Regularized Discrete Optimal Transport

Sira Ferradans 1 Nicolas Papadakis 2, 3 Julien Rabin 4 Gabriel Peyré 1 Jean-François Aujol 3
2 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
4 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : This article introduces a generalization of discrete Optimal Transport that includes a regularity penalty and a relaxation of the bijectivity constraint. The corresponding transport plan is solved by minimizing an energy which is a convexification of an integer optimization problem. We propose to use a proximal splitting scheme to perform the minimization on large scale imaging problems. For un-regularized relaxed transport, we show that the relaxation is tight and that the transport plan is an assignment. In the general case, the regularization prevents the solution from being an assignment, but we show that the corresponding map can be used to solve imaging problems. We show an illustrative application of this discrete regularized transport to color transfer between images. This imaging problem cannot be solved in a satisfying manner without relaxing the bijective assignment constraint because of mass variation across image color palettes. Furthermore, the regularization of the transport plan helps remove colorization artifacts due to noise amplification.
Liste complète des métadonnées

Cited literature [18 references]  Display  Hide  Download
Contributor : Nicolas Papadakis <>
Submitted on : Tuesday, March 5, 2013 - 4:03:22 PM
Last modification on : Thursday, February 7, 2019 - 3:49:10 PM
Document(s) archivé(s) le : Sunday, April 2, 2017 - 9:27:56 AM


Files produced by the author(s)



Sira Ferradans, Nicolas Papadakis, Julien Rabin, Gabriel Peyré, Jean-François Aujol. Regularized Discrete Optimal Transport. SSVM 2013 - International Conference on Scale Space and Variational Methods in Computer Vision, Jun 2013, Schloss Seggau, Leibnitz, Austria. pp.428-439, ⟨10.1007/978-3-642-38267-3_36⟩. ⟨hal-00797078⟩



Record views


Files downloads