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Abstract

We study lower and upper bounds of the Hausdorff dimension for
sets which are wiggly at scales of positive density. The main tech-
nical ingredient is a construction, for every continuum K, of a Borel
probabilistic measure µ with the property that on every ball B(x, r),
x ∈ K, the measure is bounded by a universal constant multiple of
r exp(−g(x, r)), where g(x, r) ≥ 0 is an explicit function. The contin-
uum K is mean wiggly at exactly those points x ∈ K where g(x, r)
has a logarithmic growth to ∞ as r→0. The theory of mean wiggly
continua leads, via the product formula for dimensions, to new esti-
mates of the Hausdorff dimension for Cantor sets. We prove also that
asymptotically flat sets are of Hausdorff dimension 1 and that asymp-
totically non-porous continua are of the maximal dimension. Another
application of the theory is geometric Bowen’s dichotomy for Topolog-
ical Collet-Eckmann maps in rational dynamics. In particular, mean
wiggly continua are dynamically natural as they occur as Julia sets of
quadratic polynomials for parameters from a generic set on the bound-
ary of the Mandelbrot set M.

1 Introduction

1.1 Overwiew

An intuition about a compact connected set is that if it oscillates at ev-
ery scale then its Hausdorff dimension is strictly bigger than 1. One way
to quantify the concept of geometric oscillations is to use the theory of β-
numbers of Bishop and Jones, see Definition 1.1. A set K is called wiggly at
x and scale r > 0 if one can draw a triangle contained in the ball B(x, r) with
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vertices in K so that after rescaling to the unit ball, the triangle belongs
to a compact family of triangles in R

d, with d ≥ 2. An immediate conse-
quence of this approach is that essentially, by the Pythagorean Theorem,
the set K “accumulates” an additional length at scale r. The word “es-
sentially” is needed here because a wiggly continuum can intersect B(x, r)
along disjoint intervals. Even in the case of the regular intersections, the
accumulation of length at scale r remains true but the mechanism of a local
length growth is more complicated and comes from the global hypothesis
about the connectivity of K.

In [5], it is proven that every connected and compact planar set K which
oscillates uniformly at every scale around every point of K has the Haus-
dorff dimension strictly bigger than 1. The dimension estimates of [5] are
quantified in terms of β-numbers.

Definition 1.1. Let K be a bounded set in R
d with d ≥ 2, x ∈ K and r > 0.

We define βK(x, r) by

βK(x, r) := inf
L

sup
z∈K∩B(x,r)

dist (z, L)

r
,

where the infimum is taken over all lines L in R
d.

A connected bounded set K is called uniformly wiggly if

β∞(K) := inf
x∈K

inf
r≤diam K

β(x, r) > 0 .

Theorem 1.1 of [5] states that if K ⊂ C is a continuum and β∞(K) > 0 then
dimH(K) ≥ 1 + cβ2

∞(K), where c is a universal constant.
One of the main objectives of this paper is to introduce analytic tools

based on corona type constructions [6, 10, 17] which can be useful in the
area of complex dynamics. In the area of dynamical systems one cannot
expect that generic systems are uniformly hyperbolic and that geometry of
invariant fractals can be estimated at every scale as it is required in [5].
However, there are various results showing that non-uniformly hyperbolic
systems are typical in ambient parameter spaces [15, 3, 25, 1, 13, 27]. Our
results which rely only on mean estimates of wiggliness fit into a general
scheme of studying metric properties of attractors for generic dynamical
systems.

A direct outcome of the proposed methods is Theorem 1 which gives
an integral and non-uniform version of the dimension results of [5]. Theo-
rem 2 shows that the estimates of Theorem 1 are sharp. The main technical
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difficulty in proving Theorem 1 lies in controlling non-wiggly portions of a
continuum K which can have a finite length. If non-wiggly portions of K
have infinite length then the assertion that dimH(K) > 1 is generally not
true. As an example take a unit segment in the plane accumulated by a
smooth curve winding infinitely many times around it. Admitting excep-
tion sets allows also for an immediate extension of the dimension estimates
of Theorem 1 over those disconnected sets K which can be turned into a
continuum K ∪ E′ by adding a set E′ of finite length.

In a different context, a conceptually similar approach was adopted by
Koskela and Rohde in their proof that mean porosity replaces porosity for
upper estimates of the Hausdorff dimension [18].

A standard observation about Hausdorff dimension is that only asymp-
totic properties should intervene in the estimates. Another point is that
even if a connected set is not wiggly at every scale, the property to wiggle
often enough, for example on a set of positive density of scales, should be
sufficient to observe an exponential growth of length in every scale.

Theorem 1 generalizes Theorem 1.1 of [5] in three directions. Firstly,
it allows for an exceptional set E ⊂ K of finite 1-dimensional Hausdorff
measure. Secondly, it is enough to assume that the continuum K oscillates
at every point x ∈ K \ E and every scale r > 0 with some parameter
βK(x, r) > 0 which depends both on x and r > 0 so that

lim inf
r→0

∫ diamK
r β2

K(x, t)dtt
− log r

≥ β2
0 > 0 . (1)

This means that the uniform hypothesis of [5] that there exists β0 > 0 so
that for every x ∈ K and every r < diam K,

βK(x, r) ≥ β0

can replaced by the integral condition (1) without affecting the main esti-
mate on dimH(K) of [4] that dimH(K) ≥ 1 + cβ2

0 , where c is a universal
constant. Theorem 1 is also valid in higher ambient dimension.

An additional feature of Theorem 1 is that the condition (1) can be
further relaxed,

lim inf
r→0

∫ diamK
r β2

K(x, r)dtt
− log r

> 0 (2)

and still obtain a non-uniform estimate that dimH(K) > 1.
The main technical ingredient of the paper is Theorem 9 which claims

that for every continuum K of diameter 1 there exists a Borel probabilistic
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measure µ supported on a wiggly subset Z of K such that for every ball
B(x, r), x ∈ Z,

µ(B(x, r)) ≤ c′r

diamZ
exp

(

−c

∫ diam K

r
β2
K(x, t)

dt

t

)

,

where c, c′ are universal constants. The construction of the measure µ is
based on a combinatorial Proposition 1 and a geometric version of the corona
type construction explained in [23].

The study of the distribution of the measure µ on Julia sets is of inde-
pendent interest as the relations between µ and other natural measures in
complex dynamics are not known. By Corollary 2.3, µ is absolutely con-
tinuous with respect to 1-dimensional Hausdorff measure H1 on connected
Julia sets and thus µ is not atomic and dimH(µ) ≥ 1.

Theorem 1. Suppose a nontrivial compact connected K ⊂ R
d where d ≥ 2

is the union of two subsets K = W ∪ E, H1(E) < ∞ and H1(W ) > 0.

• If there exists β0 > 0 such that for all x in W

lim inf
r→0

∫ diamK
r β2

K(x, t)dtt
− log r

≥ β2
0 ,

then
dimH(K) ≥ 1 + cβ2

0 ,

where c is a universal constant.

• If for all x ∈ W

lim inf
r→0

∫ diamK
r β2

K(x, t)dtt
− log r

> 0,

then
dimH(K) > 1.

The condition H1(E) < ∞ can not be further relaxed as shows the
following example (Warsaw sine): Let K be the closure of the graph G of
y = sin(1/x), x ∈ (0, 1], in the Euclidean planar topology. The wiggly set W
is a vertical segment {0}×[−1, 1], the exceptional set E is the graph G which
has an infinite length. Clearly, dimH(K) = 1. Further examples showing
that all hypotheses of Theorem 1 are essential are discussed in Section 1.6.

We have already observed that the hypothesis about connectivity of K
can be slightly relaxed. In fact, the estimates of Theorem 1 can be also
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localized. If D(x,R) is a ball such that K ′ := D(x,R) ∩ K ∪ ∂D(x,R)
is connected we can apply Theorem 1 for a new continuum K ′ and a new
exceptional set E′ = D(x,R)∩E∪∂D(x,R). Clearly, dimH(K

′) = dimH(K∩
D(x,R)).

On the other hand, there are obvious examples of totally disconnected
and uniformly wiggly compacts K ×K, where K ⊂ [0, 1] is a Cantor set of
bounded geometry with dimH(K) < 1

2 .

Almost flat sets. We will show that the estimates of Theorem 1 are
sharp. Recall that a set N ⊂ C is ε-porous at x at scale r > 0 if there is
z ∈ D(x, r) such that D(z, εr) ⊂ D(x, r) \ N . The condition βN (x, r) ≤ α
implies that N is (1− α)/2-porous at scale r at x.

If one assumes that for every x in a bounded set N ,

lim sup
r→0

∫ diamN
r β2

N (x, t)dtt
− log r

= 0, (3)

then dimH(N) ≤ 1 follows from the dimension results of Belaev and Smirnov
for mean porous sets, Corollary 1 in [2]. The condition βN (x, r) = 0 is
much stronger than the maximal porosity 1/2 at x. It turns out that one
can replace lim sup by lim inf in the inequality (3) and still obtain that
dimH(N) ≤ 1.

Theorem 2. Let N be a set in R
d with d ≥ 2 such that for all x ∈ N ,

lim inf
r→0

∫ 1
r β2

N (x, t)dtt
− log r

≤ β2
0 ,

then there is a universal constant c > 0 such that

dimH(N) ≤ 1 + cβ2
0 .

Proof. Without loss of generality we may assume that diam N = 1. Fix
ǫ > 0 and n0 > 1. For every n ≥ n0, denote

Xn = {x ∈ N :

∫ 1

2−n

β2
N (x, t)

dt

t
≤ (ǫ+ β2

0)n log 2} .

By definition, N =
⋃

n≥n0
Xn. By Besicovitch’s covering theorem, we can

find M subcollections Gi such that every two balls from the same subcol-
lection Gi are disjoint, every ball is of radius 2−n, and Xn is covered by the
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balls from G(n) = ⋃

i≤M Gi. Let Zi be the set of the centers of the balls from
Gi. It is a finite set with the property that

∫ diamZi

0
β2
Zi
(x, t)

dt

t
≤

∫ 1

2−n

β2
N (x, t)

dt

t
≤ (ǫ+ β2

0)n log 2 .

By Theorem 11, for every i ≤ M , the set Zi is contained in a curve Γi of
length H1(Γi) ≤ CeC(ǫ+β2

0)n log 2, where C > 1 is a universal constant. Using
the fact that the balls from Gi are disjoint, we have that

∑

B∈Gi

(diam B)1+α ≤ 2(−n+1)α H1(Γi) ≤ C12
−n(α−C(ǫ+β2

0)) .

Hence, the sum of the diameters to the power 1 + α of the balls from G(n)
is smaller than

MC12
−n(α−C(ǫ+β2

0)) .

Let G =
⋃

n≥n0
G(n). Assuming that α is bigger than 2C(ǫ + β2

0), we
obtain that

∑

B∈G

(diam B)1+α ≤
∞
∑

n=n0

MC12
−n(α−C(ǫ+β2

0)) ≤ C ′2−n0Cβ2
0 ,

where C ′ is a constant. Passing with n0 to +∞, we infer that H1+α(N) <
+∞ which completes the proof.

Invariance property. Suppose that K is a continuum which satisfies the
hypothesis of Theorem 1 with E = ∅. Let SK be the set of all continuous
functions h : U 7→ C, defined on some neighborhood U of K, conformal with
the Jacobian different from zero on K \F 6= ∅ and H1(h(F )) = 0. We recall
that f : U 7→ C is conformal at z0 ∈ U if the limit (f(z) − f(z0))/(z − z0)
exists and is different from 0. Then,

inf
h∈SK

dimH(h(K)) ≥ 1 + cβ2
0 .

Indeed, h does not decrease βK(z) at any point z ∈ K \ F . Since h(K) is
a continuum, the assumption that H1(h(F )) = 0 implies that h(K \ F ) is a
wiggly part of h(K), see Theorem 3, of positive length.
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Generalizations are possible. A direction for possible generalizations
can be adopted following [8] where a uniform non-flatness of compacts with
respect to d-dimensional planes is studied. Under some additional topologi-
cal assumptions which replace connectedness, it is proved that the Hausdorff
dimension of uniformly non-flat compacts in R

n is strictly bigger than d.

1.2 Mean wiggly continua

The integral condition (1) has a discrete counterpart. Let K be a set in R
d of

diameter 1 and fix λ ∈ (0, 1). For every x ∈ K and m ∈ N, if β(x, λ−m) > c0
then β(x, λm−1) > λc0. Hence, if r ∈ Am = [λ−m−1, λ−m), m ∈ N, then the
limit

lim inf
r→0

1

− log r

∫ 1

r
β2
K(x, t)

dt

t
(4)

is equivalent to

lim inf
m→∞

1

m

m−1
∑

i=0

sup
t∈Ai

β2(x, t) ∼ lim inf
m→∞

1

m

m−1
∑

i=0

β2(x, λ−i) . (5)

We will say that a set K ⊂ R
d is mean wiggly at a point x ∈ K with

parameters λ, κ, β0 ∈ (0, 1) if there is r(x) > 0 such that for λn < r(x) the
number of wiggly scales λm,m < n, is greater than κn. Here, a wiggly scale
is defined by the condition that β(x, λm) ≥ β0

In particular, the limit (5) is positive iff K is mean wiggly with some
positive parameters at x. The hypothesis of Theorem 1 can be reformulated
in terms of mean density of wiggly scales.

Theorem 3. Suppose that K ⊂ R
d with d ≥ 2 is a continuum of diameter

1 and K = W ∪ E where W and E satisfy the following:

• H1(E) < ∞ and H1(W ) > 0.

• K is mean wiggly at every point x ∈ W .

Then
dimH(K) > 1 .

If additionally, the parameters of the wiggliness λ, κ, β0 at x ∈ W are
uniform, that is do not depend on x ∈ W , then

dimH(K) ≥ 1 + c′λ4β2
0 κ,

where c′ is a universal constant.
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Proof. By Theorem 1, it is enough to estimate from below the limit (4) for
all x ∈ W . For every integer i ≥ 0, define Ai = [λi+1, λi). Set χi = 1 if K
is β0-wiggly at x ∈ W at some scale from Ai. If χi+1 = 1 then

∫

Ai

β2
K(x, r)

dt

t
≥

∫ λi

λi+1

(

β0
λi+2

t

)2
dt

t
≥ λ4β2

0 log λ
−1 .

Therefore, the lower bound of the limit (4) is given by

λ4β2
0 log λ

−1 lim inf
n→∞

#{χi = 1 : i ∈ [0, n+ 1)}
(n+ 1) log λ−1

≥ κλ4β2
0 .

Almost flat sets. A set K ⊂ R
d is almost flat at a point x ∈ K with

parameters λ, κ, β0 ∈ (0, 1) if there is a sequence of positive integers (Ni)
such that for every i ∈ N the number of flat scales λm,m < Ni, is greater
than κNi. A flat scale is defined by the condition β(x, λm) ≤ β0.

Theorem 4. Suppose that K ⊂ R
d, d ≥ 2, is a set of diameter 1 and K

is almost flat at every point x ∈ K with the parameters λ, κ, β0 that do not
depend on x ∈ W . Then,

dimH(K) ≤ 1 + c′λ−4(1− κ+ β2
0 κ),

where c′ is a universal constant.

Proof. The proof follows immediately from Theorem 2 and a short calcula-
tion very much the same as in the proof of Theorem 3.

If for every x ∈ K, the sequence (Ni) from the hypotheses of Theorem 4
contains the set of almost all positive integers, then Corollary 1 in [2] (see
also [26, 19])) implies that

dimH(K) < d− κ+
C

| log β0|
,

where C is a universal constant.
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Non-porous continua. Sharp estimates of the Hausdorff dimension usu-
ally require that a set has a self-similar or at least a well-defined hierarchical
structure. If this additional structure is present then a relative geometrical
data (scalings) leads to useful dimension estimates, see for example [21] for
applications of this technique in the complex dynamics. When the hierarchi-
cal structure of the set is missing, the dimension estimates become difficult.
Our objective is to prove sharp lower bounds for the Hausdorff dimension
under mild topological assumptions as connectivity, compactness, and rela-
tive density. In Section 1.3, we further discuss possible applications of our
techniques in the case of compact sets.

Let ǫ ∈ (0, 1/2) and α, λ ∈ (0, 1). The set K is (ǫ, α)-dense in a ball
B(x, r) if there exists an one-sided cone C with apex at x such that

C ∩B ⊆ N(K ∩B, ε) and m(C ∩B) ≥ αm(B),

where m is the Lebesgue measure and N(A, δ) = ∪x∈AB(x, δ) is the δ-
neighborhood of the set A. The set K is (ǫ, α)-dense at z ∈ K at scales of
density κ > 0 if

lim inf
m→∞

1

m
#{n ∈ (0,m) : K is (ǫ, α)-dense in B(z, λn)} ≥ κ .

Theorem 5. Let K be a continuum in Rd, d ≥ 2. Suppose that K =
W ∪E such that H1(W ) > 0 and H1(E) < ∞. If there are positive numbers
ǫ, α, λ, κ ∈ (0, 1) such that for every z ∈ W the set K is (ǫ, α)-dense at z at
scales of density κ, then

dimH(K) ≥ 1 + κ

(

d− 1− C

| log ǫ|

)

,

where C > 0 is a constant depending only on α, λ and d.

Example 1. Let us consider a modified Mandelbrot percolation process.
Start with the square Q0 = [0, 1]× [0, 1] and choose two sequences (nk)k≥0 ⊆
N
∗ and (sk)k≥0 ⊆ (0, 1) such that limk→∞ nk = ∞. Each square of genera-

tion k is divided in n2
k equal squares of generation k + 1, but only some of

them survive, satisfying the following conditions:

• the closure of the union of all squares of generation k, denoted Kk, is
connected

• if Qk is a square of generation k and a ball B(x, δ) ⊆ Qk \Kk+1, then

δ ≤ nsk−1
k diam (Qk).
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A direct application of the previous theorem shows that

dimH(K) ≥ 2− lim sup
k→∞

sk,

where K = ∩k≥0Kk.
One can easily obtain corollaries of Theorem 5 concerning the convex

density (see the definition in the following section), in the spirit of theorems
6 and 7, as illustrated by the following example. Without the assumption
on the connectivity of K and in the absence of the exceptional set E, the
lower bound of the Hausdorff dimension in Theorem 5 becomes

dimH(K) ≥ κ

(

d− C(d, α, λ)

| log ǫ|

)

.

If we remove the connectivity condition in the previous example, we obtain
the following estimate

dimH(K) ≥ 2

(

1− lim sup
k→∞

sk

)

.

Example 2. Let C ⊆ [0, 1] be a non-empty compact set having the fol-
lowing property. For any x ∈ C and ε > 0 there exists δ > 0 such that for
all 0 < r ≤ δ either [x− r, x] \ C or [x, x+ r] \ C does not contain intervals
of length larger than ε r. Then

dimH(C) = 1.

In Section 2.3, we will provide examples showing that all hypotheses of
Theorem 5 are essential.

1.3 Compact sets

The mass distribution principle is one of the basic techniques for Hausdorff
dimension. The method is however not direct as one needs to construct a
probability measure ν supported on K with suitable scaling properties to
get lower bounds of dimH(K),

ν(B(x, r)) ≤ rs for all x ∈ K and all r > 0 =⇒ dimH(K) ≥ s .

For self-similar fractals, as one-third Cantor set, or more generally sets
of “bounded geometry”, the method leads to precise estimates of Hausdorff
dimension. In general, for more complicated sets which show an “unbounded
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geometry”, the mass distribution principle encounters difficulties as the ge-
ometry of a set is not controlled in every scale, as it is the case for self-similar
fractals, but only in some and often scarcely distributed scales.

We propose a direct geometric method to produce universal lower bounds
for Hausdorff dimension of compact sets. To this aim, we will define a notion
of convex density.

Definition 1.2. Let K be a subset of Rd with d ≥ 1 and x ∈ K. We define
a convex density dK(x, r) of K at x at the scale r > 0 as

d(x, r) =
I(x, r)

2r
,

where I(x, r) is the diameter of the convex hull of K ∩B(x, r).

Theorem 6. Let K ⊂ R
d with d ≥ 1 be a compact set. Suppose that for

every x ∈ K we have that

lim inf
r→0

∫ diam K
r d2K(x, t)dtt

− log r
> 0 .

Then
dimH(K) > 0 .

If additionally, there is a constant d0 > 0 such that for every x ∈ K,

lim inf
r→0

∫ diam K
r d2K(x, t)dtt

− log r
≥ d20 , (6)

then
dimH(K) ≥ cd20 ,

where c is a universal constant.

Proof. Without loss of generality, K ⊂ [0, 1]d. We build a continuum K∗ ⊂
R
d+1 by joining the point S = (1, . . . , 1) ∈ R

d+1 with every x ∈ K by the
segments Ix with the endpoints at S and x,

K∗ =
⋃

x∈K

Ix .

Since every horizontal hyperplane xd+1 = w, w ∈ (0, 1), intersects K∗ along
an affine copy of K, the condition

lim inf
r→0

∫ diamK
r β2

K(x, r)dtt
− log r

≥ β2
0
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is satisfied for every z ∈ K∗ \ S and some β0 = c′d0 where c′ is a universal
constant. K∗ is also wiggly at S but we rather refer to the obvious fact that
H1(S) = 0, Theorem 1 implies that

dimH(K
∗) ≥ 1 + cβ2

0 = 1 + cc′2d20 .

By the product formula (Theorem 8.10 in [19]),

1 + cc′d20 ≤ dimH(K
∗) ≤ dimH(K) +MDim([0, 1]) = dimH(K) + 1 . (7)

In general, Theorem 6 admits only finite E as exceptional sets. Indeed,
a countable compact K = {0} ∪⋃∞

n=1{ 1
n} has positive convex density at all

scales only at 0 and dimH(K) = 0.
The estimates of Theorem 6 are sharp as shows the following theorem.

Theorem 7. Let N ⊂ R
d with d ≥ 1. Suppose that for every x ∈ N we

have that

lim inf
r→0

∫ 1
r d2N (x, t)dtt
− log r

≤ d20 .

Then
dimH(N) ≤ cd20 .

where c is a universal constant.

Proof. Without loss of generality we may assume that N ⊂ [0, 1]d. Consider
K = N × [0, 1] ⊂ R

d+1. The set K satisfies the hypothesis of Theorem 2
with β0 = d0. Therefore, there exists a universal constant c > 0 such that

dimH(K) ≤ 1 + cβ2
0 .

By the product formula for Hausdorff dimension (Theorem 8.10 in [19]),

dimH(N × [0, 1]) ≥ dimH(N) + dimH([0, 1]) = dimH(N) + 1

and thus, dimH(N) ≤ cd20.
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Invariance property. Suppose that K is a real compact which satisfies
the hypothesis of Theorem 6. Let DK be the set of all continuous real
functions h defined on some neighborhood of K, with the property that
there exist θ1, θ2 > 1 such that for every x ∈ K and every interval I with
the middle point at x and the lenght |I| small enough,

θ1|h(I)| ≤ |h(2I)| ≤ θ2|h(I)|, (8)

where 2I stands for the double of I and |h(I)| denotes the length of the
image h(I). Then,

inf
h∈DK

dimH(h(K)) ≥ 1 + c(θ1, θ2)d
2
0 ,

where c(θ1, θ2) a constant which depends only on θ1 and θ2. Morever, if θ1
and θ2 tend to 2 then c(θ1, θ2) tends to a universal constant. The constant
c(θ1, θ2) can be easily estimated using Theorem 3 and the fact that the
condition (8) prohibits, on one hand, too much expansion of non-wiggly
scales and, on the other hand, too much contraction of wiggly scales (see
also the proof of Theorem 8).

Every differentiable homeomorphism h : U 7→ R with the derivative
different from 0 belongs to DK . Another example of the class of maps in
DK are real quasi-regular functions.

Example. The 1
3 -Cantor set is obtained from the unit interval X0 = [0, 1]

through an inductive procedure. The closed set Xn is obtained from the
closed set Xn−1 by removing the middle one-third of each component of
Xn−1. The

1
3 -Cantor set is X =

⋂∞
n=0Xn. The Hausdorff dimension of X is

dimH(X) = log 2
log 3 . One can easily check that X is of positive convex density,

that is for every x ∈ X, we have that dX(x, r) ≥ d0 =
1
4 provided r is small

enough. Therefore, there exists a universal constant c such that the image
of X by any real diffeomorphism is bigger than c.

1.4 Bowen’s dichotomy

The property of uniform wiggliness was used in [5] to prove Bowen’s di-
chotomy for a connected limit set of an analytically finite and not elemen-
tary Kleinian group. In polynomial dynamics, the corresponding result was
proven earlier by Zdunik, [28]. The connected Julia set of a polynomial
is either a segment/circle or its Hausdorff dimension is strictly bigger than
1. The strategy of the proof in [28] was different than that of Bishop and
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Jones and was based on the study of the statistical properties of the unique
measure µ of maximal entropy for f ( in polynomial dynamics µ coincides
with the harmonic measure with the pole at ∞). The main observation of
[28] is that φ ◦ fn, where φ := dimH(µ) log |f ′| − log(deg f), can be treated
as a sequence of random variables. There are two possibilities, either φ is
homologous to 0 in L2(J, µ) or the law of iterated logarithm holds. The
former case, by the“boot strapping” argument, leads to an analytic Julia
set, while the latter implies that dimH(J ) > 1.

Topological Collet-Eckmann rational maps. The definition of ratio-
nal TCE maps (see [24]) is usually stated as follows. Let f be a rational
map of the Riemann sphere Ĉ of degree bigger than 1. For a given positive
δ and L define G(z, δ, L) to be the set of positive integers n such that

#{i : 0 ≤ i ≤ n,Critf ∩ Compf i(z)f
−n+i(B(fn(z), δ)) 6= ∅} ≤ L,

where Compy(A) stands for the component of A which contains y.

Definition 1.3. A rational map f satisfies TCE if there are positive δ,
L < ∞ and κ so that for every point z ∈ Ĉ (z belongs to the Julia set) we
have that

inf
n

#G(z, δ, L) ∩ [1, n]

n
≥ κ .

We have the following geometric counterpart of Bowen’s dichotomy.

Theorem 8. Suppose that f is a rational TCE map of degree bigger than 1.
If the Julia set J 6= Ĉ of f is connected then J is either an interval/circle
or a mean wiggly continuum.

1.5 Harmonic measure and mean wiggly Julia sets

Let E be a full compact in C. The harmonic measure ω of E with a base
point at ∞ can be described in terms of the Riemann map

Ψ : C \D(0, 1) 7→ C \ E

which is tangent to identity at ∞. Namely, Ψ extends radially almost ev-
erywhere on the unit circle with respect to the normalized 1-dimensional
Lebesgue measure dθ and ω = Ψ∗(dθ).

The Mandelbrot set M is the set of the parameters c ∈ C for which
the corresponding Julia set Jc of the quadratic polynomial fc(z) = z2 + c
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is connected. It is known that both the Mandelbrot set and its comple-
ment are connected. A parameter c ∈ ∂M is called Collet-Eckmann if

lim infn→∞
log |(fn

c )′(c)|
n > 0 .

It was proven in [13, 27] that the Collet-Eckmann parameters in the
boundary of the Mandelbrot set are of full harmonic measure. Since every
Collet-Eckmann quadratic polynomial fc(z) = z2+c satisfies TCE property,
we can invoke Theorem 8 to derive the following corollary.

Corollary 1.1. For almost all c ∈ ∂M, the corresponding Julia set is a
mean wiggly continuum.

Remark. The claim of Corollary 1.1 remains true for unicritical polyno-
mials zd + c, d ≥ 2, with c from a generic set on the boundary of the
connectedness locus Md, see [13, 27].

1.6 Various examples

Example 1. We describe an example where E has finite positive 1-measure
(denoted by H1(E)) with dimH(W ) = 1 and H1(W ) = 0.

This is a modified version of the four corners Cantor set. Let S0 = [0, 1]2

be the unit square. Let S1
1 , . . . , S

4
1 the disjoint sub-squares of side-length

0 < 1
4a1 < 1

2 which have each a common corner with S0. We repeat the
construction inside each square of n-th generation to obtain four squares of
side length |Sn+1| = 1

4an+1|Sn|. We set

W =
⋂

n≥1

4n
⋃

i=1

Si
n.

Observe that |Sn| = 4−n
∏n

i=1 an. We let an ր 1 and show that
dimH(W ) = 1. We may define a measure µ supported on W such that
µ(Si

n) = 4−n. Then

lim
n→+∞

logµ(Sn)

log |Sn|
= lim inf

n→+∞

n log 4

n log 4 + log a1 + . . .+ log an
= 1.

As |Sn|
|Sn+1|

is bounded, Billingsley’s lemma shows that dimH(W ) = 1. The

same bound gives a lower bound of βW (x, r) for all x ∈ W and r > 0.
The setW can be covered by the 4n squares of n-th generation. Therefore

it is enough to have limn→+∞
∏n

i=1 ai = 0 to obtain that H1(W ) = 0.
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Let E be the union of all diagonals of all squares. We may easily compute
that

H1(E) = 2
√
2(1 +

∑

n≥0

4n|Sn|).

We set an = n2

(n+1)2
so H1(E) < +∞. Note that this sequence satisfies the

previous conditions.
The set K = W ∪ E is a continuum with the desired properties. K is

also locally connected.

Exemple 2. If in the previous example we set an = 1 for every n ≥ 0
(the standard four corners Cantor set) then H1(W ) is finite, H1(E) = ∞,
and dimH(W ∪ E) = 1. The continuum K = W ∪ E is locally connected.

Example 3. We give an example of a locally connected continuum such
that dimH(K) = 1 and H1(W ) > 0 (but H1(E) = +∞).

Let W = [0, 1] and E the union of vertical segments of length 2−n, with
center k2−n ∈ W , for all n > 0 and 0 < k < 2n, k odd. The continuum
K = W ∪ E is locally connected and dimH(K) = 1 as a countable union of
segments. It is not hard to see that βK(x, r) has a uniform lower bound for
all x ∈ W and all 0 < r < 1 (but βW (x, r) = 0).

2 Density of wiggliness

We want to construct a probability measure µ which captures wiggliness of
a continuum K and allows for effective lower bounds of dimH(K). Let F be
the set of points of K which are not wiggly

F := {x ∈ K :

∫ 1

0
βK(x, t)2

dt

t
< +∞}.

We want to construct µ which vanishes on F . In this case, µ will be generally
scale dependent as wiggly parts of K can be contained in a ball of arbitrary
small radius.

The main ingredient of the proof of Theorem 1 is the following result.

Theorem 9. Let K ⊂ R
d with d ≥ 2 be a connected compact of diameter

1 and F ⊆ E ⊆ K with H1(E) < +∞ and H1(K \ E) > 0. There exist
a universal constant C ′ > 0, a constant C > 0 depending only on d and a
Radon probability measure µ supported on B(y,R) ∩ K, y ∈ K such that
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µ(E) = 0 and for all x ∈ K and r > 0

µ(B(x, r)) ≤ R−1Cr exp

(

−C ′

∫ 1

r
β2
K(x, t)

dt

t

)

.

The proof of Theorem 9 is technically involving. We start by proving an
important combinatorial result, Proposition 1, and then follow the construc-
tion from the proof of Theorem 45 in [23]. This construction was proposed
by the second author and after some modifications made available in the
written form by David in [7] around a decade ago. Proposition 1 replaces a
stopping time argument, usually needed in corona type constructions, by a
direct estimate of length of a crossing curve which is wiggly at many scales.

Planar continua. For the sake of simplicity, the proof of Theorem 9 is
given in details only for planar sets K. We indicate what modifications are
needed for the general case.

As a preparation, we need to state some results and prove a few facts
about the length (or 1-Hausdorff measure) of wiggly continua in the plane.

Let Q ⊂ C be a square (with sides parallel to the axis). Unless specified
otherwise, squares are considered to contain only the left and top edges.
Let |Q| denote the side length of Q. Let ∆(Q) denote the set of all dyadic
sub-squares of Q and ∆k(Q) those with side length 2−k|Q|. For any λ > 0,
let λQ be the square with the same center as Q and with |λQ| = λ|Q|. For
a set S of squares, |S| := ∑

Q∈S |Q| and #S is its cardinal.

For any x ∈ Q0, where Q0 := [0, 1]× [−1
2 ,

1
2 ], let

∆(x) = {Q ∈ ∆(Q0) | x ∈ Q}.

Let us also write ∆ for ∆(Q0) and ∆k for ∆k(Q0).

Definition 2.1. Let K be a compact set in the plane and Q a square such
that Q ∩K 6= ∅. We define βK(x, r) by

βK(Q) := inf
L

sup
z∈K∩3Q

dist (z, L)

|Q| ,

where the infimum is taken over all lines L in the plane.

For a compact set K ⊆ Q0 is easy to check that

βK
∞(x) :=

∫ 1

0
βK(x, t)2

dt

t
∼

∑

Q∈∆(x)

βK(Q)2. (9)
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We will use the following fact, due to the second author (see [16] for a
proof, [22] for a generalization in Rd). If γ ⊂ Q0 is a rectifiable curve, then

β∞(γ) :=
∑

Q∈∆

βγ(Q)2|Q| > H1(γ). (10)

Proposition 1. Let ε ∈ [0, 1) and L > 1. There exists M > 0 such that
every curve γ ⊂ C joining 0 to 1 such that

βγ
∞(x) ≥ M

for all x ∈ γ \ E, H1(E) ≤ ε, is of the length

H1(γ) > L.

Proof. By the inequality (10), it is sufficient to show that β∞(γ) is large
enough.

We may assume that γ ⊂ Q0 = [0, 1] × [−1
2 ,

1
2 ], otherwise the proof is

analogous in [−L,L+ 1]× [−L,L+ 1].
Let Gn be the set of maximal squares in

{Q ∈ ∆, |Q| ≥ 2−n | H1(γ ∩Q) >
2L

1− ε
|Q|}.

The squares in Gn are disjoint. If |Gn| > 1−ε
2 then H1(γ) > L.

We assume that β∞(γ) is bounded and that |Gn| ≤ 1−ε
2 for all n ≥ 1,

M > 0, and prove the proposition by contradiction. Let

Kn =
⋃

Q∈Gn

Q.

Kn is an increasing sequence. Let K = ∪n≥1Kn.
For Q ∈ ∆, let

S(Q) =
∑

Q⊆Q′∈∆

βγ(Q
′)2.

Observe that S(·) is decreasing.
By formula (9), there is c > 0 such that for any x ∈ γ \ (K ∪ E), there

is x ∈ Q ∈ ∆ with S(Q) > cM . Let B the cover of γ \ (K ∪ E) with such
maximal squares. The squares in B are disjoint and are not contained in K.

Let us consider π the projection on the real line. H1(π(K)) ≤ 1−ε
2 and

H1(π(E)) ≤ ε. Therefore

|B| ≥ 1− ε

2
.
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Let Sn = {Q ∈ ∆n | S(Q) > cM and Q ∩ γ \ (K ∪ E) 6= ∅}. As S(·) is
decreasing, we may also conclude that for n large enough

#Sn ≥ 2n−2(1− ε). (11)

Observe that squares in Sn are disjoint from Kn.

Lemma 2.1. Let Q ∈ ∆. Denote by #k(Q) the cardinal of the set of squares
in ∆k(Q) which intersect γ. Then

H1(γ ∩Q) ? (2−k#k(Q)− 4)|Q|.

Proof. Let Q′ ∈ ∆k(Q) intersect γ and without common boundary with Q.
Then H1(γ ∩ 3Q′) ≥ 2−k|Q|, as γ connects Q′ to ∂(3Q′). We may extract a
finite (universal) number of collections of such squares Q′ such that in each
collection, the squares 3Q′ have disjoint interior. As we ignore 4 · 2k − 4
squares in ∆k(Q) with common boundary with Q, the conclusion follows by
considering the collection of squares with maximal cardinal.

As a consequence of the previous lemma, for any Q ∈ ∆n not contained
in Kn, for all k ≥ 1 we have

#k(Q) > 2k.

As squares Q′ ∈ Sn are disjoint from Kn, for any Q ∈ ∆ containing Q′, we
have

#{Q′′ ∈ Sn | Q′′ ⊂ Q} >
L

1− ε

|Q|
|Q′| . (12)

We may begin estimates. By the inequality (11), for n large enough, we
have

2−n
∑

Q∈Sn

S(Q) ≥ 2−n2n−2(1− ε)cM ? M.

We have assumed that β∞(γ) is bounded, so for some C > 0

C ≥
∑

Q∈∆

|Q|≥2−n

βγ(Q)2|Q| ≥
∑

Q∈∆

∃Q′⊆Q,Q′∈Sn

βγ(Q)2|Q|

=

n
∑

k=0

2−k
∑

Q∈∆k
∃Q′⊆Q,Q′∈Sn

βγ(Q)2 = 2−n
n
∑

k=0

2n−k
∑

Q∈∆k
∃Q′⊆Q,Q′∈Sn

βγ(Q)2
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= 2−n
n
∑

k=0

∑

Q∈∆k
∃Q′⊆Q,Q′∈Sn

|Q|
|Q′|βγ(Q)2 = 2−n

∑

Q∈∆

∃Q′⊆Q,Q′∈Sn

|Q|
|Q′|βγ(Q)2

? 2−n 1− ε

L

∑

Q∈∆

#{Q′′ ∈ Sn | Q′′ ⊂ Q}βγ(Q)2 ? 2−n
∑

Q′∈Sn

S(Q′) ? M,

a contradiction.

Remark 1. Using the same notations and proof, the conclusion of Lemma
2.1 could be restated in R

d as follows

H1(γ ∩ (1 + 2−k+1)Q) ? 2−k#k(Q)|Q|.

In the proof of Proposition 1 we could define

Kn =
⋃

Q∈Gn

2Q.

Observe that there is a sub-collection G′
n of Gn such that π(2G′

n) covers
π(γ ∩Kn) and each point is covered at most twice. Note also that γ ∩Kn

is increasing. Replacing the constant in the definition of Gn by 8L
1−ε , the

same proof shows that Proposition 1 generalizes to curves in Rd, while M
is independent of the dimension d.

Let π be an orthogonal projection on the real axis in C. We have used
the fact that our set is a curve only in two instances: to obtain that β∞(γ) >

H1(γ) and to have [0, 1] ⊆ π(γ). Also, it is enough that H1(π(E)) ≤ ε. We
could therefore relax the hypothesis using the following well known result
(see for example [23]).

Theorem 10. There exists a universal constant C > 1 such that any con-
tinuum K ⊆ R

n with H1(K) < +∞ is contained in a curve γ such that

H1(K) ≤ H1(γ) ≤ CH1(K).

We obtain the following corollary.

Corollary 2.1. Let ε ∈ [0, 1) and L > 1. There exists M > 0 such that
every compact set K ⊆ [0, 1]× [−1

2 ,
1
2 ] that satisfies the following conditions,

1. K ∪ {0, 1} × [−1
2 ,

1
2 ] is connected,
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2. βK
∞(x) ≥ M for all x ∈ K \ E,

3. H1(π(E)) ≤ ε,

is of the length
H1(K) > L.

For a set A ⊆ C, let ||A|| := {|x| : x ∈ A}. We will need the following
version of the previous corollary.

Corollary 2.2. Let ε ∈ [0, 1) and L > 1. There exists M > 0 such that
every compact set K ⊆ D(0, 1) with the property that 0 ∈ K, K ∪ ∂D(0, 1)
is connected, and

βK
∞(x) ≥ M

for all x ∈ K \ E, H1(||E||) ≤ ε, satisfies

H1(K) > L.

Proof. We first unfold the annulus A( ε2 , 1) to the rectangle [ ε2 , 1] × [−1
2 ,

1
2 ]

and then map it linearly to Q0 = [0, 1] × [−1
2 ,

1
2 ]. The distortion and the

dilatation of this map ϕ is bounded by a constant which depends only on ε.
Therefore βK(x, t) ∼ βϕ(K)(ϕ(x), |ϕ′(x)|t). We obtain that

βϕ(K)
∞ (x) > C(ε)M

for all x ∈ ϕ(K) \ ϕ(E) with H1(π(ϕ(E))) close to 0 in terms of ǫ only. All
other hypothesis of the previous corollary are easy to check.

Definition 2.2. A set E ⊂ R
d with d ≥ 2 is Ahlfors regular if there exists

C > 1 such that for all x ∈ E and 0 < R < diam E,

C−1R ≤ H1(E ∩B(x,R)) ≤ CR.

We will use the following result due to the second author and Bishop
(Theorem 1 in [4]).

Theorem 11. There exists C > 0 such that if K ⊂ R
d with d ≥ 2 is a

compact set of diameter 1 and if for all x ∈ K,

βK
∞(x) ≤ M,

then K lies on a rectifiable curve Γ of length at most CeCM and which is
Ahlfors regular with constant depending only on M .
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The fact that Γ is Ahlfors regular is not stated in [4] but is an immediate
consequence of the bound for the length.

Proof. As a limit of rectifiable curves with uniform bounded length contain-
ing K, we may assume that Γ realizes the infimum of the length of such
curves. We consider a square Q centered at x ∈ K and apply the theorem
to the set |Q|−1(Q∩K). We obtain a curve Γ′ of length at most CeCM . We
connect the endpoints of |Q|Γ′ to ∂Q and take the union with ∂Q to obtain
γ′. By the choice of Γ and our construction,

H1(Γ ∩Q) ≤ H1(γ′) ≤ |Q|(5 + CeCM ).

Proof of Theorem 9. We recall that F denotes the subset of K of points that
are not wiggly. Take a Borel set E ⊂ K containing F with H1(E) < +∞.
Assume that H1(F ) > 0 and H1(K \ F ) > 0. The density theorem for H1

(see Theorem 6.2 in [19]) implies that for almost all points x ∈ K \ E with
respect to H1,

lim sup
r→0

H1(B(x, r) ∩ E)

2r
= 0 .

Therefore, there is a ball B = D(x,R), x ∈ K, such that

H1(E ∩B) < εR.

We will construct a measure µ with the density properties as claimed in
Theorem 9, supported on B ∩ K, such that µ(E) = 0. Let B0 := B and
ε < 1

100 .
The proof has three steps.

1. For any ball B = D(xB, RB), xB ∈ K and such that H1(B ∩E) < RB

100
we construct a measure µB.

2. We construct the probability measure µ on B0.

3. We show that µ has the desired scaling properties and that µ(E) = 0.

Step 1. Let B = D(xB, RB) with RB ≤ 1, xB ∈ K, such that H1(B ∩
E) < εRB (with 0 < ε ≤ 1

100). Let KB := K ∩B and observe that KB ∪ ∂B
is a connected compact. For any x ∈ KB, let

tB(x) := inf

{

r ∈ (0, RB) :

∫ RB

r
β2
KB

(x, t)
dt

t
≤ M

}

,
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whereM is a large constant that will be specified later. Observe that tB(x) =

0 if and only if
∫ RB

0 β2
KB

(x, t)dtt ≤ M . Let

Z(B) := {x ∈ KB : tB(x) = 0}.

One can easily check that for any x ∈ Z(B),

∫ RB

0
β2
Z(B)(x, t)

dt

t
≤

∫ RB

0
β2
KB

(x, t)
dt

t
≤ 4M,

therefore Z(B) ⊆ F ⊆ E. We obtain that H1(Z(B)) < εRB.
We show that there exists CM > 0, that depends only on M , and a

measure µB such that

1. RB ≤ µB(C) = µB(B) ≤ CMRB,

2. µB(D(x, r)) ≤ CMr, for all x ∈ C and r > 0.
(13)

Set W (B) := KB \ Z(B). By the standard covering lemma (see [14],
page 2), there exists a countable set X ′(B) ⊂ W (B) such that

W (B) ⊆
⋃

x∈X′(B)

D(x, 10tB(x)),

and the balls D(x, 2tB(x)), x ∈ X ′(B), are pairwise disjoint.
From now on we make a standing assumption (it is enough to take M ≥

4 log 10) that for all x ∈ X ′(B),

tB(x) ≤ 10−4RB. (14)

The following lemma provides a key estimate which allows to distribute
the measure µ on the balls D(x, tB(x)) centered at X(B) and prove the
scaling properties of µ in Step 3.

Lemma 2.2. If M is sufficiently large, then there exists X(B) ⊆ X ′(B)
such that for each x ∈ X(B), H1(D(x, tB(x)) ∩ E) < ε

2 tB(x),

∑

x∈X(B)

tB(x) ≥ 10RB,

and
∑

x∈X(B)

H1(D(x, tB(x)) ∩ E) ≤ ε

2
RB.
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It is not hard to check that the set Y = Z(B) ∪ X ′(B) is compact.

Also, one can check that for every x ∈ Y ,
∫ RB

0 β2
Y (x, t)

dt
t ≤ 100M . By

Theorem 11, the set Y is contained in an Ahlfors regular curve ΓB with the
length comparable to RB (and the constant depending only on M). As the
balls D(x, 2tB(x)) from the the same Gi(B) are pairwise disjoint, we may
assume that ΓB contains a cross

G(x) := [x− tB(x), x+ tB(x)] ∪ [x− itB(x), x+ itB(X)]

for every x ∈ X ′(B). We define

µB := H1
|GB

, where GB :=
⋃

x∈X(B)

G(x).

By the properties of ΓB it is easy to check that µB satisfies the inequalities
(13).

The following proof concludes Step 1.

Proof of Lemma 2.2. We use a geometric construction to show that if M is
sufficiently large, then

∑

x∈X′(B)

tB(x) ≥ 23RB, (15)

As tB(x) ≤ 10−4RB for all x ∈ X ′(B), there is a partition of X ′(B) =
X1(B) ∪X2(B) such that for each i ∈ {1, 2},

∑

x∈Xi(B)

tB(x) ≥ 11RB.

As H1(B ∩ E) < εRB, there is i0 ∈ {1, 2} such that

∑

x∈Xi0
(B)

H1(D(x, tB(x)) ∩ E) ≤ ε

2
RB.

Let X(B) = {x ∈ Xi0(B) : H1(D(x, tB(x))∩E) < ε
2 tB(x)} and suppose

that
∑

x∈Xi0
(B)\X(B)

tB(x) ≥ RB.

Then
∑

x∈Xi0
(B)\X(B)

H1(D(x, tB(x)) ∩ E) ≥ ε

2
RB,
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which contradicts the choice of i0, as balls D(x, tB(x)) with x ∈ Xi0(B) are
disjoint.

In the sequel, we prove the inequality (15). For every x ∈ X ′(B), let

H(x) := ∂D(x, 2tB(x)) ∪ ∂D(x, 10tB(x)) ∪ [x− 10tB(x), x+ 10tB(x)].

Then H(x) is connected and H1(H(x)) ≤ 100tB(x). Let

Z ′(B) := Z(B) \
⋃

x∈X′(B)

D(x, 10tB(x)).

Observe that KB ⊂ Z ′(B) ∪⋃

x∈X′(B)D(x, 10tB(x)). Let us define

S(B) := Z ′(B) ∪
⋃

x∈X′(B)

H(x).

As H1(Z ′(B)) ≤ 10−2RB, it is enough to show that H1(S(B)) ≥ 2301RB in
order to prove the inequality (15). We may assume that for any x 6= x′ ∈
X ′(B), D(x, 10tB(x)) 6⊂ D(x′, 10tB(x

′)). The reader can therefore check that
S(B) is compact and S(B)∪∂B is a connected compact. We will show that
for every x ∈ S(B) \ Z ′(B),

βS(B)
∞ (x) ≥ 10−5M, (16)

provided M is large enough. Having established the estimate (16), we can
conclude the proof of the inequality (15) by applying Corollary 2.2 to S(B)
with Z ′(B) as an exceptional set, ε = 10−2, L = 2301 and M large enough.

We still have to prove the inequality (16). For this, let y ∈ S(B)\Z ′(B).
We can find x0 ∈ X ′(B) such that

tB(x0) = sup{tB(x) : x ∈ X ′(B), |x− y| < 20tB(x)}.

We will show that for t ≥ 103tB(x0),

βS(B)(y, t) ≥ 10−2βKB
(x0, 10

−2t). (17)

To this end, observe that by the choice of x0 and t, we have D(x0, 10
−2t) ⊂

D(y, t), and therefore

βKB
(y, t) ≥ 10−2βKB

(x0, 10
−2t).

It is enough to prove that

βS(B)(y, t) ≥ βKB
(y, t). (18)
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Let L be a line minimizing βS(B)(y, t) and take a point z ∈ D(y, t) ∩
(KB \ S(B)). In particular, z ∈ KB \ Z ′(B) so there is x ∈ X ′(B) such
that z ∈ D(x, 10tB(x)). By the choice of x0, D(y, t) 6⊂ D(x, 10tB(x)). As
∂D(x, 10tB(x)) ⊂ S(B), we have that ∂D(x, 10tB(x)) ∩ D(y, t) is contained
in a tβS(B)(y, t) neighborhood of L, and so is z. The inequality (18) is now
established.

For each y ∈ S(B) \ Z ′(B), we integrate the inequality (17) and obtain

∫ RB

103tB(x0)
β2
Y (B)(y, t)

dt
t ≥ 10−4

∫ RB

103tB(x0)
β2
KB

(x0, t)
dt
t

≥ 10−4M − 3 log 10
≥ 10−5M,

if M is large enough. This proves the inequality (16).

Step 2. We define a sequence (µn)n≥0 of probability measures sup-
ported respectively on a decreasing sequence of compact neighborhoods of
K, having K as their intersection. The measure µ is then a weak limit of
this sequence.

For each n ≥ 0, we define a collection of disjoint balls Fn as follows. Let
F0 := {B0} and

Fn+1 := {D(x, tB(x)) : x ∈ X(B), B ∈ Fn}.

Let B1, B2 ∈ Fn, B′
1, B

′
2 ∈ Fn+1 such that B′

1 = D(x, tB1
(x)) with x ∈

X(B1) and respectively B′
2 = D(y, tB2

(y)) with y ∈ X(B2). As 2B1 and
2B2 are disjoint and tB(x) ≤ 10−3RB1

, tB(y) ≤ 10−3RB2
we obtain that

B′
1 ∩B′

2 = ∅, B1 ∩B′
2 = ∅ and B′

1 ∩B2 = ∅.

We will use the measures µB constructed at the previous step to define
inductively the sequence (µn)n≥0. Let

µ0 :=
µB0

µB0
(C)

.

Assume that µ0, . . . , µn have been defined with the following properties.

(P1) suppµn is contained in the disjoint union of balls in Fn which is

contained in a 10−n-neighborhood ofK. AlsoH1(E∩suppµn) <
2−n

100 R
by Lemma 2.2, where R is the radius of B0.

(P2) µn(B) ≤ 10−kR−1RB if B ∈ Fk for some k ≤ n (RB is the radius of
B).
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We define µn+1 in the following way. For any ball B ∈ Fn+1,

µn+1|B :=
µn(B)

µB(B)
µB. (19)

Observe that µn+1(B) = µn(B) and that by Lemma 2.2, for every x ∈
X(B) we have

µn+1(D(x, tB(x)))

µn+1(B)
=

tB(x)
∑

y∈X(B) tB(y)
≤ tB(x)

10RB
.

Properties (P1) and (P2) for µn+1 are direct consequences of the in-
equality (14) and Lemma 2.2 and the choice of X(B) ⊆ X ′(B) for any ball
B.

Step 3. Observe that if B ∈ Fn is a ball of radius RB, then

µ(B) ≤ 10−nR−1RB. (20)

We want to show that for every x ∈ K and r > 0,

µ(D(x, r)) ≤ CR−1r exp

(

−C ′

∫ 1

r
β2
K(x, t)

dt

t

)

, (21)

where C,C ′ > 0 are universal constants.
Let us note that it is enough to prove this bound for x ∈ suppµ. Oth-

erwise, we have either suppµ ∩ D(x, r) = ∅, so µ(D(x, r)) = 0, or for some
y ∈ suppµ ∩ D(x, r), D(x, r) ⊂ D(y, 2r), so

µ(D(x, r)) ≤ µ(D(y, 2r)) ≤ 2CR−1r exp

(

−C ′

∫ 1

2r
βK(y, t)2

dt

t

)

.

As |x− y| < r, a simple computation shows that

1 +

∫ 1

r
β2
K(x, t)

dt

t
∼ 1 +

∫ 1

2r
βK(y, t)2

dt

t
,

with universal constants.
Fix x ∈ suppµ and r > 0. If r ? R there is nothing to prove. We have

{x} = ∩n≥0Bn, where Bn ∈ Fn for all n > 0. Let

N := max{n : D(x, r) ⊆ 2Bn}.

A direct computation leads to

∫ 1

r
β2
K(x, t)

dt

t
> (N + 4)M. (22)
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On the other hand,
µ(2BN ) ≤ 10−NR−1RBN

.

If r ∼ RBN
, the last two inequalities and the properties (13) imply the

conclusion (21).
Suppose that r < 10−6RBN

. For any B ∈ FN+1 which intersects D(x, r),
we have RB ≤ 4r. Otherwise D(x, r) ⊆ 2B which contradicts the choice of
N . Thus B ⊆ D(x, 10r). Denote K := {B ∈ FN+1 : B ∩D(x, r) 6= ∅}. Using
the inequality (20) and the fact that ΓBN

constructed in Step 1 is Ahlfors
regular, we can estimate

µ(D(x, r)) ≤ ∑

B∈K µ(B) ≤ 10−N−1R−1
∑

B∈K RB

≤ c10−N−1R−1H1(ΓBN
∩ D(x, 10r))

≤ c′10−NR−1r,

where c, c′ > 0 are universal constants. Combined with the inequality (22),
this proves the conclusion (21).

By (P1), H1(E ∩ suppµ) = 0. The inequality (21) implies that

µ(D(x, r)) ≤ CR−1r

for every ball D(x, r), x ∈ K, r ≤ R and thus the measure µ vanishes on
E ⊃ F .

2.1 Proof of Theorem 1

For simplicity, suppose that diam K = 1. Theorem 9 supplies a Radon
probability measure µ with µ(W ) = 1.

For every x ∈ W we define a measurable function β(x) : W 7→ [0,+∞)
by

lim inf
r→0

∫ 1
r β2

K(x, t)dtt
− log r

= β2(x) .

For every x ∈ W we have that

lim inf
r→0

logµ(D(x, r)

log r
≥ lim inf

r→0

− log r + C ′
∫ diamK
r β2

K(x, t)dtt
− log r

= 1 + C ′ lim inf
r→0

∫ 1
r β2

K(x, t)dtt
− log r

= 1 + C ′β2(x) .

The mass distribution principle implies that

dimH(K) ≥ dimH(W
′) ≥ 1 + C ′essupµβ

2(x) ,
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where essupµβ
2(x) is an essential supremum of β2(x) with respect to µ.

The proof of the theorem follows as essupµβ(x) > 0 if β(x) > 0 and
essupµβ(x) ≥ β2

0 if β(x) ≥ β0 for every x ∈ W .

2.2 Proof of Theorem 5

As the constant C may be large, it is enough to prove the dimension estimate
when ε is asymptotically close to 0. We will construct a measure on K
following the inductive strategy of the proof of Theorem 9. Let M be defined
as in the proof of Theorem 9. We assume ε ≪ αλ2e−2M and define

ε′ =
2e2Mε

λ2
.

If K is not (ε′, α)-dense in 2B, we define µB as in Step 1. of the proof of
Theorem 9. Otherwise, we set tB(x) = ε′RB for all x ∈ KB. X(B) has the

property that for all x, x′ ∈ X(B), H1(E ∩ B(x, ε′RB)) < ε′RB

100 , the balls
B(x, 2ε′RB) and B(x′, 2ε′RB) are disjoint, 10

11 |X ′(B)| ≤ |X(B)|, and

K ⊆
⋃

x∈X′(B)

B(x, 10ε′RB).

As K is (ε′, α)-dense in 2B, we obtain that

αm(B) ≤ m





⋃

x∈X′(B)

B(x, 11ε′RB)



 .

As balls B(x, 2ε′RB) with x ∈ X(B) are disjoint, using a volume argument,
we obtain

10 · 11−d−1α ε′−d < |X(B)| < ε′−d.

We define the measure µB in the same way as in the proof of Theorem 9.
We observe that for x ∈ X(B),

µB(B(x, tB(x)))

µB(B)
=

tB(x)
∑

y∈X(B) tB(y)
≤ ε′RB

ε′RB|X(B)| <
11d+1

10

tB(x)

RB
α−1ε′d−1.

We obtain a new form of the inequality (20). For B ∈ Fn, let n = k1 + k2,
where k2 is the number of steps m at which K is (ε′, α)-dense in 2Bm,
where Bm ∈ Fm with B ⊆ Bm. By the previous inequality and Lemma 2.2
we obtain

µ(B) ≤ 10−k1

(

11d+1

10
α−1ε′d−1

)k2

R−1RB.
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The new measure µB that we have constructed does not satisfy the
inequalities (13), because the constant CM is replaced by C(d, ε′) = ε′1−d.
Repeating the argument from Step 3. of Theorem 9, we obtain for all x ∈ K
and 0 < r < diam K

µ(B(x, r)) ≤ C ′ε′−d
(

11d+1α−1ε′d−1
)k2

R−1r, (23)

where C ′ > 0 is a universal constant.
Observe that as a consequence of (P1), we obtain thatH1(suppµ∩E) = 0

therefore µ(E) = 0 and µ(W ) = 1. We now fix x ∈ suppµ ∩W , δ > 0 and
r = λN for some large N ∈ N

∗ such that

#Pλ(N) > N

(

κ− δ

2

)

,

where

Pλ(N) = {m ∈ {[− logR] + 1, . . . , N} : K is (ε′, α)-dense in B(x, λm)},

where we denote by [x] the integer part of x, and R is the radius of B0.
For each n ≥ 0, let Bn ∈ Fn containing x and Rn = RBn

. By con-
struction, {x} = ∩n>0Bn. Let n0 = n0(r) be the first n > 0 such that
2Bn ⊆ B(x, r). We construct a map

χ : Pλ(N)→PF (n0)

that is at most s to 1, where s = log ε
log λ and

PF (n0) = {n ∈ {0, . . . , n0} : K is (ε′, α)-dense in 2Bn}.

As k2 = #PF (n0), if N is large enough, we obtain

k2 ≥
N

s
(κ− δ). (24)

Let m ∈ Pλ(N) and n = n0(λ
m)− 1. We define

χ(m) =

{

n if n ∈ PF (n0),
n+ 1 otherwise.

If n ∈ PF (n0) then Rn+1 = ε′Rn, thus there are at most
[

log ε′−log 2
log λ

]

+ 1

values in Pλ(N) mapped to n by the first branch of f . If n /∈ PF (n0), then
by construction

M =

∫ Rn

Rn+1

βK(x, t)2
dt

t
≥

∫ λm/4

Rn+1

βK(x, t)2
dt

t
.
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Because K is (ε, α)-dense in B(x, λm), it is (ε′, α)-dense in B(x, t) for every
t ∈ [e−2Mλm, λm]. Therefore

βK(x, t) ≥ (1− ε′), for all t ∈ [e−2Mλm, λm].

We can therefore estimate

∫ λm/4

e−2Mλm

βK(x, t)2
dt

t
≥ (1− ε′)2(2M − log 4) > M,

as ε′ is small and M is large. We conclude that Rn > e−2Mλm so there are

at most
[

−2M
log λ

]

+ 1 values in Pλ(N) mapped to n+ 1 by the second branch

of f . This completes the proof that χ is at most s to 1.
Combining the inequalities (23) and (24), we can compute that

− logµ(B(x, r))

− log r
≥ C(d, ε′, R)

N log λ
+ 1 + k2

(d+ 1) log 11 + (d− 1) log ε′ − logα

N log λ

≥ C(d, ε′, R)

N log λ
+ 1 + (d− 1)(κ− δ)

log ε′ − logα
d−1

log ε
+

(d+ 1)(κ− δ) log 11

log ε
.

By the definition of ε′,

log ε′

log ε
= 1 +

2 log λ− 2M − log 2

| log ε| .

Therefore,

lim inf
N→∞

logµ(B(x, r))

log r
≥ 1 + κ

(

d− 1− C(d, α, λ)

| log ε|

)

,

which, by the mass distribution principle, yields the desired lower bound for
dimH(K).

2.3 About the hypotheses of Theorem 5.

A prototype example of the unit circle S1 ⊂ C together with two smooth
curves γ− and γ+ winding infinitely many times around it both from inside
and outside, shows that the hypothesis thatH1(E) < ∞ can not be dropped.
Indeed, assume that a point traveling along any of these two smooth curves
is approching S1 slowly enough so that for every ε > 0, S1 is not ε-porous
at any z ∈ S1 at all scales small enough. Clearly, dimH(S

1 ∪ γ− ∪ γ+) = 1
and H1(γ− ∪ γ+) = ∞.
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The following examples show that the hypotheses about connectivity
and H1(W ) > 0 are also essential.

Example 1. We recall that if Si ⊂ C, i = 1, 2, then S1 + S2 stands for
a set of all z ∈ C such that z = v1 + v2, where v1 ∈ S1 and v2 ∈ S2.

Let [0, 1] ⊃ Km = [0, 2−4m] + {k2−2m : k = 1, . . . , 22m − 1}. In the
formula below, i2 = −1.

K = [0, 1] ∪
⋃

m≥1

2m−1
⋃

k=0

(

±i(2−m + k2−2m) +Km

)

.

One can easily check that H1(K) < ∞ and that for any ε > 0, K is not
ε-porous at scales of density 1 at every z ∈ (0, 1).

Example 2. Let α ∈ (0, 1). We consider a standard α-Cantor set
Kα ⊂ [0, 1] defined as an invariant set for the map g : [0, 1] 7→ R,

g(x) =

{

x/α if x ∈ [0, 1/2]
(1− x)/α if x ∈ [1/2, 1]

Geometrically, Kα is an intersection of the union of 2n closed intervals Jn
j ,

j = 1, . . . 2n, each of the length
(

1−α
2

)n
. Every Jn

j is a connected component
of g−n[0, 1]. Let Qn

j be a square with the base equal to Jn
j contained in

the half-plane ℑz ≥ 0. In the formula below, i stands for the imaginary
number. Put Rn

j to be the union of ∂Qn
j ∪{2Jn

j + i kn |Jn
j | : k = 1, . . . , n} and

its reflection with respect to the real axis. The set

Rα := [0, 1] ∪
⋃

n≥1

2n
⋃

j=1

Rn
j

is connected and every point of Kα is not ε-porous for any ε > 0 at any
scale small enough. One can easily check that H1(Rα) is bounded by a
constant which depends only on α. Suppose that αn tends to 0 and denote
the corresponding Rα by Rn and Kα by Kn. The union

R = [0, 1] ∪
⋃

k≥1

(

βkRk +
1

k

)

,

where βk are chosen so that βkH1(Rk) ≤ 4−k is a continuum with the
property that every point z ∈ ⋃

n≥1Kn is not ǫ-porous for any ε > 0 and
any scale small enough. Therefore, dimH(W ) ≥ supn≥1 dimH(Kn) = 1.
Nevertheless, H1(R) < ∞.

32



2.4 Universal version of µ

If we do not require that the measure µ from Theorem 9 has the support
disjoint from F then the construction can be modified to obtain a uniform
scaling property of µ.

Theorem 12. Let K ⊂ R
d with d ≥ 2 be a connected compact of diameter

1. There exist a universal constants C ′ > 0, a constant C > 0 depending
only on d, and a Radon probability measure µ supported on K such that for
all x ∈ K and r > 0

µ(B(x, r)) ≤ Cr exp

(

−C ′

∫ 1

r
β2
K(x, t)

dt

t

)

.

Proof. The proof of Theorem 12 is very similar to the proof of Theorem 9 and
is based on Proposition 1 and the constructions from the proof of Theorem 45
in [23], compare [7]. As in the proof of Theorem 9 we have three steps.

1. For any ball B centered on K we construct a measure µB.

2. We construct the probability measure µ on K.

3. We show that µ has the desired scaling properties.

The estimates from the third step are very much the same as in the proof
of Theorem 9 (with B0 replaced by K, R replaced by 1, and the claims
about H1(E ∪ suppµj) and H1(E ∩ suppµ) dropped). The first and the
second steps are slightly different as they must account for the existance of
non-wiggly parts of K. We use the notation from the proof of Theorem 9.

Step 1. Let B = D(xB, RB) be a ball centered on K with RB ≤ 1. Let
KB := K ∩ B and observe that KB ∪ ∂B is a connected compact. We
say that B ∈ G (respectively that B ∈ B) if H1(Z(B)) ≥ RB

100 (respectively

if H1(Z(B)) < RB

100).

Assume first that B ∈ G. Since
∫ RB

0 β2
Z(B)(x, t)

dt
t ≤ 4M for any x ∈

Z(B), by Theorem 11, the set Z(B) is contained in an Ahlfors regular curve
ΓB whose regularity constant depends only on M and of length comparable
to RB. We set

µB := H1
|Z(B).

By the properties of ΓB, there exists a constant CM > 0 that depends only
on M such that the conditions (13) are satisfied.

If B ∈ B then we can repeat the construction of µB from the first
step of Theorem 9. The only modification is that we define µ on G′

B :=
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⋃

x∈X′(B)G(x) rather than on GB :=
⋃

x∈X(B)G(x), as it was the case in
the proof of the Theorem 9. We put

µB := H1
|G′

B

By the properties of ΓB it is easy to check that µB satisfies the inequalities
(13).

Step 2. We construct a sequence (µn)n≥0 of probability measures sup-
ported respectively on a decreasing sequence of compact neighborhoods of
K, having K as their intersection. The measure µ is a weak limit of this
sequence.

For each n ≥ 0, we define a collection of disjoint balls Fn as follows. Let
x0, y0 ∈ K be such that |x0 − y0| = 1 = diam K. Let F0 := {D(x0, 1)} and

Fn+1 := {D(x, tB(x)) : x ∈ X(B), B ∈ Fn ∩ B}.

Remarks. 1) If Fn ⊆ G then Fn+1 = ∅.
2) Let B1, B2 ∈ Fn, B

′
1, B

′
2 ∈ Fn+1. As in the second step of the proof of

Theorem 9 we obtain that

B′
1 ∩B′

2 = ∅, B1 ∩B′
2 = ∅ and B′

1 ∩B2 = ∅.

Let Gn := Fn ∩ G and Bn := Fn ∩ B. We will use the measures µB

constructed in the previous step to define inductively the sequence (µn)n≥0.
Let

µ0 :=
µB

µB(C)
,

where B = D(x0, 1). Assume that µ0, . . . , µn have been defined with the
following properties.

(P1) suppµn is contained in the disjoint union of balls

Fn ∪
n−1
⋃

k=0

Gk ,

which is contained in a 10−n-neighborhood of K.

(P2) µn(B) ≤ 10−kRB if B ∈ Fk for some k ≤ n (RB is the radius of B).

Define µn+1 in the following way. For any ball B ∈ Gk, k ≤ n,

µn+1|B := µn|B.
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For any ball B ∈ Fn+1,

µn+1|B :=
µn(B)

µB(B)
µB.

Properties (P1) and (P2) for µn+1 are direct consequences of the inequalities
(15) and (14), and the fact that Z(B) ⊂ K for any ball B.

Corollary 2.3. Let µ be supplied either by Theorem 9 or Theorem 12. Then
µ is absolutely continuous with respect to 1-dimensional Hausdorff measure
H1.

Proof. In both cases, for each measure µ, there exists a constant M > 0
(which is universal if µ is provided by Theorem 12) such that for every ball
B(x, r), x ∈ K, r < diam K,

µ(B(x, r)) < Mr . (25)

A standard argument shows that H1(A) = 0 =⇒ µ(A) = 0.

3 Topological Collet-Eckmann rational maps

TCE property (see the definition in Section 1.4) implies the so called expo-
nential shrinking which states that there exists a number ξ < 1 (depending
on δ, κ, and L but not on z) so that

diam Compzf
−n(Bδ(f

n(z)) ≤ ξn

for every n ∈ N and z ∈ J .

Proof of Theorem 8. The proof is by contradiction. We may assume, by
decreasing slightly δ, that every component Compzf

−n(Bδ(f
n(z)) satisfies

the inclusions,

B(z, rn) ⊂ Compzf
−n(Bδ(f

n(z)) ⊂ B(z, αrn) ,

where α > 1 is a constant which depends only on f and L. Additionally,
fn(B(z, rn)) contains a ball of radius comparable to δ.

Let λ = 1/2. Put χi = 1 if there is n such that rn ∈ Ai, where Ai =
[λi+1, λi), i is non-negative integer, and χi = 0 otherwise. We want to show
that there exists ε > 0 such that

lim inf
n→∞

∑n−1
i=0 χi

n
≥ ε .
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It is enough to prove that the sequence [log 1/rn] is of positive density
amongst integers, where [·] stands for an integer part of a given number.
Enumerate by nk all consecutive passages to the scale δ with bounded
criticality L. By the exponential shrinking property, for every x ∈ J
diam Compfnk−i(x)f

−i(B(fnk(x), δ) is smaller than δ/2 if only i is large
enough. Therefore, without loss of generality, the modulus of the annulus
(B(fnk(x), δ)\Compfnk (x)f

−nk+1+nk(B(fnk+1(x), δ) is bigger than log 2. By
the definition of nk, and Teichmüller’s module theorem, there exists a con-
stant P > 0 such that at most P consecutive numbers log 1

rn
can be counted

as the same integer.
Let M = supz∈J |f ′(z)|. Then

M−n ≤ diam Compzf
−n(Bδ(f

n(z))

and

1

N
#({[log 1

rk
] : k ≥ 0} ∩ [0, N ]) ?

1

NP
#{k ≥ 0 : 2kκ−1 logM < N}

≥ κ

2P logM
:= κ0 (26)

provided N is large enough.
Suppose that the Julia set J of f is not mean wiggly. Hence, for every

β > 0 and ρ ∈ (0, 1) there is a point zβ ∈ J such that B(zβ , λ
n) ∩ J is

contained in a βλn neighborhood of a line minimizing βJ (zβ , λ
n) and this

property holds for the set Zβ of integers n ∈ N of the density bigger than ρ.
Let us choose ρ so that ρ+ κ0 > 1, where κ0 is defined in the estimate (26).

For every n ∈ Zβ ,

(i) f(B(zβ , αrn)) ⊃ Bn = B(fn(z), δ′) and δ′ ∼ δ,

(ii) the degree of fn on B(zβ , rn) is bounded by L.

This means that there is β′ > 0 (which does not depend on n) such that
the Julia set J in Bn is contained in a β′-neighborhood of a finite union of
analytic Jordan arcs. Also, β′ tends to 0 when β does so. Passing to the
limit with β → 0, we obtain that the Julia set in some ball B of radius δ′

is a finite union of analytic Jordan arcs. By the eventually onto property
(B is mapped over J by an iterate of f), the whole J is a finite union of
analytic Jordan arcs.

Since every rational function f can have either 1, 2 or an infinite number
of Fatou components, the piecewise analyticity of J implies that f has either
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1 or 2 Fatou components. By connectivity of J , every Fatou component F
is simply connected. Without loss of generality, we can assume that every
Fatou component is totally invariant by f . Also, J coincides with the
boundary of every Fatou component. For every z ∈ J , we define the set of
angles of accesses {θi(z)}F from inside of every invariant Fatou component
F . Observe that if {θi(z)}F \ {π, 2π} 6= ∅ then the same is true for every
preimage y ∈ f−1(z). Since the set of preimages of a given z ∈ J is infinite
and J is a union of finitely many Jordan analytic arcs, we infer that for
every z ∈ J , {θi(z)}F ⊂ {π, 2π}. As a result, J is either an analytic Jordan
arc or an analytic circle. By the Fatou theorem [9], the Julia set coincides
with a geometric circle or a segment.

Acknowledgement The first author would like to thank G. David for
many useful discussions about corona type constructions.
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