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Abstract

When solving certain evolution type PDE such as the Schga&tiequation, the Interaction Picture method is a valuatéenative

to Split-Step methods. The Interaction Picture method loasl gomputational features when used together with thelatdmith
order Runge-Kutta scheme (giving rise to the RK4-IP methaa}his paper we present an embedded Runge-Kutta scheine wit
orders 3 and 4with the aim to deliver an estimation of thellegar for adaptive step-size control purposes in the &dgon Picture
method. The corresponding ERK4(3)-IP method preservefettares of the RK4-IP method and provide a local error exttrat

no significant extra cost.

Keywords: Interaction Picture method, Embedded Runge-Kutta metBoaks-Pitaevskii equation, Generalised non-linear
Schrodinger equation, Split-Step method
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1. Introduction ordinary diferential equations (ODE) in a given sequential or-
der. This approach is very similar to the one used in SpépSt

Recently a “fourth-order Runge-Kutta method in the inter-(SS) methods [10]. However while SS methods rely on an ap-
action picture” method (RK4-IP method) has been propose@roximation formula such as the Strang formula [11] for the
[1, 2] as a very promising alternative to the Split-Step meth Symmetric Split-Step method, the IP method can be considere
ods for solving certain evolution type partiafidgrential equa- as exact since it amounts from a mathematical point of view to
tions (PDE) such as the Gross-Pitaevskii equation (GPE) [33 change of unknown. In the IP method as in the SS method, the
or the generalised non-linear Schrodinger equation (GRLS way the various terms in the PDE are “splitted” depends golel
[4]. The RK4-IP method has been developed in the 90’s by th@n a particular application and no general method is known.
Bose-Einstein Condensate Theory GraafpR. Ballagh from  The motivation for using the IP or SS method for solving a PDE
the Jack Dodd Centre at the University of Otago for solvirgg th is essentially numerical; the numerical approximatiorhefso-
GPE in the context of Bose condensation. It was described iltion to a linear PDE and to an ODE are easy, but a numerical
the Ph.D. thesis of B.M. Caradoc-Davies [1] and later in thentegration involving all terms together is morefitiult since
Ph.D. thesis of M.J. Davis [2]. In this latter work an embedide CFL restrictions between time and spatial discretisatieps
Runge-Kutta (ERK) scheme was additionally used in conjuncapply in order to guarantee stability of the numerical agpro
tion with the RK4-1P method for adaptive step-size contrgtp ~ mation scheme. A method of choice for solving ODE in the IP
poses but without the expecteffieiency. Since, the RK4-IP method is the fourth-order Runge-Kutta (RK4) method. Inblee
method has been widely used for numerical studies on Bos€ompared to other RK methods it can be implemented in the
Einstein condensates, see e.g.[5-7]. context of the IP method to have very low memory consumption

The name “Interaction Picture” (IP) and the change of un2nd high computationalfiéciency thanks to the advantageous
known at the heart of the method Originate from quantum mepOSition of the internal quadrature nodes of the RK4 scheme.
chanics [8, 9] where it is usual to choose an appropriate “pic

ture” in which the physical properties of the studied systzm From a computational point of vie_w thg Interaction Picture
be easily revealed and the calculation made simpler. In a nnethod is very close to the Symmetric Split-Step methoddase

merical context the “Interaction Picture” approach is a \wéy on the Stra“ng_ splitting fo_rmula widely used to solve the non-
solving certain PDE of evolution type by decoupling the ¢ine I!near Schrodlnger e_quatlon [12, 13].‘ It h_as been for th‘ﬁ fir
and non-linear terms in the equation in order to make the redime applied for §0Ivmg the GNL,SE in optics by J. Hult in [4]
olution simpler. Typically, the solution to the PDE is oftei where an experimental comparison of the RK4-IP method to

by solving a sequence of linear PDE problems and non-linea?t"€r SS methods based on their numeridétiency on bench-
mark problems in optics is presented. The experimental in-

vestigation undertaken in [4] indicates that the RK4-IPhoelt
Email addressesstephane .balacQuniv-rennesl.fr (Stéphane exhibits 'ntereSt!ng convergence properties and prowidese .
Balac),fabrice .mahe@univ-rennesi.fr (Fabrice Mah&) accurate numerical results than comparable SS methods. Thi
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work on the RK4-IP for solving the GNLSE has come to our2. Overview of the I nteraction Picture method

attention while working on the numerical simulation of inco )

herent optical wave propagation in non-linear fibers [14]. | 2-1. PDE problem setting

[15] we have investigated the numerical properties of thdRK  We first present a brief summary of the IP method for a gen-

IP method and we have made a precise comparison between téal evolution equation in the form

RK4-1P method and the Symmetric Split-Step Fourier method

with fourth-order Runge-Kutta scheme (S3F-RK4 method). We ﬁu(s 1 =0u(sr)+ Nu)sr) (1)

have shown that the RK4-IP method has a cost very same to the ds

S3F-RK4 method due to a computational approach very similavhere and N denote respectively linear and non-linear op-

to the one involved in the SS methods but has order of conveerators (that usually do not commute to each other); thafine

gence 4 whereas the S3F-RK4 method is limited by the secongifferential operato includes all the derivation terms with

order accuracy of the Strang splitting formula. respect to the variablebut does not involve derivation with re-
specttosand the non-linear operatdf does not involve deriva-
tion at all. This PDE is to be solved for the unknowin a set

At presenttime a limitation of the RK4-IP method is the lack | x  where typicallyQ is an open subset iRY, d € N*, and| is

of a general automatic adaptive step-size control versidineo  an open interval ifR. Together with (1) we consider the initial

method. Some attempts for using an adaptive step-size cogondition:u(s = 0,r) = vo(r), Vr € Q wherevg is a suficiently

trol strategy in conjunction with the RK4-1P method have how regular function fronf2 to C.

ever been made. The well known step-doubling approach (or For instance, for the cubic non-linear Schrodinger equati

Richardson extrapolation) is the more common way for local

error estimation and step-size control [16]. However itsipa- { éu(t )+ AU ) +ieu(t, N)u(t,r) = 0 ¥r e R2Vte R

tational over cost may be considered as prohibitive. An adap{ 9t ' ' '

tive step-size control strategy based on a conservatiorggne

principle has been proposed in [17] for the GNLSE. It is how-

ever only valid for lossless fibers. An embedded Runge-Kuttavheree = +1 andA stands for the Laplacian operatoriid, we

(ERK) method based on the Fehlberg formula [18, 19] has alsBaveD : U - iAuandN : u - ieuu.

been implemented in conjunction with the IP method in [2]. For the GNLSE in optics [14, 20] we are interested in solving

One major advantage of ERK methods for step-size control i§h€ following problem

that they are independent of the particular equation to bedo

and therefore are very general. However the ease of implemen { a_zA(Z’ t) = DAz t) + N(A)(zt) Vze]O,L[VteR

ut=0,r)=u(r) VreR?

(@)

tation and the advantageous position of the internal quacgra
nodes of the RK4 formula liable for thefiency of the RK4- A0,1) = aft) VteR

P _metho_d (by_reducin_g both memory consumption and COMPYhere the unknowi corresponding to the slowly varying op-
tational time) is lost with the Fehlberg formula and erodg an tical pulse envelope is a function of timand positiorz along
benefit of the Fehlberg RK scheme for the IP method. the fiber; the linear operatdd is given by

Nmax in-1
In this paper we present a 5 stage 3rd order RK scheme em- D:Am —%QA - ,Bnlwa?A 3)

bedding the standard 4th order RK scheme which possess the n=2 '

same features as the standard 4th order RK scheme when usgfere is the linear attenuation cfigient andgy, n > 2 are

in conjunction with the IP method. In particular this ERK}(3  the jinear dispersion céiécients; the non-linear operatd is

scheme preserves the ease of implementation and the advayjyen py

tageous position of the internal quadrature nodes of the RK

formula. Above all it delivers a local error estimate at ne ex

tra computational cost (at least when the current step iserot

jected) for adaptive step-size control strategy.

@+ 2| (@~ mazy e of

N A iy p

. @
+ Az [ Pe(9IAG1- 9 ds)

The paper is organised as follows. In section 2 we presemwherehg is the Raman time response functidi, represents
an overview of the IP method together with the standard 4tlthe fractional contribution of the delayed Raman response t
order RK method. In section 3 we recall the main features ohon-linear polarisationy is the non-linear parameter ag
ERK methods for local error estimation purposes. Sectia 4 iis the pulsation of the optical pulse assumed to be quasi-
devoted to the building of an ERK scheme to obtain local erromonochromatic. We may notice that another splitting is pos-
estimate in the IP method while preserving all the numericatible for the GNLSE: the term%aA can be added to the non-
advantages of the standard RK4 method. Last, in section 5 wiear operatolN instead of the linear operatab.
present numerical simulation results in order to illugtrite For the Gross-Pitaevskii (GP) equation used to explore the
features of the ERK4-1P method. dynamics of vortexes in Bose-Einstein condensates in 2 or 3



space dimensions [1-3], the condensate wave funatide  can show [15] that the new unknovm{j’ is solution to the fol-
given in the domaif2 occupied by the condensate by lowing problem

azp(r,t) =i AY(r,t) + N@)(r,1) (5) 2uk (s1)=Gk(sr, u P(s.1)) Vsels, Sl Vr e Q 1)

whereA is the Laplacian operator in 2 or 3 dimensions, and Uy k(S 1) = exp(sc - §<+%)D) n(r) VreQ
wheregi(s.r,-) = exp(-(s - §,1)D) o N o exp((s - 5. 1)D).
The major interest for using the change of unknown (10) i tha
on the contrary to problem (9), problem (11) for the unknown

and positiorr) andC is a constant proportional to the number Y does not anymore involve explicitly partial derivation wit

of atoms in the condensate and to the scattering Iength.-EquéeSpeCt to the variable Partial derivation with respect to the

tion (5) is to be solved to describe the condensate evolutio2riabler now occurs through the operator exf - s, 1)D)
from a given initial condensate state. which is computed separately. Thus problem (11) can be nu-

merically solved just as if it was a non-linear ODE witlas a

) . parameter using a standard quadrature scheme for ODE such as
2.2. The Interaction Picture method Runge-Kutta (RK) methods.

N iy o =i(Vy + ClyPy) (6)

whereV is the external potential applied (function of tinhe

The IP method for solving (1) may be understood as follows.
The intervall =]0, S[is divided intoK sub-intervals where the 2.3. The RK4-1P method

grid points are denotes, k = {0,...,K} such that ]J0S] = The “standard” Runge-Kutta (RK4) scheme is a method of
Uko 1S Seal where 0= s < s < -~ < s¢1 < % = S.  choice to be used in conjunction with the IP method due to its
Forallk € {0,...,K — 1} the step Iength betweep ands.1iS  convergence order 4 whichfers a good compromise between
denotedy and we also S&h 1= S+ 3. accuracy of the result and cost of the computations. Besides
Solving equation (1) for the initial condition(s = 0,r) = the values of its internal quadrature nodes (@, 1L) imply by
vo(r), ¥r € Qs equivalent to solving the following sequence of symmetry some cancellations in the terms to be computed com-
connected problems: pared to other 4th order RK schemes when used in conjunction

with the IP method, reducing the global computational cdst o
{aiuo(s, ) =Dug(sr) + NUg)(sr) Vse]s, si] VreQ the method. The standard RK4 method is defined by the fol-
s

lowing Butcher tableau [18]
Uo(So, 1) = vo(r) VYreQ

(7) C1 0
andee{l,...,K—l} C | a1 % %
P C3 | az1 asz = 5 0 % (12)
{a—suk(s,r) =Du(sr)+ N(u)(sr) Vse]sq Sqa] VreQ Ca | ag,l ag»z ag,s . 1 | ? (13 11 .
1 2 3 D4 i 3 3 &
U(S 1) = Ua(SeT) VT e Q ¢ e
_ _ (8) One step of the RK4 scheme defined by (12) is used to ap-
Obviously for allk € {0,..., K — 1} the unknown functionsl  proach the solution to problem (11) for &lk {0,...,K — 1} as
andu are related by follows: Vr € Q
Ys€l8e Sl Yre@ usn=udsn. WP(S01,1) ~ WP(ST) + o 1 + 200+ 203+ ) (13)
Let us consider one of the problems defined in (7)—(8) for a \where
given value ok € {0, ..., K — 1}. Such problem reads
5 1= Gl T U(80 1) = exp@D) - N(exp-%D) - U (s 1))
{a_SUK(Sr) = DU(ST) + NUI(ST) VS ElS Sl V1 € Q = Gi(sc+ B rUP(s6 1) + ag) = N(UP(s6T) + o)
(S, 1) = w(r)  VreQ @ " Gi(sc+ %1, uP(se ) + “kaz) = NUP(sT) + 2ay)
wherev is a given function. We introduce as new unknown the %4 = Gk(Sk + hi. T, u P(Se 1) + hiaa)
mapping = exp(-%D) - N(exp@ D) - [uP(sc. 1) + hyas).

uLp S(s 1) €[S Se1] X Q > expl=(s— §(+%)D) -uk(s,r) (10)  From the change of unknown (10) the solution to problem (9)
is approximatedr € Q asu(Sc1,) ~ Via(r) where
where from a mathematical point of view the exponential term
have to be understood in the sense of the continuous group genvi.1(r) = exp(th) u P, 1) + & e (a1 + 202 + 203 + @4) |.
erated by the unbounded linear operafbf21]. From (9) one (14)
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Actually since we are interested in computiag(r) rather tion of the ODE under consideration, corresponding to 2 RK
than u? (s1. 1) which is a go-between in the computational schemes of dierent convergence ordefsandq (4 > p).

approach, we recast the above approximation scheme for allhese 2 approximations of the solution can be considered as a
k € {0,...,K — 1} in the following way to reduce its computa- accurate approximate solution (the one computed with the nu

tional cost. We set merical scheme of higher ordgyrand a coarse approximate so-
VP(r) = exp(@D) - vi(r lution (th_e one computed Wlth the one of lower orqi&.rThe_se
() p(ﬁ ) - vidD) 2 approximate solutions obtained with RK schemes fiedént
a1 = expi D) - N(vi(r)) orders can be combined in a specific way so as to deliver an
ay = N(\/E n hz_kal) estimation of the local error committed while approaching t

. h solution with the lower order method.
@z = N(V + 3a2) Assuming that for problem (11) the solution value at grid
@, = N(exp(%@) . [VLP + haa)) point s is regarded as exact (because we are concerned by an
estimation of the local error), we denote Wy, (resp.V;" ,) the
, coarse (resp. accurate) approximate solution at grid mint
Vis1(r) = exp(%i))-(\f,f(r)+ % (@1 + 202 + 2a3) )+ %aﬁl. (15)  given by thep-th order RK (respg-th order RK) scheme. The
Of course, the crucial point in the above computational sehe local errors for each of the 2 methods are respectively given

— referred as the RK4-IP method — is the way the 4 mappingté’y [18]
involving the exp(;—k - D) operator are computed. For a regular o]

and

= UP(Se1. 1) = V2, (1) = wp(Se 1. W) B + B(E)

function ¢, the mapping +— exp(%i)) - ¢(r) coincides with kil 7 : , L X
the solution fors = s, 1 to the following linear evolution prob- 69 = UP(Se1. 1) = V2, (r) = Yg(Se T, YY) BT+ B(hIT)
lem [15
[ ](9 wherey, (resp.yq) is a function of the elementaryfiiérentials
—W(S,r) = DW(S,r) VYs€]s, S, 1] VreQ of orderp (resp.q) of u'. By difference of this 2 relations we
gs ’ (16)  obtain
W(S, I) =¢(r) YreQ _ _ _
In each stegk a major part of the computationaffert lies in vk&l(r) - ‘/kpu(r) = p(Se, r"’lkp) hEH + g(hf(”z)-

the resolution of this linear PDE problem for 4 distinct it .
conditions. The numerical method used to solve it is stiyngl Th_us the local error fo_r the RK s_cheme of 'QWE” (z)rd_er at grid
dependent to the linear operatorand domairf2, that is to say p0|nt§k can be approximated, with an error mIQ( ), in the

to the physical application under consideration. For th&Gp following way

e.g. this PDE problem is a heat type problem setin a 2D or 5 _ ipy ap+1 P2y P (py AP

3D domain. In [1-3] it is solved by a Fourier spectral method. 65 = Up(S6 V) DT + @) ~ V2 () - V2 (r). (A7)

For the GNLSE, problem (16) whete = R can be solved by In general, ERK methods are constructed wjta p+1. One

a direct use of Fourier transforms [4, 14]. Moreover the costy¢ the most famous ERK method is the Fehlberg 4(5) [18, 19].

of the evaluation of the 4 non-linear termé(y) is strongly | a5 6 stages and delivers a RK approximation of order 4 with
dependent to the physical application. Neverthelessitds a 5, orror estimate computed from a 5th order RK method. In
rect function evaluation without intermediate PDE problem practise, even if the local error estimate (17) holds ontyttie

b_e solved._ Thus, in designing a new ERK mthod_ for adappgver order method it is customary in practise to use values
tive step-size control purposes we have to keep in mind#eatt gi e, py the higher order method as the approximation of the
global computational cost of the method will be directlypoo- — 5q)ion at grid points since they are more accurate. This is
tional to the number of exponential operators %@D andtoa  gometimes interpreted 4scal extrapolation While in such a
IOW(_ar degree_to the numb(_er of non—Iln(_aar operagisvolved.  aqe relation (17) is still used for step-size control pagsdt is
Finally, an important point }O be n(l)tlced concerns the value no longer related asymptotically to the local error for thep
of the coéﬁme_ntscl - O_’ C2 = 3,C3 = 5 andc, = 1 of the RK4 agated solution. One can report that there exists some ERK
scheme (12) in theficiency of the RK4-IP method. Indeed, nethods such as the method of Dormand and Prince [22] that

in conjunction wi - =gt i . the r .
in conjunction with the choice o4, 1 = s+ 7 inthe change 5.6 gesigned to minimise the local error of the higher order s
lution.

of unknown (10), this particular choice of thog codticients
enables the cancellation of 4 exponential operator terrss Last, one has to point out that the main idea behind the con-
compared to other possible sets of values, and therefoeafBv ot of ERK method is to have a large part of the internal com-

putations of the 2 RK schemes in common in order to have a

an important computational cost.
_ _ computational cost much lower than the one required when us-
3. Local error estimate by using a 4th order embedded  ing 2 arbitrary RK methods of ordgrandg.
Runge-Kutta method

3.1. Overview of embedded Runge-Kutta methods 3.2. Embedded Runge-Kutta methods for the IP method

Embedded Runge-Kutta (ERK) methods are special RK When looking for an ERK method for using in conjunction
methods designed to deliver two approximations of the soluwith the IP method, 2 dierent approaches can be explored:
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o the first one would be to look for a 4th order RK method Thus the 3rd order RK method to be used together with the stan-
embedded in a 5th order RK method so as to design adard RK4 method given in (12) for local error estimation nec-
adaptive step-size strategy based on the estimation of thessarily implies 5 stages. We look for a 3rd order RK method

local error of the 4th order RK method; defined by a Butcher tableau in the following form:
e the second one would be to look for a 3rd order RK method
embedded in a 4th order RK method and to use the local 0
. . . . 1 1
extrapolation idea to propagate the solution computed with 3| 3
the 4th order RK method. % 0 %
- - e 10 0o 1 (19)
The main drawback of the first approach lies in the number of
computational stages required by a 5th order RK method which Cs| @1 32 a3 54
is 6 at least [18]. Even if part of the stages are in common be- by b, by by bs

tween the 2 ERK methods, this approach implies a significant
extra cost of at least 2 stages. In the situation considezes} h ) )
each stage of the RK method requires one evaluation of func/Nere the free cdicientsas ; andby, j = 1,...,4 have to be
tion Gy which itself involves 2 exponential operator evaluationsd€termined in order to improve the computatiorfabéency of
and one evaluation of the non-linear operatér The excess the me’ihod. Itis customary for RK scheme t[O set the condition
computation may be regarded as prohibitive and we will con® = Zj-1 3 and therefore the value @f is imposed by the
sider here the second approach mentioned above. There is %@lue of the other free cdicients.
infinite number of 3rd order RK method embedded in a 4th or- The computational sequence for one step of the ERK method
der RK method and requiring 4 computational stages, see [18fiven in (19) applied to problem (9) becomes (see (13) ang (15
Now, we have to keep in mind that théiieiency of the RK4-IP  for a comparison)
algorithm is partially due to the values of thecodficients of
the RK4 schemecf = 0,¢c, = 1/2,¢c3 = 1/2 andc, = 1). These .
values are capitalised to reduce the number of exponertial o V() = exp(3D) - v (1)
erator terms to be computed. Other choices for the values of o, = Gy(s,,r, \/E(a(, r) = exp(h—sz)) N(VI[<4] (r)
the codficientsc; would lead to a larger number of exponen- 3 he p P By y = AP hy
tial operator terms and therefore to an increase in the cempu @2 = G(S+ 2, LY (Se 1) + Fa1) = NV (So 1) + 1)
tational cost. We have to look for an embedded Runge-Kutta a3 = Gi(sc+ %, 1, V(S 1) + Faz) = N(VP (s 1) + %ay)
method with this constraint in mind. Moreover we will only = Gl + hir \/p( 1) + hyars)
consider here explicit Runge-Kutta methods because tha® i @ k(S Pl 1 Vi (S kas_
reason why using implicit RK methods which are more expen- = exp(—%@) . N(exp(%@) . [v'kp(s(, r)+ hka’g])
sive. Additionally, we will assume that the weight ¢heents ip 4
bii = 1,...,4 are nonnegative real numbers which corresponds ~ @5 = Gk(S + Gshi. T, Ve (S 1) + i z; @} 8 )
to an usual simplification assumption in the study of RK meth- 1= i
ods in order to avoid roundierror issues for the method. - eXp(_(ff’ B %)hk@) ' N( exp(Cs - %)hk@) ’ [Vllf(sk’ r

+ thaj a5,j])

=1

4. The ERK4(3) method

4.1. A5 stage RK3 scheme and the RK3 and RK4 approximations to the solution to prob-
One can show that when imposing the valees= 0, c; = lem (9) at grid points, are given by

1/2,c3 = 1/2 andcy = 1 for a 4 stage RK method, we can not

get a 4th order RK method embedding a 3rd order one whatever 5

the values of the cdicientsb; anda; j. We either obtain 2 RK 3] _ N o)) L TP .

method of order 4 which is not suited for local error estima- V'[“l(r) exp(h2 D) wk )+ hk;‘ bjar]

tion or a 2nd order RK method embedded in a 4th RK method N

such as the standard ERK4(2) method defined by the following “k+

Butcher tableau (the cfiicients of the lower order RK method

are depicted in gray cells)

() = exp&D) - [Vf(r) + % (@1 + 202 + 203 + @) |-
(20)
By choosinggs 1 = £, 82 = 3, 853 = 5 andass = & andcs =
Z‘j‘=1 asj = 1, the same term appears above in the expression of

as aswellasinthe expressionvz}jﬂ1 and this can be capitalized

in order to reduce the computations. ERK methods having this
feature are said to satisfy the FSAL property (First Stepast).
[18]. Thus it remains to determine the values of the | =
1,...,5in order that the RK method (19) has order 3 (but not
order 4). The 4 condition equations for the method to be of the

(18)
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3rd order read [18, 23]: follows

V() = exp30) - (r)

b1+b2+b3+b4+b5=1 al:exp(%z))a,ak

%b2+%b3+b4+b5=% a2=N(\/E(Sk,r)+%a1)

%bz + %bs +by+bs = % ' D) a3 = NV (s 1) + h_zk‘_’Z)
1,01 1 1 oy = N (exp(3 D) - [V (s 1) + huarg] (23)
S A B(r) = expED) - [VP(1) + ¥ (01 + 202 + 209) |

Vi (1) = B(r) + ay,
The solution by, by, bs, by, bs) to this under-determined linear o _ N(v["'] )
system is (16, 1/3,1/3,1/6 - bs, bs) where the free parameter ST"‘” k+1h
bs can be arbitrarily chosen. One can check that whatever the VL+1(r) = B(r) + 35(20, + 3 ;1)

value ofbs the set of condition equations for the fourth order is

not satisfied by the RK method (19) and therefore the method igompared to the computational procedure (15) of the stalndar
not of order 4. Finally, we have obtained a family of 3rd order’<4 scheme for the IP method, the propound computational

RK methods embedding the standard 4th order RK method (18rocedure (23) has a very similar computational cost evereif
and indexed by a free parameterThis family is given by the RK4(3) scheme has 5 stages: the number of evaluations of the
following Butcher tableau non-linear operatoN is 4 in both cases and in both cases we

have 4 evaluations of the e@@) operator. The extra cost is
limited to 2 additions and 3 multiplications and the needdek

0 in memory 2 intermediate results.
111
2|2
% 0 % 4.3. Local error estimate for the ERK4-IP method
1/0 0 1 (22) We consider the ERK4(3) method given by Butcher
1 % % % % tableau (22). The local errors at grid post, for the RK3
and the RK4 schemes are respectively given by [18]
i1 1 d_) ]
6 3 3 \b

() = (s, 1) = VL (0 = va(se V) e + @)

where the gray cells correspond to Butcher tableau for e st A (1) = u(se 1) = () = va(se ) e + B(hY)

dard RK4 method and the whole array is the Butcher tableau for ) o

the RK3 method. This embedded RK4(3) method actually coWhereys andy, are functions of the elementaryfiirential of
incides with Dormand and Prindeunge-Kutta 4(3) Tnethod orde_r 3 and 4 respectively. Byfterence of these 2 relations we
[24]. Suitable value fon suggested in [24] i2 = 5. obtain

(24)

VL) = V(1) = ws(s 1 VD) B + B().
Thus the local error for the 3rd order RK method at grid point
S.1 can be approximated, with an error inIQX, in the follow-
4.2. Computational cost of the RK4(3) method ing way:
RL0) = va(se M) g+ B0R) ~ 2, () - i (). (25)

+ +

ThelL2-local error at grid poin. 1 is then computed as follows
The computational sequence (20) for one step of the

ERK4(3) scheme defined in (22) can be improved as follows. - - a 3 P2 3
As before one can save the computation of the €%0) term L1 = 16z » (f M1 (r) = Vi ()] dr) (26)
involved in the expression af, and as since a cancellation o
happens with the exB(D) term in the expression ok”, and  where the integral is computed by means of a quadrature for-
v{i}l. Moreover we recall that although the ERK4(3) methodmula (e.g. the rectangle quadrature rule for its simpljcifys
appears as a 5 stages method,fiisaive cost is very similar to mentioned before, even if the local error estimate (25) $iold
the one of a 4 stages method since the computation of the firsinly for the 3rd order method, in practise we use the valuergiv
codficienta; at stegk+1 shares the evaluation of the non-linear by the 4th order method as the approximation of the solution a
operatorN in common with the cocientas computed at step  grid points..1. In general, this approach overestimates the ac-
k. Namely, the computational procedure (20) can be recast asal local error, which is safe but not of optimdtieiency.
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4.4. Step-size control the propagation of optical solitons and the propagationpif a
cosecond pulse into a single-mode fiber where fiber losses, no
For step-size control, a tolerance “tol” is given as bound onjinear Raman and Kerifiects and high order chromatic disper-
the local error estimate. A step-size control strategy f8}-  sjon are taken into account. In both cases, the adaptive step
sists in rejecting the current step-size if it gives an eated  sjze strategy using the ERK4(3) method is compared to the one

local error higher than the specified tolerance and in ad®gpt pased on the step-doubling (SD) approach.
the solution computed with this step-size if otherwise. Whe

the current step-size is rejected, anew smaller step-sigem _ 5.1. Local error estimation by step doubling

be chosen to recompute the solution from the current gridtpoi . ] )

On the contrary, when the current step-size meets the talera __1he idea behind the step doubling method (also known as
requirement for the local error it has to be scaled up for thé¥ichardson extrapolation method) for estimation of thealoc
next step computations. In both cases, the new step-size hase/Tor is the following [16]. The local errofil, for the RK4

be estimated using the available information from the mesi Method (12) at grid poing. is given by (24). Lewi, be the
step computations. We consider the ERK4(3) method defineglution at grid points.,, computed from grid poins using

by (22) and we assume that the leading term in the asymptotign€ Step of sizé, and letv,1 be the solution computed using
expansion (25) of the local error dominates the others fer thtWO steps of sizéy/2, in both cases assuming the solution at

current value of the step-sitg. From (25) and (26) there ex- 9rid points, to be exact (since we are interested in the local
istsC e R* such that error). The local error at grid poirs,; can be approximated,

with an error behaviour in mg), in the following way:Vr € Q

3 3 4
Lk = 16y = € o 21
£eh(0) ~ 5 Faa(r) = Viea (). (28)

The optimal step-sizég is the one for which the local error
estimateLEl is the closest to the prescribed tolerance ial,

C hﬁpt = tol. By eliminating the constar@ from these 2 rela-
tions we obtain

Thel?-local error at grid poins, is then approximated by

4
w21

1
2
,/ L ™ fW -V rlzdr) 29
hopt= hk 4 t[—(;]l k+1 24 ( o k+1( ) k+l( ) ( )
I‘k+1

where the integral is computed by mean of a quadrature for-
For robustness the step-size control has to be designedén or mula. Relation (28) gives an approximation of the local erro
to respond as smoothly as possible with real or apparenpabrucorresponding to the solution computed over the coarse grid
changes in behaviour. This means that the step-size shotild nHHowever, since the fine mesh grid solution is a better approx-
vary from one step to the other by an excessive ratio. Thheis t imation of the solution in practise it is kept as the approxi-
reason why we impose that the new step-size does not excegthte solution. The cost of estimating the local error by the S
2 times the current step-size above and half the current stepnethod is then the cost of the computation of the coarse mesh
size below. Following these requirements, we use the falgw  grid solution and this cost is approximately half the costhef
step-size control formula computation of the fine mesh grid solution since the step-siz
is twice larger. Thus, estimating the local error using tie S
. tol method is liable for an extra computational cost of 50% more
hnew = max{O.S, m'n{z'o’ﬂl_[_s]]] hi (27) " than the cost of the computation of the approximate solution
kel itself. Following the outline given in section 4.4, the st@pe
control formula when using the SD method is

where “tol” denotes the tolerance value specified by the aser
a bound on the local error amﬁll is estimated by (26). The
constant values.b and 20 are somewhat arbitrary and have Rnew = max{O.S, min{2.0,0.9 5 t_ol]] . (30)
to be regarded as design parameters. Sometimes an additiona |[<4+]1

safety factor (typically a value such9) is introduced in for-

mula (27) but it is omitted here since the method already-overs.2. Soliton solution to the NLSE in optics

estimates the local error. We first consider the case of the non-linear Schrodingeaequ

tion (NLSE) in optics, a simplified version of the GNLSE (2)
wherea = 0, fr = 0, Nnmax = 2. The linear operator is
D : A iB20¢A and the non-linear operator i§' : A —

iyAZ 1) |Az t)|2. Wheng, < 0, there exists an exact solution

In the framework of a project on the numerical simulation, the NLSE known as the optical soliton [20]. Namely, if the
of incoherent optical wave propagationin non-linear filgé® <5 ,rce termiis given by

we have implemented the ERK4(3)-IP method for solving the
GNLS problem (2). We present in this section numerical tssul
from the ERK4(3) method on 2 selected applications in optics

7

5. Numerical experiments

1

N
teR 2l = = T

(31)



whereN = 1 is the soliton ordeiT is the pulse half-width and

»
3

Lp = —TZ/B is the dispersion length then the solution to the % % 50 swpsize Fa
NLSE reads/z e [0, L] 4?< ¥ 4+ s step-size h/2| %%
'** ERK4(3) X ;? -
N &2 BN 5
YteR Alzt)= ————. 32 Lo %
Y VLo cosh{/To) (32) e % X [
Furthermore, foN € N, N > 2, relation (32) gives the solution g iy % X X #
to the NLSE in positiorz multiple of Lp. § \ % gﬁ ﬁ% ¢

=
o

Fundamental solitonN = 1) doesn’t provide a well suited ok i
example for exploring the features of the ERK4(3) method s
and for comparison purposes since its shape doesn’t change o
propagation. We therefore consider in the following a 3idkor
soliton (N = 3). In Fig. 1 we show for the 3rd order soliton the h T T T T T
adjustment of the step-size when using the ERK4(3) methiod fo propagation length [m]
evaluating the local error with a tolerance set toal0° and
an initial step-size ofi = 1 m. The other physical parameters of Figure 1: Evolution of the step-size along the fiber lengitttie ERK4(3) and
the numerical experiment ate= 63721 m,y = 43W1t km‘l, the SD methods (consid_ered over the coarse and fine grids) sdieing the
By = —~19.83pEkm™L, Ty = 2.8365 ps. The number of discreti- \->F for @ 3rd order soliton.
sation steps along the fiber is found to be 605 and the com-
putation time is 69s on a Intel Core 2 Quad Q6600. At theh = 1 m) with a step-size control strategy based on the ERK4(2)
fiber end g = L), the relative global error measured with the method defined in (18) rather than on the ERK4(3) method, we
quadratic norm is 12 104 whereas the maximum relative er- obtain at the fiber end a quadratic relative error 62108
roris 189 10°. and a maximum relative error of27 108, The number of dis-
The same accuracy with a constant step-size computatiaretisation steps is 4035 and the computation time is 367 s. |
would have required a step size aD@m for a total number this case, the local error is estimated from the solution-com
of step of 63722 and a computation CPU time of 5490 s. puted with a 2nd order RK scheme and therefore the local error
For comparison, when using an adaptive step-size strategy largely overestimated (since it is the more accuratetiemiu
based on the SD approach with the same values of toleranc®mputed with a 4th order RK scheme that is propagated) re-
and initial step-size, we obtain that the number of disseeti sulting in a underestimation of the optimal step-size.
tion steps along the fiber is 396 (or 792 if we consider that it
is the accurate solution computed over the fine grid of step-s 5.3. Solving the GNLSE in optics by the ERK4(3) method

hy/2 that is propagated) and the computation time is 148s. At \ve now consider the case of the GNLSE (2) with the fol-
the fiber end% = L), the relative quadratic error is&3 10° lowing set of physical parameters @y = 1770Thz,y =
whereas the maximum relative error igl810°. The evolu- 4 3\w-1km L, B> = 1983pgkm?, B3 = 0.031pskm* and
tion of the step-size along the fiber is depicted in Fig. 1 forag — o forn > 4, o = 0.046 kn?, L = 96,77 m, fr = 0.245.
comparison with the ERK4(3) method. Now if we impose t0 an expression for the Raman time response function forasilic
find with the ERK4(3) method a quadratic error at the fiber enctore fiper is given in [20]. The Gaussian pulse at the fiber en-
of approx. 88310° (for a comparison with the accuracy ob- trance ¢ = 0) is expressed as
tained with the SD method) we obtain the result by setting a
tolerance of 10" and the number of step is 1209 whereas the VteR aot) = \/p_oe—%(t/To)z (33)
CPU time is 128s.

This simple example illustrates the fact that the ERK4(3)whereTy = 2.8365 ps is the pulse half-width afy = 100 W
method overestimates the local error as mentioned in seds the pulse peak power.
tion 4.3. The consequence is that the size of the steps are aln Fig. 2 we show the adjustment of the step-size when using
littte smaller than the one obtained with the SD method on thehe ERK4(3) method for evaluating the local error with a tol-
coarse grid and therefore that a larger number of steps is rerance set to to: 10°® and an initial step size df = 0.1m.
quired. However, since in the ERK4(3) method the local errofThe number of discretisation steps along the fiber is found to
for each step is computed faster than in the SD method thle tothe 279 and the computation time is 50s. When using the SD
CPU time of the computation is much lower. The global er-method for determining the step-size in the IP method in the
ror at the fiber endz = L) is smaller when the IP method is same circumstances we find that the number of discretisation
used in conjunction with the SD method since it is not the-solu steps along the fiber is 232 and the computation time is 124 s.
tion computed with the RK4 method that is propagated but thédere again the same comments as for the soliton case can be
more accurate one computed with the half step-size in the Sihade when comparing the 2 adaptive step-size approaches.
method [16]. When the tolerance is set to tel 107° with an initial step

To be comprehensive, when using the same parameters aige ofh = 0.1m, the number of step-size with the ERK4(3)
before (a tolerance set to 1and an initial step-size set to method is 1545 and the computational time is 221s whereas 906
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Figure 2: Evolution of the step-size along the fiber lengthtfie ERK4(3) and 2l
the SD methods when solving the GNLSE. 3]
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steps are required by the SD method for a computational time{a
of 645s. The evolution of the step-size along the fiber leigyth 7]
very similar to the one presented in Fig. 2.
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[11]
[12]
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6. Conclusion

We have presented an embedded Runge-Kutta scheme wiH]
orders 3 and 4 with the aim to deliver an estimation of theIIoca[15]
error for adaptive step-size control purposes in the lotera
Picture method. The corresponding ERK4(3)-IP method pre-
serves the features of the RK4-IP method and provide a loca}®l
error estimate at no significant extra cost. When compared tﬁgl
the classical step-doubling approach for local error estiion
and step-size control, the ERK4(3) shows a similar behaviou[19]
but a much lower computational time. As both the Symmetric
Split-Step method and the IP method have a very close inteti-
nal computational structure the embedded Runge-Kuttaisehe [21]
could as well be used advantageously together with the Sym-
metric Split-Step method for local error estimation. Anezxt 221
sion for this work would consist in looking for higher ordekKR 23]
schemes to be used in conjunction with the IP method. One mo-
tivation for such a study is that so as to attain a certain@ogu  [24]
of the results less computational steps are required withdri
RK schemes and therefore they are likely to reduce the accu-
mulation of round- errors. There exists in literature a lot of
high order embedded RK schemes [18]. However each of these
schemes has been constructed in order to satisfy one giwen cr
terion and none of them preserve the advantageous posftion o
the internal quadrature nodes of the RK4 formula liable fier t
efficiency of the RK4-IP method. Therefore a next stage would
be the construction of a ERK5(4) method well suited to be used
in conjunction with the IP method and that preserves the ease
of implementation and the advantageous position of therate
quadrature nodes of the RK4 formula so far as one can.

from the Laboratoire d’Analyse et d’Architecture des 8yses
(LAAS UPR CNRS 8001) in Toulouse, France, for his major
contribution to the Green-Laser project.

References

B. Caradoc-Davies, Vortex dynamics in Bose-Einsteindensate, Ph.D.
thesis, University of Otago (NZ), 2000.

M. Davis, Dynamics in Bose-Einstein condensate, PhtBsis, Univer-
sity of Oxford (UK), 2001.

B. M. Caradoc-Davies, R. J. Ballagh, P. B. Blakie, Physv.RA 62 (2000)
011602.

J. Hult, J. Lightwave Technol. 25 (2007) 3770-3775.

S. Waster, T. E. Argue, C. M. Savage, Phys. Rev. A 72 (2005

R. Scott, C. Gardiner, D. Hutchinson, Laser Phys. 17 2@27-532.
C.-N. Liu, G. G. Krishna, M. Umetsu, S. Watanabe, Phy. .R&v79
(2009).

J. Townsend, A modern approach to quantum mechanicsrniational
series in pure and applied physics, University Science Bo2B0O.

M. Guenin, Commun. Math. Phys. 3 (1966) 120-132.

R. I. McLachlan, G. R. W. Quispel, Acta Numer. 11 (2002)13434.

G. Strang, SIAM J. Numer. Anal. 5 (1968) 506-517.

J. Weideman, B. Herbst, SIAM J. Numer. Anal. 23 (19863-4807.

C. Besse, B. Bidégaray, S. Descombes, SIAM J. Numeal A0 (2002)
26-40.

A. Fernandez, S. Balac, A. Mugnier, F. Mahé, R. TeRaard,
T. Chartier, D. Pureur, Submitted to Eur. Phys. J. - Appl.R[(8012).
S. Balac, A. Fernandez, F. Mahé, R. Texier-Picard, Helatatical study
of the Interaction Picture method for solving the nonlin€ahrodinger
equation in optics, Technical Report, CNRS UMR 6082 FOTOMN,2
L. Shampine, Computing 34 (1985) 179-190.

] A. Heidt, J. Lightwave Technol. 27 (2009) 3984-3991.

J. Butcher, Numerical methods for ordinanyffdrential equations, John
Wiley and Sons, 2008.

E. Fehlberg, Classical fifth-, sixth-, seventh-, anghé-order Runge-
Kutta formulas with stepsize control, Technical Reportfidteal Aero-
nautics and Space Administration, 1968.

20] G. Agrawal, Nonlinear fiber optics, Academic Press, &diion, 2001.

A. Pazy, Semigroups of Linear Operators and Applicatito Partial Dif-
ferential Equations, number vol. 44 in Applied MathemdtiSaiences,
Springer, 1992.

J. Dormand, P. Prince, J. Comput. Appl. Math. 6 (1983)28

E. Hairer, S. P. Norsett, G. Wanner, Solving ordinarffedential equa-
tions I: nonstf problems, Springer-Verlag, 1993.

J. R. Dormand, P. J. Prince, Celestial Mech. 18 (1978)-232.



