a quadratic error at the fiber end
of approx. 8.83 10−6 (for a comparison with the accuracy ob-
tained with the SD method) we obtain the result by setting a
tolerance of 10−7 and the number of step is 1209 whereas the
CPU time is 128 s.

This simple example illustrates the fact that the ERK4(3)
method overestimates the local error as mentioned in sec-
tion 4.3. The consequence is that the size of the steps are a
little smaller than the one obtained with the SD method on the
coarse grid and therefore that a larger number of steps is re-
quired. However, since in the ERK4(3) method the local error
for each step is computed faster than in the SD method the total
CPU time of the computation is much lower. The global er-
ror at the fiber end (z = L) is smaller when the IP method is
used in conjunction with the SD method since it is not the solu-
tion computed with the RK4 method that is propagated but the
more accurate one computed with the half step-size in the SD
method [16].

To be comprehensive, when using the same parameters as
before (a tolerance set to 10−6 and an initial step-size set to
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Figure 1: Evolution of the step-size along the fiber length for the ERK4(3) and
the SD methods (considered over the coarse and fine grids) when solving the
NLSE for a 3rd order soliton.

h = 1 m) with a step-size control strategy based on the ERK4(2)
method defined in (18) rather than on the ERK4(3) method, we
obtain at the fiber end a quadratic relative error of 2.96 10−8

and a maximum relative error of 2.77 10−8. The number of dis-
cretisation steps is 4035 and the computation time is 367 s. In
this case, the local error is estimated from the solution com-
puted with a 2nd order RK scheme and therefore the local error
is largely overestimated (since it is the more accurate solution
computed with a 4th order RK scheme that is propagated) re-
sulting in a underestimation of the optimal step-size.

5.3. Solving the GNLSE in optics by the ERK4(3) method

We now consider the case of the GNLSE (2) with the fol-
lowing set of physical parameters :ω0 = 1770 Thz, γ =
4.3 W−1km−1, β2 = 19.83 ps2km−1, β3 = 0.031 ps3km−1 and
βn = 0 for n ≥ 4, α = 0.046 km−1, L = 96, 77 m, fR = 0.245.
An expression for the Raman time response function for silica
core fiber is given in [20]. The Gaussian pulse at the fiber en-
trance (z= 0) is expressed as

∀t ∈ R a0(t) =
√

P0 e−
1
2 (t/T0)2

(33)

whereT0 = 2.8365 ps is the pulse half-width andP0 = 100 W
is the pulse peak power.

In Fig. 2 we show the adjustment of the step-size when using
the ERK4(3) method for evaluating the local error with a tol-
erance set to tol= 10−6 and an initial step size ofh = 0.1m.
The number of discretisation steps along the fiber is found to
be 279 and the computation time is 50 s. When using the SD
method for determining the step-size in the IP method in the
same circumstances we find that the number of discretisation
steps along the fiber is 232 and the computation time is 124 s.
Here again the same comments as for the soliton case can be
made when comparing the 2 adaptive step-size approaches.

When the tolerance is set to tol= 10−9 with an initial step
size ofh = 0.1m, the number of step-size with the ERK4(3)
method is 1545 and the computational time is 221s whereas 906
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Figure 2: Evolution of the step-size along the fiber length for the ERK4(3) and
the SD methods when solving the GNLSE.

steps are required by the SD method for a computational time
of 645s. The evolution of the step-size along the fiber lengthis
very similar to the one presented in Fig. 2.

6. Conclusion

We have presented an embedded Runge-Kutta scheme with
orders 3 and 4 with the aim to deliver an estimation of the local
error for adaptive step-size control purposes in the Interaction
Picture method. The corresponding ERK4(3)-IP method pre-
serves the features of the RK4-IP method and provide a local
error estimate at no significant extra cost. When compared to
the classical step-doubling approach for local error estimation
and step-size control, the ERK4(3) shows a similar behaviour
but a much lower computational time. As both the Symmetric
Split-Step method and the IP method have a very close inter-
nal computational structure the embedded Runge-Kutta scheme
could as well be used advantageously together with the Sym-
metric Split-Step method for local error estimation. An exten-
sion for this work would consist in looking for higher order RK
schemes to be used in conjunction with the IP method. One mo-
tivation for such a study is that so as to attain a certain accuracy
of the results less computational steps are required with higher
RK schemes and therefore they are likely to reduce the accu-
mulation of round-off errors. There exists in literature a lot of
high order embedded RK schemes [18]. However each of these
schemes has been constructed in order to satisfy one given cri-
terion and none of them preserve the advantageous position of
the internal quadrature nodes of the RK4 formula liable for the
efficiency of the RK4-IP method. Therefore a next stage would
be the construction of a ERK5(4) method well suited to be used
in conjunction with the IP method and that preserves the ease
of implementation and the advantageous position of the internal
quadrature nodes of the RK4 formula so far as one can.
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[13] C. Besse, B. Bidégaray, S. Descombes, SIAM J. Numer. Anal. 40 (2002)

26–40.
[14] A. Fernandez, S. Balac, A. Mugnier, F. Mahé, R. Texier-Picard,

T. Chartier, D. Pureur, Submitted to Eur. Phys. J. - Appl. Phys. (2012).
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