
HAL Id: hal-00796297
https://hal.science/hal-00796297

Submitted on 22 May 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis of xml security views and query rewriting
Benoit Groz, Slawomir Staworko, Anne-Cécile Caron, Yves Roos, Sophie Tison

To cite this version:
Benoit Groz, Slawomir Staworko, Anne-Cécile Caron, Yves Roos, Sophie Tison. Static analysis
of xml security views and query rewriting. Information and Computation, 2014, 238, pp.2-29.
�10.1016/j.ic.2014.07.003�. �hal-00796297�

https://hal.science/hal-00796297
https://hal.archives-ouvertes.fr

Static Analysis of XML Security Views and Query

RewritingI

Benôıt Groza,b,d, S lawomir Staworkoa,c, Anne-Cecile Carona,b, Yves Roosa,b,
Sophie Tisona,b

a Mostrare project, INRIA Lille Nord-Europe & LIFL (CNRS UMR8022)
bUniversity of Lille 1
cUniversity of Lille 3

dENS Cachan

Abstract

In this paper, we revisit the view based security framework for XML without
imposing any of the previously considered restrictions on the class of queries,
the class of DTDs, and the type of annotations used to define the view. First,
we study query rewriting with views when the classes used to defined queries
and views are Regular XPath and MSO. Next, we investigate problems of static
analysis of security access specifications (SAS): we introduce the novel class of
interval-bounded SAS and we define three different manners to compare views
(i.e. on queries), with a security point of view. We provide a systematic study of
the complexity for deciding these three comparisons, when the depth of the XML
documents is bounded, when the document may have an arbitrary depth but
the queries defining the views are restricted to guarantee the interval-bounded
property, and in the general setting without restriction on queries and document.

Keywords: XML, security views, query rewriting, determinacy.

1. Introduction

The wide acceptance of XML as the format for data representation and ex-
change clearly demonstrates the need for a general and flexible framework of
secure access for XML databases. While security specification and enforcement
are well established in relational databases, their methods and approaches can-
not be easily adapted to XML databases. This is because an XML document
stores information not only in its data nodes but also in the way it is struc-
tured. Consequently, the problem of secure access to XML databases has its
own particular flavor and requires dedicated solutions.

IThis work is partially supported by the INRIA collaboration program (Actions de
Recherches Collaboratives de l’INRIA)

Preprint submitted to Elsevier January 31, 2013

The view-based security framework for XML databases [29] has received an
increased attention from both the theoretical and practical angle [12, 19, 13, 27,
34, 28, 14]. It can be summarized as follows:

• The administrator provides the schema of the document together with the
security access specification (SAS) defining nodes accessible by the user.

• A virtual view comprising all accessible nodes is defined; the view is never
materialized but the user is given some knowledge of its schema.

• Every query over the view is rewritten to an equivalent query over the
underlying document and then evaluated.

The view-based security framework is parametrized by the class of queries,
typically a fragment of XPath, and the type of formalism used to define the
schema with the security access specification, typically an annotated DTD.
Previous research often imposed various restrictions on these two parameters
in order to facilitate the tasks relevant to the framework. For instance, tak-
ing the class of downward XPath queries allows to use the knowledge of the
document DTD to benefit the query rewriting [12]. The task can be further
simplified if the node accessibility is downward closed i.e., all descendants of an
inaccessible node are inaccessible as well [2]. For similar reasons, in some works
only non-recursive DTDs are considered [12, 27].

The restrictions may easily limit the versatility of the framework and in
this paper we revisit the framework and take two large classes of queries: Reg-
ular XPath queries (XReg) and Monadic Second-order Logic queries (MSO)
represented with tree automata. The two formalisms are also used to define
accessibility of nodes in the source document. Usually, the schema is assumed
to be specified with a DTD. In this paper, the schema could also be described
by richer languages, e.g. extended DTDs.

In the first part of the paper, we revisit the problem of rewriting queries
over views. Recall that in the case of the standard XPath queries [12], there are
queries that cannot be rewritten, because the language is not powerful enough
to capture node accessibility, and consequently, various restrictions need to be
employed. Our work shows that both XReg and MSO enjoy the closure on
rewriting under views. In both cases, the rewritings are quadratic (combined
complexity including both the size of the input query and the security access
specification).

In the second part of the paper, we study the problem of comparing two
security access specifications. This problem is best motivated in situations where
the administrator changes the specification of accessible nodes, for instance
restricts access to some nodes, and would like to obtain some guarantees that
no information has been inadvertently released with the change.

We consider three kinds of comparisons of SAS and investigate their com-
putational implications. The first comparison considers only the accessibility
of nodes in a document. Comparing SAS from this perspective is essentially
testing the containment of queries used to specify accessible nodes, a problem
known to be EXPTIME-complete for both XReg and tree automata.

2

Paradoxically, when we restrict the access (i.e. the set of accessible nodes)
we can make some new information available about the accessible nodes. E.g.,
let us suppose that user A sees all the patients of a hospital and user B sees
only the patients of service X. For the first comparison, user B has a more
restrictive view than user A. However, B gets some information that A does not
get: A will a priori be unable to distinguish patients of the service X from the
others. In order to capture this phenomenon, the second comparison identifies
and compares the information that can be obtained on the underlying document.
This information is defined as the set of all queries on the underlying document
that can be expressed as queries over the view.

In a nutshell, A will have a more restrictive access than B for that comparison
if every query computed by A can be simulated by B. We prove that this can be
expressed by “View A can been considered as a view on the view B”. So, this
notion is related to single-view query rewriting [7, 10] as well as to composition
of views [2].

We prove easily that this second comparison refines the first one. However,
both can be considered too strong in some sense. Indeed, even when the view
of user A selects nodes outside the view of B, it may still be possible to “re-
construct” the view of A from the view of B with some knowledge from the
schema. Consider for instance a list of entries of the form entry(name, phone

number). Then entry is just syntactic sugar: the list of pairs (name, phone

number) contains the same information as the list of entries entry(name, phone

number). So deleting the entry keeps information intact. The third comparison
takes into account the possibility to deduce information on the hidden part from
the SAS. For this, the third comparison uses all data, visible or not, based on
the following idea: view A is more restrictive than view B if every (boolean)
information about the source that is certain for A is also certain for B. In other
words, the definition is based on the well known notion of certain answers and
it can be related to view-based query answering. This can be also related to
another approach to guarantee privacy [21], where the administrator defines the
information he considers secret by using a boolean query Q. In this context,
being more restrictive can be considered as ”keeping more secrets”.

The second and third comparisons are very powerful and not surprisingly
they turn out to be undecidable in general. Consequently, we introduce a
novel class of interval-bounded SAS for which those problems become tractable.
Interval-bounded SAS generalize both non-recursive views, and downward closed
access specifications: in interval-bounded SAS an inaccessible node may have
accessible descendants as long as the number of consecutive inaccessible descen-
dants is bounded by some constant (independent from the document).

2. Preliminaries

XML Documents.

We assume a finite set of node labels Σ and model XML documents with
unranked ordered labeled trees. Formally, a Σ-tree is a finite structure t �

3

pNt, roott, childt, nextt, λtq, where Nt is a set of nodes, roott P Nt is a distin-
guished root node, childt � Nt�Nt is the parent-child relation, nextt � Nt�Nt

is the next-sibling relation, and λt : Nt Ñ Σ is the function assigning to every
node its label. The set of all Σ-trees is denoted by TΣ. We remark that we do
not assume the set of nodes to be a prefix closed subset of N∗, owing to our
construction of view trees; we shall later define view trees obtained by removing
nodes from some tree t and preserving the others: even when the original trees
use a prefix-closed subset of identifiers, the resulting view trees need not. More-
over, equality of trees should not be confused with isomorphism: two trees are
equal if and only if all the elements of their underlying structure are the same,
including the node set.

Example 1. Figure 1 contains an example of a tree representing an XML
database with information on software development projects. Every project

projects

project

name stable license

src bin doc free

project

name stable license

src bin doc propr

project

name dev license

src doc free

n0

n1 n2 n3

n4 n5 n6

n7 n8 n9 n10

n11 n12 n13

n14 n15 n16 n17

n18 n19 n20

n21 n22 n23

Nt0 � tn0, n1, n2, . . .u, roott0 � n0, λt0 � tpn0, projectsq, pn1, projectq, . . .u,

childt0 � tpn0, n1q, pn0, n2q, . . .u, nextt0 � tpn1, n2q, pn2, n3q, pn4, n5q, . . .u.

Figure 1: Tree t0.

has a name and a type of license (either free or proprietary). Projects under
development come with their source codes and documentation, whereas stable
projects have also binaries.

Queries and Annotations

A query Q is a mapping from TΣ to
�

tPTΣ
PpNtq which satisfies that for

each t in TΣ, Q ptq is included in Nt. The set of nodes Q ptq is called the set of
answers of the query Q on the tree t. The domain dompQq is the set of trees t
in TΣ such that Q ptq is not empty. A query is root preserving if for all t in TΣ,
either Q ptq is empty, or Q ptq contains (at least) the root of t.

In this article, we only consider queries that are closed by isomorphism: a
query Q is said closed by isomorphism if for all trees t and t1 and all isomorphism
φ such that t1 � φptq, Qpt1q � φpQptqq. As a consequence, the domains of these
queries are also closed by isomorphism.

4

An annotation A is a mapping from TΣ to TΣ�t0,1u such that Aptq is a
relabeling of t, replacing the label λtpnq of each node n P Nt by some pλtpnq, iq
where i P t0, 1u is the annotation of node n that we denote by Apnq.

Given a query Q, we denote by AQ the annotation such that @t P TΣ,
@n P Nt AQpnq � 1 iff n P Q ptq. An annotation AQ is root preserving if Q is
root preserving.

Given a tree t in TΣ�t0,1u, we will denote by ΠΣptq the relabeling of t re-
placing for each node of t its label pα, iq P Σ � t0, 1u with α. We say that a
language L � TΣ�t0,1u is maximal if, for all non-isomorphic trees t and t1 in L,
it holds that ΠΣptq � ΠΣpt

1q. By definition, for any annotation A, the language
ApTΣq is maximal. Maximal languages allow to represent the result of a query
Q over some tree t within a single tree: the unique tree t1 in the language such
that ΠΣpt

1q � t. Of course other representations could be considered but that
one is quite convenient for view-based reasoning.

Security Views.

In a security framework, we want to hide some nodes of a document. Queries
and annotations provide a simple model for security policy. The (security) view
defined by a root-preserving query Q maps every document t P dompQq to
View pQ, tq, the view document obtained from t by removing all the nodes that
are not selected by Q. Those are equivalently the nodes labeled with 0 by
the annotation AQ. Removing a node causes its children to be adopted by (or
linked to) the parent of the node. We assume that a query defining a security
policy is always root preserving in order to guarantee that view documents are
trees. An example of such a view is given in Fig. 3 in the case of security
views defined by annotated DTDs that are a practical and simple way to define
security policies. We extend our notation to languages, denoting by View pQ,Lq
the set

�
tPL View pQ, tq, for any tree language L � dompQq.

Regular XPath queries.

A standard manner of expressing queries is to use XPath expressions. In
particular, the class XReg of Regular XPath expressions [23] over Σ-trees is
defined by the following grammar (with a varying over Σ and X being the
starting symbol):

α ::� self | ó | ò | ñ | ð

f ::� self::a | χ | true | false | not f | f and f | f or f

X ::� α | rf s | X {X | X Y X | X ∗

Essentially, a XReg expression is a regular expression of base axes and filter
expressions. Filter expressions are Boolean combinations of node label tests
and existential path tests. We define several macros: α� is short for α∗{α,
X rf s is X {rf s, α::a stands for αrself::as, and α::∗ is simply α, where a is a
symbol, X a XReg expression, f a filter expression, and α a base axis or its
closure. The semantics of XReg is defined in Fig. 2 (Boolean connectives are

5

vselfwt � tpn, nq | n P Ntu,

vówt � childt,

vòwt � child�1
t ,

vñwt � nextt,

vðwt � next�1
t ,

vX1{X2wt � vX1wt � vX2wt,

vX1 Y X2wt � vX1wt Y vX2wt,

vX ∗wt � vX w∗t ,

vrf swt � tpn, nq P Nt | pt, nq |ù fu

pt, nq |ù self::a iff λtpnq � a,

pt, nq |ù X iff Dn1 P Nt. pn, n
1q P vX wt.

Figure 2: The semantics of XReg.

interpreted in the usual manner). For an expression X in XReg, vX wt is the
binary reachability relation on the nodes of t defined by the expression X . By
pt, nq |ù f we denote that the filter f is satisfied at the node n of the tree t.
We say that an expression X is satisfied in the tree t if pt, roottq |ù X . Then
an expression X in XReg defines a query QX where the set of answers to the
query QX in a tree t is defined as

QX ptq � tn P Nt | proott, nq P vX wtu.

For instance, ó::projectró::stables{ó::name defines a query Q0 that selects (the
nodes storing) the names of all stable projects. The set of answers to Q0 in t0
(Fig. 1) is Q0 pt0q � tn4, n11u.

We recall from [23] that XReg is closed under inversion, i.e. for every ex-
pression X there exists an expression X�1 such that vX�1wt � vX w�1

t for any
tree t. Basically, X�1 is obtained by reversing the base axes and the order of
composition on the top most level (filter expressions are unchanged). Naturally,
|X�1| � |X |.

Annotated DTDs.

A Document Type Definition (DTD) over Σ is a triple D � pΣ, r, P q where
r P Σ and P is a function that maps Σ to regular expressions over Σ. We allow
regular expressions defined with the grammar

E ::� empty
�� a �� E ’,’ E

�� E ’|’ E
�� E’*’

where empty defines the empty sequence, a is a symbol of Σ, E,E is the con-
catenation, E|E is the union, and E∗ is the Kleene closure. In the sequel, we
present DTDs using rules of the form aÑ E and if for a symbol a the rule is not
specified, then a Ñ empty is implicitly assumed. The dependency graph of a
DTD D � pΣ, r, P q is a directed graph whose node set is Σ and the set of edges
contains pa, bq if P paq uses the symbol b. A DTD is recursive iff its dependency
graph is cyclic. The size |D| of a DTD D � pΣ, r, P q is the sum of the sizes of
the regular expressions P pαq appearing in D.

A Σ-tree t satisfies a DTD D � pΣ, r, P q if for every natural k and every
node n having exactly k children n1, . . . , nk (listed in the document order), we

6

have λtpn1q � � �λtpnkq P LpP pλtpnqqq. By LpDq we denote the set of all Σ-trees
that satisfy D.

In [29], a security view is defined from a DTD specifying nodes accessible
by the user. This framework has been widely studied from both the theoretical
and practical angle [12, 19, 13, 27, 34, 28, 14].

In this framework, an annotated DTD pD,Xq consists of a DTD D and an
access function X. This access function specifies the accessibility of document
nodes. Formally, an access function is given by a (possibly partial) function
X that maps Σ � Σ to XReg filter expressions. Its size |X| is simply the sum
of the sizes of all filter expressions used in X. The function X defines the
security access function of nodes as follows. A node n labelled with b whose
parent is labelled with a is accessible w.r.t. X if the filter expression Xpa, bq
is satisfied at the node n. If Xpa, bq is not defined, then accessibility of the
parent is used (inheritance). Finally, the root node of any tree validating the
DTD D is always accessible. Thus, we can associate with each annotated DTD
pD,Xq a root preserving query QpD,Xq with domain LpDq which maps every tree
t P LpDq to the set of its accessible nodes. For this reason, annotated DTD are
used to define security views. The size |A| of the annotated DTD A � pD,Xq,
is |D| � |X|.

Example 2. The DTD D0 below captures the schema of XML databases de-
scribed in Example 1. We define here the annotated DTD A0 � pD0, X0q.

projects Ñ project
∗

project Ñ name, pstable | devq, license
X0pproject, stableq�false

X0pproject, devq�false

license Ñ free | propr

stable Ñ src, bin, doc

X0pstable, srcq�rò∗::project{ó∗::frees
X0pstable, docq�true

dev Ñ src, doc

X0pdev, srcq�rò∗::project{ó∗::frees
X0pdev, docq�true

The access function X0 gives access to all projects but in return hides the in-
formation whether or not the project is stable (in particular, it hides binaries).
Additionally, X0 hides the source code of all projects developed under propri-
etary license.

In the tree t0 from Fig. 1 the root node projects is accessible and all
nodes project are accessible by inheritance. The nodes name and license

with their children are accessible by inheritance as well. X0 implicitly states
that stable and dev are not accessible, and the nodes bin are inaccessible
by inheritance. On the other hand, X0 overrides the inheritance for nodes doc

and makes them accessible. Finally, the accessibility of src nodes is conditional:
only n7 and n21 are accessible because only those satisfy the specified conditions,
X0pstable, srcq and X0pdev, srcq resp. Figure 3 presents View pQA0

, t0q for t0
from Fig. 1.

The following lemma allows us to translate an access function into a XReg filter:

7

projects

project

name src doc license

free

project

name doc license

propr

project

name src doc license

free

n0

n1 n2 n3

n4 n6n7 n9

n10

n11 n13n16

n17

n18 n20n21 n22

n23

Figure 3: The view View
�
QA0

, t0
�
.

Lemma 1. For any access function X there exists a XReg filter expression
XX

acc such that for any tree t P TΣ, a node n P Nt is accessible in t w.r.t. X if
and only if pt, nq |ù XX

accptq. Moreover, XX
acc can be constructed in Op|X|q time.

Proof. By dompXq we denote the set of pairs of symbols for whichX is defined.
We begin by defining two filter expressions. The first checks if X defines a filter
expression for the current node

Xdom �
�

pa,bqPdompXq

�
self::b and ò::a

�
,

and if it is the case, the second filter expression is used to evaluate it

Xeval �
�

pa,bqPdompXq

�
self::b and ò::a andXpa, bq

�
.

Finally, we restate the definition of accessibility using XReg

XX
acc � prnotXdoms{òq

∗{rnotpòq or Xevals. 2

The XReg expression XX
acc associated with an access function X is a filter

that can be applied on every node in order to check its visibility. The XReg

expression ó∗rXX
accs therefore selects the nodes that are visible for access function

X. In the following, given an access function X, we will denote the query
Qó∗rXX

acc
s simply by QX .

From [23], we know that a DTD can effectively be transformed into an
equivalent XReg expression in linear time. From this result and Lemma 1 we
get the following lemma:

Lemma 2. For any annotated DTD A � pD,Xq the query QpD,Xq can be de-
fined in XReg. This means we can compute a XReg query QA with domain
LpDq such that for any tree t P LpDq, a node n P Nt is accessible in t w.r.t. X
if and only if n P QAptq. Moreover, QA can be constructed in Op|A|q time.

Thanks to Lemma 2, in the case when trees have to be validated against some
DTD D and the visibility of the nodes is given by a query V , we assume in the
following that a single query QpD,V q is used to define both validation of trees
and visibility of the nodes.

8

Queries and automata

Instead of XReg formulas we could alternatively use monadic second order
logic (MSO) formulas to represent queries. An MSO formula with n free first-
order variables, interpreted over unranked ordered labeled trees, defines a query
that selects tuples of nodes and it is known from [32, 31] that MSO queries are
strictly more expressive than XReg queries.

In the sequel, instead of MSO formulas, we shall directly use automata since
it is well-known from [33] that the class of regular ranked tree languages is
exactly the class of MSO-definable ranked tree languages and from [11] that
this equivalence also holds in the unranked case. Several classes of (unranked)
tree automata for XML with the expressive power of MSO have been recently
studied. Each could be used in order to define queries in the following way:
to any MSO formula φ with one free first-order variable we associate a query
Qφ then an annotation AQφ

. The language AQφ
pTΣq is a regular language over

TΣ�t0,1u and is therefore recognized by some automaton Aφ (in the class of
automata that has been chosen). Conversely, any automaton A over TΣ�t0,1u

that recognizes a maximal language LpAq is associated with a query QA defined
by:

• QAptq � H for every tree t that is not in ΠΣpLpAqq

• for every tree t in ΠΣpLpAqq, there is a unique t1 P LpAq that satisfies
t � ΠΣpt

1q. Then QAptq is the set of all nodes of t1 with label in Σ � t1u.

We extend the notion of root preservation to automata: an automaton A is root
preserving if the query QA is root preserving.

In this paper, we use the class of Visibly Pushdown Automata (VPA). Vis-
ibly pushdown automata (VPA) have been introduced by Rajeev Alur and
Parthasarathy Madhusudan in [1] in order to model program analysis. VPA
are special pushdown (word) automata whose stack behavior is driven by the
input symbol according to a partition of the alphabet. Although they were
not initially defined for this purpose, VPA are very useful for processing XML
streams, since they can recognize well-matched languages defined over an input
alphabet of opening tags and closing tags.

Let Σ an alphabet. We denote by Σ̂ � top, clu � Σ the corresponding tag
alphabet, where for any label a P Σ, pop, aq is an opening a and pcl, aq is a
closing a. Then for any tree t P TΣ we can define its linearization as usual
by: linpapt1, � � � , tnqq � pop, aq linpt1q � � � linptnq pcl, aq. So, there is a bijection
between the nodes of t and pairs of corresponding opening and closing tag. We
extend this notation to tree languages: @L � TΣ, linpLq �

�
tPL linptq.

Since a tree language L is regular if and only if linpLq is recognized by some
visibly pushdown automaton ([1]), these automata provide a suitable formalism
for representing MSO-definable queries. Let us define formally visibly pushdown
automata.

Definition 1. A visibly pushdown automaton over an alphabet Σ is a tuple
A � pΣ, S,Γ, I, F,Rq where

9

• Σ is the input alphabet,

• S is a finite set of states,

• Γ is a finite alphabet of stack symbols,

• I � S is the set of initial states,

• F � S is the set of final states,

• and R � S � top, clu � Σ� Γ� S is the set of rules.

The size of A is |S| � |Γ| � |∆|. A rule pq, ι, a, γ, q1q P ∆ is written q
pι,aq:γ
ÝÝÝÝÑ q1.

When ι is equal to op, then q
pop,aq:γ
ÝÝÝÝÝÑ q1 is a push rule. It means that if the

current state is q and the input letter is an opening a then one can push γ into

the stack and set the current state to q1. Symmetrically, a rule q
pcl,aq:γ
ÝÝÝÝÑ q1 is

a pop rule. It means that if the current state is q and the top of the stack is γ

and the input letter is a closing a then one can pop γ from the stack and set

the current state to q1.
We will sometimes define VPAs with ǫ-transitions of the form pq, ǫ, q1q with

q, q1 P Σ in the rules. This does not increase the expressiveness of the VPAs
because the ǫ-transitions can be eliminated in polynomial time. To eliminate the
ǫ-transitions we can add a new rule pq0, ι, a, γ, q

1
kq in ∆ for every pq, ι, a, γ, q1q P ∆

and every j, k ¤ |S|, q0, q1, . . . , qj P S and q1 � q10, . . . q
1
k P S satisfying the

following three conditions: (1) qj � q, (2) for every i j, pqi, ǫ, qi�1q P ∆, and
(3) for every i k, pq1i, ǫ, q

1
i�1q P ∆.

Let A � pΣ, S,Γ, I, F,Rq be a visibly pushdown automaton, then a run of
A from q0 to qm over a word w � a1a2 . . . am P ptop, clu � Σq� is a sequence
pq0, σ0q, pq1, σ1q, . . . pqm, σmq with qi P S and σi P Γ� for every i P t0, . . .mu,
such that σ0 � σm � ε and for every i m, there are some b P Σ and γ P Γ such
that either ai � pop, bq, pqi, op, b, γ, qi�1q P R and σi�1 � σi � γ, or otherwise
ai � pcl, bq, pqi, cl, b, γ, qi�1q P R and σi � σi�1 �γ. The run is accepting if q0 P I
and qm P F . By extension, a run of A over tree t is defined as a run of A over
linptq. A word(resp. a tree) s is recognized by A if there is an accepting run of
A over s. In this work, we only consider documents represented as trees, so the
transitions of the VPA must ensure that every accepted word is the linearization
of some tree: for instance, a word like pop, aqpcl, bq is not accepted by any VPA.
We also note that a run ρ of A over a tree t induces a function, which we
abusively also denote by ρ, from the nodes of t to a pair of states pqin, qoutq.
Given n P Nt, if ai, aj is the pair of opening and closing tag corresponding to
node n in the word w � linptq above, then ρpnq is defined as pqi, qj�1q. Note
that we have i � j � 1 if n is a leaf of t.

We denote by L̂pAq � Σ̂� the word language accepted (or recognized) by A

and we denote by LpAq the tree language accepted (or recognized) by A that is
tt P TΣ | linptq P L̂pAqu. A query automaton (QA) is a VPA A over alphabet
Σ � t0, 1u such that LpAq is a maximal language.

10

We next write a rough pumping lemma for VPAs. Actually we distinguish
a vertical and an horizontal pumping argument, which are both used in the
section about policy comparison.

Lemma 3. Let A a VPA, t a tree in LpAq and ρ an accepting run of A on t. If
there are nodes n � n1 in t with n1 a descendant of n and ρpnq � ρpn1q, then the
tree t1 also belongs to LpAq, where t1 is obtained from t by replacing the subtree
rooted at n (n included) by the subtree rooted at n1.

Moreover, if there is a node n in t with children n1, . . . , nk such that for some
1 ¤ i j ¤ k the property ρpniq � ρpnjq is satisfied, then the tree obtained from
t by removing ni�1, . . . , nj and their descendants also belongs to LpAq.

The proof is essentially immediate from the definition of accepting runs for
VPAs.

3. Query rewriting over XML views

In this section, we identify two classes of queries which are closed under
query rewriting. A class C of queries is closed under query rewriting if and
only if for any query Q1 P C and for any root preserving query Q2 P C,
the query RewritepQ1, Q2q belongs to C, where RewritepQ1, Q2q is defined by
RewritepQ1, Q2q ptq � Q1 pView pQ2, tqq for any tree t.

3.1. Regular XPath

The rewriting technique for downward queries [12] relies on the knowledge of
the DTD. Our rewriting method works independently of the DTD. The method
uses the fact that accessibility of a node can be defined with a single filter
expression (Lemma 1). This filter is used to construct rewritings of the base
axes (Lemma 4), which are used to rewrite the user queries.

Lemma 4. For any access function X and any α P tó,ò,ñ,ðu there exists a
XReg expression RX

α such that vRX
α wt � vαwViewpQX ,tq for every tree t. More-

over, |RX
α | � Op|X|q.

Proof. Essentially, the rewriting RX
α defines paths, traversing inaccessible

nodes only, from one accessible node to another accessible node in a manner
consistent with the axis α. For the vertical axes the task is quite simple:

RX
ó � rXX

accs{ó{prnotX
X
accs{óq

∗{rXX
accs and RX

ò � pRX
ó q

�1

Rewritings of the horizontal axes are slightly more complex and we first define
auxiliary filter expressions:

fDÓ � prnotXX
accs{óq

∗{rXX
accs, f∅Ó � not fDÓ , f∅Ñ � pñ{rf∅Ó sq

∗{rnotpñqs.

fDÓ checks that the current node or any of its descendants is accessible. Con-

versely, f∅Ó checks whether the current node and all of its descendants are inac-

cessible. Similarly, f∅Ñ verifies that only inaccessible nodes can be found among
the siblings following the current node and their descendants.

11

The expression RX
ñ seeks the next accessible node among the following sib-

lings of the current node and their descendants. However, if there are no such
nodes but the parent is inaccessible, the next accessible node is sought among
the following siblings of the parent. The last step is repeated recursively if
needed.

RX
ñ � rXX

accs{prf
∅

Ñs{ò{rnotX
X
accsq

∗{ñ{p rpnotXX
accq and f

∅

Ó s{ñ Y

rpnotXX
accq and f

D
Ó s{ó{r ðsq

∗{rXX
accs

and RX
ð � pRX

ñq
�1. We observe that |RX

α | � Op|X|q for every α P tó,ò,ñ,ðu.
2

Theorem 1. XReg is closed under query rewriting. Moreover, given a XReg

query Q and a root preserving XReg query Q1, RewritepQ,Q1q is computable in
time Op|Q| ∗ |Q1|q.

Proof. The function RewritepQ,Q1q replaces in Q every occurrence of a base
axis α P tó,ò,ñ,ðu with RQ1

α . A simple induction over the size of Q shows that
vQwViewpQ1,tq � vRewritepQ,Q

1qwt, Lemma 4 handling the nontrivial base cases.
Since the root is always accessible, we get Q pView pQ1, tqq � RewritepQ,Q1q ptq.
We note that the rewritten query is constructed in time Op|Q| ∗ |Q1|q. 2

We observe that the asymptotic complexity of our rewriting method is compa-
rable to that of [12] but it handles a larger class of queries (not only downward
ones) and works independently of the DTDs.

3.2. MSO

In this section, queries are defined by query automata defined in section 2
as visibly pushdown automata over TΣ�t0,1u. The class QA is used both for
annotation and for queries.

Theorem 2. QA is closed under query rewriting, i.e. for every root preserv-
ing Qv in QA, for every query Q in QA, there exists a query automaton
RewritepQ,Qvq such that Q pView pQv, tqq � RewritepQ,Qvq ptq.

The automaton RewritepQ,Qvq is obtained by synchronization of Q and Qv.

Proof. From the two automata Qv � pΣ � t0, 1u, Sv,Γv, Iv, Fv, Rvq and Q �
pΣ�t0, 1u, S,Γ, I, F,Rq, we build automatonQ� � pΣ�t0, 1u, S�,Γ�, I�, F�, R�q �
RewritepQ,Qvq as follows:

• S� � Sv � S

• Γ� � Γv � pΓY t#uq

• I� � Iv � I

• F� � Fv � F

12

• – For every η P top, clu, sv, s
1
v P Sv, a P Σ, γv P Γv,

for every transition sv
pη,pa,0qq:γv
ÝÝÝÝÝÝÝÑ s1v P Rv, for every s P S, we add

transition psv, sq
pη,pa,0qq:pγv,#q
ÝÝÝÝÝÝÝÝÝÝÑ ps1v, sq to R�,

– For every η P top, clu, sv, s
1
v P Sv, a P Σ, γv P Γv, s, s1 P S, γ P Γ,3 P

t0, 1u,

for every transition sv
pη,pa,1qq:γv
ÝÝÝÝÝÝÝÑ s1v P Rv and s

pη,pa,3qq:γ
ÝÝÝÝÝÝÝÑ s1 P R

we add transition psv, sq
pη,pa,3qq:pγv,γq
ÝÝÝÝÝÝÝÝÝÝÑ ps1v, s

1q to R�,

This automaton Q� satisfies Q� ptq � Q pView pQv, tqq for every tree t since it
satisfies the following invariant.

Invariant: For every word w over top, clu � Σ � t0, 1u and every state
psv, sq P S�, there exists some word u over Γ� such that A� reaches ppsv, sq, uq
after reading w if and only if there exist a word w1 over top, clu�pΣ�Σ�t0, 1uY
Σ� t0u2q and two words u1 and u2 over Γv and Γ such that the following three
conditions are satisfied:

1. π1,3pw
1q � w

2. Qv reaches psv, u1q after reading π1,2pw
1q, and

3. Q reaches ps, u2q after reading π2,3pw
1q.

2

We have defined a framework for non-materialized security views, where
the user’s queries are rewritten before being evaluated. This framework thus
avoids to materialize one view per role, which improves efficiency when there
are numerous roles or when the document or policy are updated frequently.
We would like to provide the administrator with a few tools to check that the
SAS he defines really match her expectations. In particular, we provide the
administrator with techniques for comparing access policies, something that
may be useful for instance to establish whether a modification of the policy
allows to disclose more information than was previously available.

4. Static analysis of security access specifications: the general case

We wish to provide the administrator with tools for comparing access control
policies. A straightforward approach is to compare the nodes made visible by
the root preserving queries:

Definition 2. Given two root preserving queries Q1 and Q2 with dompQ1q �
dompQ2q � D, we say that Q1 ¤1 Q2 if

@t P D.Q1ptq � Q2ptq

which means that all nodes visible for Q1 are also displayed by query Q2.

13

Example 3. We consider the DTD D0 given in example 2, with another access
function X1. In this access function, nodes src under dev are always hidden
(not only where they are under a proprietary licensed project). So the last rule
of X0 is replaced by :

devÑ src, doc

X1pdev, srcq�false

X1pdev, docq�true

In this example, access functionX1 hides more nodes thanX0, soQpD0,X1q ¤1

QpD0,X0q (compare figure 3 and figure 4). But hiding nodes may reveal some
information. Indeed, for every t valid for the DTD D0, the projects with free
license that are currently under development can be selected with the following
XReg expression on View pQX1

, tq :

ó::projects{ó::projectrnotpó::srcq and ó::license{ó::frees

So the user can distinguish some projects under development from stable projects,
which was not possible with X0.

projects

project

name src doc license

free

project

name doc license

propr

project

name doc license

free

n0

n1 n2 n3

n4 n6n7 n9

n10

n11 n13n16

n17

n18 n20n22

n23

Figure 4: The view View
�
QX1

, t0
�
.

For this reason, we define now another way to compare root preserving queries.
Given a class of queries C and root preserving query Q in C, we define the class
of ’expressible queries’ over the source document as

PublicCpQq � tQ1 P C | DQ2 P C.@t P dompQq. Q2pView pQ, tqq � Q1ptqu

We fix a class of queries C and assume that

1. query Qall belongs to C where for every tree t, Qallptq selects all the nodes
of t

2. C is closed under query rewriting.

Definition 3. Given two root preserving queriesQ1 andQ2 in C with dompQ1q �
dompQ2q, we say that Q1 ¤2,C Q2 if

PublicCpQ1q � PublicCpQ2q

14

This definition requires further explanation. On the whole, it means that all
information we could retrieve from Q1 using some query from class C could
also be retrieved from Q2 using some query from class C. Thus Q1 does not
disclose information hidden by Q2. The following characterization gives a useful
alternative to this definition: ¤2,C can be expressed in terms of query rewriting.

Proposition 1. Given two root preserving queries Q1 and Q2 with dompQ1q �
dompQ2q � D, Q1 ¤2,C Q2 if and only if Q1 P PublicCpQ2q, i.e. DQ P C.@t P
D.QpView pQ2, tqq � Q1ptq. This means that Q1 ¤2,C Q2 if and only if a user
with view induced by Q2 can simulate view induced by Q1.

Proof. Suppose Q1 ¤2,C Q2. Since we assumed Qall belongs to C, Q1 P

PublicCpQ1q. So Q1 P PublicCpQ2q. Conversely suppose Q1 P PublicCpQ2q, and
let Q denote some query in C such that for all t in D, QpView pQ2, tqq � Q1ptq.
Observe that, since Q1 is root preserving, so is Q. Fix also Q1 P PublicCpQ1q
and let Q2 denote some query such that for all t in D, Q2pView pQ1, tqq � Q1ptq.
Then, since we supposed C to be closed under query rewriting, there exists a
query Qr in C such that for all t, Qrptq � Q2pView pQ, tqq. Therefore, for all t
in D, QrpView pQ2, tqq � Q1ptq, hence Q1 P PublicCpQ2q, which concludes our
proof. 2

When we consider the general case (C is the set of all the queries closed under iso-
morphism), we denote the comparison by ¤2. In this case, the following propo-
sition makes the link with the notion of determinacy [25] : Q2 determines Q1

when @t, t1 P D,View pQ2, tq � View pQ2, t
1q ùñ View pQ1, tq � View pQ1, t

1q.

We shall use the following lemma:

Lemma 5. Let Q1 and Q2 be two root preserving queries with dompQ1q �
dompQ2q � D. Then Q1 ¤2 Q2 implies Q1 ¤1 Q2.

Proof. Let Q1 and Q2 be two queries with domain D such that Q1 ¤2 Q2.
Suppose that Q1 ¦1 Q2, then there exists a tree t and a node n in Q1ptq
that is not in Q2ptq. Let t1 be a tree obtained from t by replacing n with a
“fresh” node n1 R Nt having the same label as n. As Q2 and Q1 are closed by
isomorphism, View pQ2, t

1q � View pQ2, tq and Q1pt
1q � Q1ptq, in contradiction

with our hypothesis. Therefore, we have Q1 ¤1 Q2. 2

Proposition 2. Given two root preserving queries Q1 and Q2 in XReg or MSO
such that dompQ1q � dompQ2q � D, Q1 ¤2 Q2 if and only if for all t, t1 P
D,View pQ2, tq � View pQ2, t

1q implies View pQ1, tq � View pQ1, t
1q.

Proof. Assume first that PublicCpQ1q � PublicCpQ2q for some C that contains
Q1. In particular, Q1 P PublicCpQ1q, hence Q1 P PublicCpQ2q, and therefore for
all t, t1 P D, View pQ2, tq � View pQ2, t

1q implies View pQ1, tq � View pQ1, t
1q.

Conversely, let C be the class of all queries, Q1 be any query in PublicCpQ1q
and Q2 a query such that for all t P D, Q2pView pQ1, tqq � Q1ptq. From hypoth-
esis, for each tree t2 P View pQ2, Dq, there exists a tree t1 such that for all tree

15

t with View pQ2, tq � t2 then View pQ1, tq � t1. Therefore, for all tree t with
View pQ2, tq � t2, the value of Q1ptq is the same. Moreover, from Lemma 5,
Q1 ¤1 Q2 and it follows Q1ptq � Q1ptq � Q2ptq � Nt2 . Thus, Q1ptq is a sub-
set of Q2ptq and only depends on View pQ2, tq. So, we can define a query Qr

that ”computes” Q1ptq from View pQ2, tq (the nodes selected by Qr on tree t2 are
obtained by choosing arbitrarily a tree t such that View pQ2, tq � t2 and then se-
lecting the nodes in Q1ptq). This query Qr is closed under isomorphism since Q1

and Q2 are so. Thus Q1 P PublicCpQ1q that implies PublicCpQ1q � PublicCpQ2q
that is Q1 ¤2 Q2. 2

Clearly, Q1 ¤2,XReg Q2 ùñ Q1 ¤2,MSO Q2 ùñ Q1 ¤2 Q2. These strong
comparisons may be relaxed whenever the node identifier does not really play
a role. Furthermore, a natural option would be to take all data, be it visible
or invisible, into account when we compare views: the knowledge of the access
control policy may allow to deduce some information on the hidden parts of the
document from the structure of the view document. We therefore propose a
third comparison for policies, based on certain answers[20]

Definition 4. Given a root preserving query Qv, a boolean query Q, and a
tree tv in View pQv, dompQvqq, we define the set of source documents of tv for
Qv as Src ptv, Qvq � tt P dompQvq | View pQv, tq � tvu. The certain answer of
query Q for tv is

CertainQv
pQ; tvq �

©
tPSrcptv,Qvq

Qptq.

We can now introduce our comparison, stating that root preserving Q1 is more
restrictive than root preserving Q2 if for every source document t the certain
answers for t with the first view are also certain answers for the second one.

Definition 5. Given a class of queries C and two root preserving Q1 and Q2

with dompQ1q � dompQ2q � D, we say that Q1 ¤3,C Q2 if

@t P D.@Q P C.CertainQ1
pQ;View pQ1, tqq ùñ CertainQ2

pQ;View pQ2, tqq

We define the notion of view inversion in order to prove that in our setting
comparison ¤3,C does not depend on the class of queries C considered.

Definition 6. Given two classes of queries C and C1, we say that C permits
C1-view inversion if for every root preserving query Q1 P C1, any tree t1 P
View pQ1, dompQ1qq, there is a boolean query Ant pt1, Q1q in C such that @t P
dompQ1q.Ant pt1, Q1q ptq � true iff t P Src pt1, Q1q, i.e., iff View pQ1, tq � t1.

This means query Ant pt1, Q1q is satisfied on trees whose view (for Q1) is iso-
morphic to t1.

Lemma 6. Every class C P tXReg,MSOu permits C-view inversion.

16

Proof. Let Q1 denote a root-preserving XReg query and let t1 denote a tree
in View pQ1, dompQ1qq. We can easily define a boolean query f P XReg such
that for every tree t, f |ù t if and only if t � t1. The construction for the
composition of queries in section 3 can be applied to boolean queries as well as
root-preserving queries; thus, by rewriting the base axes of f , we obtain a XReg

query Rewritepf,Q1q which for every tree t satisfies Rewritepf,Q1qptq � true if
and only if View pQ1, tq � t1. The proof for MSO follows the same lines. 2

The definition for ¤3,C is not very practical, due to the quantification over
queries. Therefore we introduce the following characterizations.

Proposition 3. For all classes C, C1, if C permits C1-view inversion, then for
every root preserving queries Q1, Q2 P C1 with dompQ1q � dompQ2q � D:

Q1 ¤3,C Q2 ðñ @t P D.CertainQ2
pAnt pView pQ1, tq , Q1q ;View pQ2, tqq .

ðñ @t, t1 P D.View pQ2, tq � View
�
Q2, t

1
�
implies

View pQ1, tq � View
�
Q1, t

1
�

Proof. Assume Q1 ¤3,C Q2. Since C permits C1-view inversion, for all t in
D, Ant pt, Q1q exists and CertainQ1

pAnt pView pQ1, tq , Q1q ;View pQ1, tqq holds.
Hence, CertainQ2

pAnt pView pQ1, tq , Q1q ;View pQ2, tqq also holds.
Suppose now that CertainQ2

pAnt pView pQ1, tq , Q1q ;View pQ2, tqq for all t
in D, and fix some t, t1 in D such that View pQ2, tq � View pQ2, t

1q. Then,
Ant pView pQ1, tq , Q1q pt

1q � true, hence View pQ1, tq � View pQ1, t
1q.

To conclude, suppose that View pQ2, tq � View pQ2, t
1q ùñ View pQ1, tq �

View pQ1, t
1q for all t, t1 in D. Then, for every t P D, Src pView pQ2, tq , Q2q �

Src pView pQ1, tq , Q1q. Consequently, every t in D and Q in C satisfy the prop-
erty CertainQ1

pQ;View pQ1, tqq ùñ CertainQ2
pQ;View pQ2, tqq. 2

Remark: note that under those assumptions on the classes of queries, ¤3,C does
not depend upon C. Actually, Proposition 3 characterizes comparisons in terms
of determinacy (defined modulo isomorphism). Henceforth, ¤3 will denote ¤3,C

for all class C that permits C-view inversion.
The following results describe how the three definitions for policy comparison
are related:

Proposition 4. Given any class of queries C and root preserving queries Q1

and Q2 in C with dompQ1q � dompQ2q,

1. Q1 ¤2 Q2 ùñ Q1 ¤1 Q2

2. Q1 ¤2 Q2 ùñ Q1 ¤3 Q2

3. pQ1 ¤1 Q2 ^Q1 ¤3 Q2q ÷ Q1 ¤2 Q2

4. Q1 ¤2 Q2 ÷ Q1 ¤2,MSO Q2.

Proof. 1. This is Lemma 5.

17

2. Let Q1 ¤2 Q2. Let Q be a Boolean query and t in dompQ1q such that
CertainQ1

pQ;View pQ1, tqq. Let t0 be a tree such that View pQ2, tq �
View pQ2, t0q. There exists a tree t1 with t1 � t0 and View pQ2, t

1q �
View pQ2, tq, because we considered queries closed under isomorphism.
From Proposition 2, it follows View pQ1, tq � View pQ1, t

1q and, since t1 �
t0, View pQ1, tq � View pQ1, t0q. We have proved Q1 ¤3 Q2.

3. Let D be the DTD defined by r Ñ a*,b,a,a*, let χ1 � órself::a and

ð::bs and χ2 � ó::a. Let Q1 be the query that synthesizes validation
against D and XReg expression χ1 and Q2 be the query that synthesizes
validation against D and XReg expression χ2. Those queries satisfy:
pQ1 ¤1 Q2 ^Q1 ¤3 Q2q but Q1 ¦2 Q2.

4. We show a stronger result actually; we prove that determinacy for “simple”
annotations does not imply the existence of an MSO query rewriting even
when View pQ2, Dq is regular.
Let D be the DTD defined by r Ñ a,r,a | empty, let X be the ac-
cess function defined by Xpr, rq � false, and Xpr, aq � true, let χ1 �
ó�rself::a^ ðs. Let Q1 be the query that synthesizes validation against
D and XReg expression χ1 and Q2 � QpD,Xq. View pQ2, LpDqq consists
of all trees of depth 1 with nodes labeled a below root r, in even number.
Any query Q such that RewritepQ,Q2q � Q1 would have to select the n
first ’a’ elements in a2n, which is beyond the power of regular queries. 2

We define the following decision problems, parameterized by i P t1, 2, 3u and
a class of queries C:
Problem: ¤i,C

Input: Root preserving queries Q1, Q2 P C with dompQ1q � dompQ2q.
Question: Q1 ¤i Q2 ?

Proposition 5. For any class of queries C P tXReg,MSOu there is a polyno-
mial time reduction from ¤1,C to ¤2,C, and a polynomial time reduction from
¤1,C to ¤3,C.

Proof. Let Q1 and Q2 denote two root preserving queries with identical do-
main D. We denote by Σ1 the new alphabet: Σ1 � ppΣztruq � t1, 2uq Y t$u Y
tpr, 1qu where r is the label of the root of trees in D. Intuitively, the $ will be
used as a tag that marks the positions selected by Q1, while the substitution
with two copies of each letter will be necessary only for the reduction to ¤3,C .

We define a transformation τ that adds a $ symbol as the leftmost child of
every node of the trees in D: @a P Σ, τpapt1, t2, . . . , tnqq � ap$, τpt1q, . . . , τptnqq.
We also define morphism φ from Σ1 to Σ Y t$u that projects the labels on
their first component. Formally, φp$q � $, φppr, 1qq � r, and for all a in
Σztru, φppa, 1qq � φppa, 2qq � a. Finally, D1 is defined as φ�1pτpDqq.

Given any tree t P D1, τ�1ptq returns the tree obtained from t by removing
the $ nodes (only leaves may be labeled by a $), and φpτ�1ptqq additionally
projects the labels on the first component. We define two queries Q1

1 and Q1
2 as

18

follows. For every i P t1, 2u, Q1
iptqXNτ�1ptq � Qipφpτ

�1ptqqq. Q1
1 selects no node

with label $, and Q1
2 selects a node with label $ if and only if its parent node

is selected by Q1
1. If C is one of XReg or MSO (query automata), then queries

Q1
1 and Q1

2 in C can clearly be defined in polynomial time from Q1 and Q2. To
conclude the proof we observe that: Q1 ¤1 Q2 ðñ Q1

1 ¤2 Q
1
2 ðñ Q1

1 ¤3 Q
1
2.

Here is a proof for the observation: if Q1 ¤1 Q2 does not hold, then there
exists a tree t1 and node n P Nt such that n P Q1pt

1qzQ2pt
1q. Let t1 be a tree

such that φpτ�1pt1qq � t1 and λt1pnq � pa, 1q, and t2 be obtained from t1 by
relabeling n with pa, 2q. From Q1

2pt1q one cannot guess if the label of n is pa, 1q
or pa, 2q: View pQ1

2, t1q � View pQ1
2, t2q, and yet View pQ1

1, t1q � View pQ1
1, t2q.

Therefore, Q1
1 ¤3 Q

1
2 implies Q1 ¤1 Q2. When Q1 ¤1 Q2, Q1

1 ¤2,C Q
1
2 obviously

holds, since in that case we only need to select in the view for Q1
2 the nodes

having a child labeled $ to get the nodes selected by Q1
1. Moreover, Q1

1 ¤2,C Q
1
2

implies Q1
1 ¤3 Q

1
2 by Proposition 4. We observe that we have used ¤2,C instead

of ¤2 in the previous paragraph, which yields the additional result that Q1 ¤1

Q2 ðñ Q1
1 ¤2,C Q

1
2. Consequently we also have a reduction from ¤1,C to the

problem of deciding comparison ¤2,C . 2

Example 4. Figure 5 illustrates the reduction for two XReg queries. Clearly,
the queries Q1 and Q2 from that figure satisfy Q1 ¤1 Q2. Therefore, queries
Q1

1 and Q1
2 satisfy Q1

1 ¤3 Q
1
2 and even Q1

1 ¤2,XReg Q
1
2. Query ó�::ró::$s is a

rewriting of Q1
1 in terms of Q1

2.

When the class of queries C is expressive enough, for instance C P tXReg,MSOu,
we can reduce determinacy to the third comparison:

Proposition 6. Given two root preserving queries Q1, Q2 in C (where C in
tXReg,MSOu) with dompQ1q � dompQ2q, we can compute in polynomial time
two queries Q1

1 and Q1
2 in C such that Q1 ¤2 Q2 ðñ pQ1 ¤1 Q2 ^Q1

1 ¤3 Q
1
2q.

Proof. Fix C P tXReg,MSOu, and root preserving queries Q1, Q2 such that
dompQ1q � dompQ2q � D. We first test the inclusion, and then we must check
not only isomorphism constraints, but also that “the same nodes appear at the
same position”. For this purpose we modify D, inserting dummy nodes into the
first view so as to indicate the positions before we test ¤3,C .

Formally, the proof works as follows: let $ represent a new symbol outside
Σ. We define D1 from D such that for all tree t in D, every subtree apt1, . . . , tnq
rooted at even depth is replaced by $papt1, . . . , tnqq. Note that if D is expressible
in C, D1 is expressible in C. Next, we define from Q1 and Q2 queries Q1

1 and Q1
2

of domain D1 as follows: given a tree t1 in D1, let t be the tree obtained from t1

by deleting every $-labeled node (so each node of odd depth in t1 gets adopted
by its grandfather node). Q1

2 is defined by Q1
2pt

1q � Q2ptq, i.e. Q1
2 hides all

$-labeled nodes and the nodes hidden by Q2 in t, and Q1
1pt

1q contains exactly
Q1ptq plus every node n with label $ such that there exists in t1 a node n1 below
n satisfying n1 P Q2ptq. So, we have constructed two queries Q1

1 and Q1
2 such

that Q1 ¤2 Q2 ðñ pQ1 ¤1 Q2 ^Q1
1 ¤3 Q

1
2q.

19

pr, 1q

$ pa, 1q

$ pb, 2q

$ pb, 1q

$

pb, 2q

$

r

a

b

b

b

pr, 1q

$ pb, 2q

$ pb, 1q

pb, 2q

pr, 1q

pb, 2q

t1 φpτ�1pt1qq View
�
Q1

2, t
1
�

View
�
Q1

1, t
1
�

Q2 � ó�::a{ó�::b Q1
2 � ó�::rself::pa, 1qor self::pa, 2qs{ó�::rself::pb, 1qor self::pb, 2qs

YQ1
1{ó::$

Q1 � ó�::a{ó::b Q1
1 � ó�::rself::pa, 1qor self::pa, 2qs{ó::rself::pb, 1qor self::pb, 2qs

Figure 5: Reduction from ¤1 to ¤2,XReg and ¤3 for particular Q1 and Q2.

20

At first glance, this looks like a Turing reduction, because we use two in-
stances of ¤3: one for Q1

1 ¤3 Q
1
2 and one for Q1 ¤1 Q2 (we recall from Proposi-

tion 5 that comparison ¤1 reduces into ¤3). However, it is easy to build a single
instance from these two: we can use disjoint alphabets for the two instances by
copying the alphabet, and then use as domain the set of trees whose root has
two children; each child being devoted to one instance. 2

Theorem 3. Given C P tXReg,MSOu, and two root preserving queries Q1 and
Q2 in C, testing Q1 ¤2,C Q2 is undecidable.

Proof. We use a reduction from regular separability of two context-free gram-
mars. Recall that two context-free grammars G1 and G2 over the alphabet Γ
are regularly separable if there exists a regular language R (over Γ) such that
LpG1q � R and LpG2q � RA, where RA is the complement of R. Checking reg-
ular separability of two context-free languages is known to be undecidable [30].

We give the proof for C � XReg; the result for MSO follows the same
lines. The reduction constructs a DTD D defining the set of all derivation trees
of G1 and G2. The query Q2 hides all nonterminals from the derivation tree
except the root, thus yielding a tree of depth one whose leaves form a word of
LpG1qYLpG2q. The query Q1 works similarly except that it also hides terminals
derived from nonterminals of G2; essentially, it yields only words of LpG1q.

If G1 and G2 are separable by a regular set R, then the regular expression
describing R can be easily rewritten into a XReg query Q such that for all t in
D, QpView pQ2, tqq � Q1ptq, that is QpD,Q1q ¤2,C QpD,Q2q. Conversely, suppose
there is a XReg query Q such that for all t in D, QpView pQ2, tqq � Q1ptq.
Essentially, Q selects words from LpG1q and hides words from LpG2q, hence it
separates G1 and G2. Then Q is equivalent to a tree MSO formula ϕ [5], and
we remark that ϕ is interpreted on trees of height 1 only. Therefore, there exists
a word MSO formula ψ that captures exactly the words consisting of labels of
the consecutive children of the root node. This formula ψ can be converted into
a regular expression [33] which defines a set separating G1 and G2. 2

We prove similarly that determinacy is undecidable:

Theorem 4. Given root preserving XReg queries Q1 and Q2, testing Q1 ¤2 Q2

is undecidable.

Proof. The proof is similar to the one for Theorem 3, hiding derivations of
context-free grammars, except that the reduction is toward emptiness of inter-
section: recall that the problem that takes as input two context-free grammars
G1 and G2 and answers whether LpG1q X LpG2q � H is undecidable.

The reduction constructs a DTD D defining the set of all derivation trees
of G1 and G2. The query Q2 hides all nonterminals from the derivation tree
except the root, thus yielding a tree of depth one whose leaves form a word
of LpG1q Y LpG2q. The query Q1 works similarly except that it also hides
terminals derived from nonterminals of G2; essentially, it yields only words of
LpG1q. If G1 and G2 are disjoint then for any two trees t, t1 in D such that

21

View pQ2, pq tq � View pQ2, t
1q, either t and t1 both correspond to derivation

trees of G1 or they both correspond to derivation trees of G2. Either way,
View pQ1, tq � View pQ1, t

1q. Conversely, suppose there exists w P LpG1q X
LpG2q. Then there exist a derivation tree t (resp. t1) of w for G1 (resp. for G2).
Consequently, Q1 ¦2 Q2 since View pQ2, pq tq � View pQ2, t

1q and View pQ1, tq �
View pQ1, t

1q. This concludes the proof. 2

Proposition 7. We denote by �3 the equivalence relation Q1 �3 Q2 ðñ
Q1 ¤3 Q2 ^Q2 ¤3 Q1. In general (and even if the visibility of a node depends
only on its label) testing whether Q1 �3 Q2 is undecidable, therefore testing
whether Q1 ¤3 Q2 is undecidable.

Proof. Given an instance of PCP P : u1, . . . un, v1, . . . vn with ui, vi P Σ� for all
i ¤ n, we define as follows a DTD D over alphabet ΣYtu, v,#, 1, . . . nu, together
with access functions X1, X2. The DTD production rules are: r Ñ u | v,
uÑ pu1, u, 1q | . . . | pun, u, nq | #, and vÑ pv1, v, 1q | . . . | pvn, v, nq | #, and the
access functions are, for all j in t1, 2u and α P ΣY t#u Y t1, . . . nu:

X1pr, uq � X1pr, vq � false, X2pr, uq � X2pr, vq � true

Xjpu, uq � Xjpv, vq � false, Xjpu, αq � Xjpv, αq � true

Note that the view for access function X1 consists of some tree of depth 2
(hence can be identified with words), see Figure 6 for an illustration of the
PCP instance (u1 � aab, u2 � ba, u3 � b, v1 � aa, v2 � bb, v3 � abb) over
alphabet Σ � ta, bu: the two annotations derived from this instance do not
satisfy QpD,X1q �3 QpD,X2q. QpD,X1qptq can easily be obtained from QpD,X2q

by erasing u or v, so QpD,X1q ¤3 QpD,X2q trivially holds. Clearly, QpD,X2q ¤3

QpD,X1q if and only if there is no solution to the PCP problem, because the
only difference between QpD,X1q and QpD,X2q is that the latter selects the child
of the root, so QpD,X2q ¤3 QpD,X1q if and only if one can distinguish for every
sequence i1 . . . ik and every word w P S � tui1ui2 . . . uik , vi1vi2 . . . viku if w has
been from the ui or from the vi. In other words, QpD,X2q ¤3 QpD,X1q if and only
if ui1ui2 . . . uik � vi1vi2 . . . vik for every sequence i1 . . . ik, which is the definition
of PCP. Hence, QpD,X1q �3 QpD,X2q if and only if the answer of P is negative.
Thus testing QpD,X1q �3 QpD,X2q is undecidable. 2

5. Restrictions on the views

Defining the view with unrestricted XReg queries or automata raises a major
difficulty: the sets of view trees View pV,Dq � tView pV, tq t P Du need not
be regular. Approximating the view schema may be a solution, yet this non-
regularity also makes decision problems such as policy comparison intractable,
in addition to preventing the construction of the view schema. Therefore, we
investigate a few restrictions on the views that guarantee View pV,Dq is regular
and allow for better algorithms. In particular we shall prove in the next sections
that the three comparisons we have defined on SAS are all decidable under these
restrictions.

22

tree t

r

u

aab 1u

ba 2u

aab 1u

#b 3

View
�
QpD,ann2q, t

�
r

u

aabbaaabb#1213

View
�
QpD,ann2q, t

1
�

r

v

aabbaaabb#1213

r

aabbaaabb#1213

View
�
QpD,ann1q, t

�
� View

�
QpD,ann1q, t

1
�

tree t1

r

v

aa 1v

bb 2v

aa 1v

#abb 3

Figure 6: PCP encoding for ¤3

Bounded depth. A set of trees L has bounded depth if there exists a constant k
such that all trees in L have depth at most k. In our setting, it is not the depth
of the view trees that we wish to bound, but the depth of the original document.
Thus, a query (or view) Q has bounded depth if there exists some k such that
every tree in its domain has depth at most k. This implies that View pQ,Dq has
bounded depth, but the latter is not a sufficient condition. For any bounded-
depth MSO query Q, View pQ,Dq is clearly a regular set of trees; this can also
be viewed as a particular case of Proposition 8. Furthermore, XReg and MSO
clearly have the same expressivity on trees of bounded depth.

Upward closed views. A query (or view) is upward-closed if for every document
t the parent of every node selected by Q in t is also selected by Q. That means
all the ancestors of every visible node are also visible. Equivalently, whenever
a node is hidden, all its descendants are hidden as well. For this reason, this
requirement is commonly referred to in the literature as the policy’s denial
downward consistency [24] 1.

Interval boundedness. We generalize both bounded depth and upward closed
views to allow restricted deletions of internal nodes.

Let t be a tree over TΣ�t0,1u. We say that t is k-interval bounded if

1The term “upward-closed” is employed by Libkin and Sirangelo [21], but a variety of other
names appear in the litterature.

23

1. the label of the root of t belongs to Σ � t1u

2. on any descending path of t, there are at most k consecutive nodes with
label in Σ � t0u between two nodes with label in Σ � t1u.

A tree language L � TΣ�t0,1u is k-interval bounded if every tree of L is k-
interval bounded and an annotation A is k-interval bounded if ApTΣq is k-interval
bounded. We say that an annotation A is interval bounded (IB) if there exists
some k such that A is k-interval bounded. We define k-interval bounded queries
and interval bounded queries likewise: query Q is k-interval bounded iff AQ is.
We observe from the definition that any interval bounded query (or annotation)
is always root preserving.

Remark 1. Every upward-closed view is 0-interval bounded, and every view
with bounded depth k is pk � 1q-interval bounded.

We state further properties of interval-bounded MSO queries after a few illus-
trative examples.

Example 5. The security view defined by pD0, X0q in Example 2 is interval
bounded since DTD D0 is non recursive. It is actually (also) 1-interval bounded.
The following DTD D1 gives informations about the versionning of projects.

projects Ñ project
�

project Ñ name, version

version Ñ number, files, license, prev

prev Ñ version | ε

files Ñ src, bin, doc

license Ñ free | propr

Annotation ann1 keeps the last version of each project and hides the oth-
ers. Moreover, it hides all nodes version, files, number (when no explicit
rule is given for an element name, its visibility is inherited from its parent):

projects Ñ project
�

project Ñ name, version

ann1pproject, versionq � false

version Ñ number, files, license, prev

ann1pversion, licenseq
� rò::version{ò::projects

prev Ñ version | ε

files Ñ src, bin, doc

ann1pfiles, srcq
� ann1pfiles, binq
� ann1pfiles, docq
� rò::files{ò::version{ò::projects

license Ñ free | propr

The DTD D1 is recursive but query QpD1,ann1q is also 1-interval bounded, and

View
�
QpD1,ann1q, LpD1q

�
is the language validated by the following DTD D1

1:

projects Ñ project
�

project Ñ name, src, bin, doc, license

license Ñ free | propr

The preceding policy is not upward closed as it hides the version nodes
that are children of the project nodes but discloses the files children of those
hidden version nodes. If we replace, however, the annotation ann1 by ann1

1

24

defined by the unique mapping ann1pversion, prevq � false, then the resulting
policy is upward-closed (and therefore interval bounded). The corresponding
view DTD is D1

1 given below:

projects Ñ project
�

project Ñ name, version

version Ñ number, files, license

license Ñ free | propr
files Ñ src, bin, doc

Example 6. Let us consider a slightly more complex example: we allow the
previous version of project to be a collection of projects. This corresponds to
the following case scenario: projects are allowed to merge over time, but not to
branch. We define a new DTD D2 obtained from D1 by changing the production
of prev for: prevÑ project�. All other production rules remain the same.

Annotation ann2 keeps licenses together with the name and version of the
corresponding project and the project node, and hides every other node.

projects Ñ project
�

project Ñ name, version

ann2pproject, nameq � false

ann2pproject, versionq � false

version Ñ number, files, license, prev

ann2pversion, licenseq � true

prev Ñ project
�

ann2pprev, projectq � true

files Ñ src, bin, doc

license Ñ free | propr

The query QpD2,ann2q is not 1-interval bounded, but it is 2-interval bounded.
The corresponding view DTD is D2 given below:

projects Ñ project
�

project Ñ name, license, project�
license Ñ free | propr

As a last example, suppose we only want to store all licenses without fur-
ther information. This can be achieved, for instance, via annotation ann12:
ann12pprojects, projectq � false, and ann12pversion, licenseq � true. The
query QpD2,ann

1

2
q is not interval bounded. The resulting view DTD contains a

single production rule: projectsÑ license�.

Below we are stating the main property of interval bounded views, namely, that
interval bounded views preserve regularity.

Proposition 8. For any interval bounded MSO query Q, for any regular lan-
guage L � dompQq, the language View pQ,Lq is regular.

Proof. Let Q be a k-interval-bounded MSO query. It is easy to build a VPA
A � pΣ � t0, 1u, SA,Γ, I, F,Rq that recognizes AQpLq from VPAs defining Q

and recognizing L, because AQpLq � AQpTΣqXΠ�1
Σ pLq. We define the VPA A1

as follows, using Γ¤k to denote the union
�

0¤i¤k Γi:

A1 � pΣ, S1,Γ1, I 1, F 1, R1q where

25

• S1 � SA � Γ¤k

• Γ1 � Γ¤k � Γ

• I 1 � I � tεu,

• F � F � tεu

• R1 is defined as follows

– A1 has transition xq, wy
ǫ
ÝÑ xq1, w � Γy for all transition q

pop,pa,0qq:Γ
ÝÝÝÝÝÝÝÑ q1

in R, and w P Γ k

– A1 has transition xq, w � Γy
ǫ
ÝÑ xq1, wy for all transition q

pcl,pa,0qq:Γ
ÝÝÝÝÝÝÝÑ q1

in R, and w P Γ k

– A1 has transition xq, wy
pop,aq:xw,Γy
ÝÝÝÝÝÝÝÝÑ xq1, ǫy, for all transition q

pop,pa,1qq:Γ
ÝÝÝÝÝÝÝÑ

q1 in R, and w P Γ¤k.

– A1 has transition xq, ǫy
pcl,aq:xw,Γy
ÝÝÝÝÝÝÝÑ xq1, wy for all transition q

pcl,pa,1qq:Γ
ÝÝÝÝÝÝÝÑ

q1 in R, and w P Γ¤k.

– A1 has transition xq, wy
ǫ
ÝÑ xq1, wy for all w P Γk and q, q1 such that

there is some tree t over alphabet Σ � t0u accepted by the VPA
pΣ � t0, 1u, SA, q, q

1,Γ, Rq.

We claim that LpA1q � View pQ,Lq.
The last condition corresponds to an epsilon transition from state q to state q1

whenever there is some tree t such that the second component of any label in t
is 0 and some run of the automaton A can exit from t in state q1 if it enters in
state q.

When A1 reads an hidden element, it uses an epsilon transition and sim-
ulates the stack of A within its states. Note that this simulation is complete
by our hypothesis of interval-boundedness. When opening visible elements, A1

records the information of previous simulations in the stack, so that they may
be recovered on the corresponding closing tag. This concludes the proof for
Proposition 8. 2

The following result is useful to analyze the complexity of our constructions.

Proposition 9. Let Q be a query given by an automaton A over Σ � t0, 1u
with N states, then Q is interval bounded iff Q is pN2 � 1q-IB.

Proof. Let us suppose that Q is k-IB for some k, but not pN2 � 1q-IB. Then
there is some tree t P dompQq such that t1 � AQptq is not pN2 � 1q-bounded:
there is a path in t1 from some node n to some of its descendants n1 such that
λt1pnq and λt1pn

1q belong to Σ � t1u, there are at least pN2 � 1q nodes on the
path between n and n1 and all these nodes between n and n1 have label in Σ�0.
Since there are at least pN2 � 1q such nodes, this implies that on some (as a
matter of fact, “on any”) accepting run ρ of A on t1, there are two nodes n1

and n2 such that ρpn1q � ρpn2q. The usual pumping argument contradicts the
interval-boundedness of Q. 2

26

Proposition 10. For any query Q given by an automaton A over Σ � t0, 1u,
testing whether Q is interval bounded is in PTIME.

Proof (outline). Roughly speaking, the set of all k-IB trees can be defined
by a deterministic automaton with Opkq states. Hence, it suffices to combine
the previous proposition and a simple polynomial algorithm for testing inclusion
of tree automata. 2

Proposition 11. Testing whether a query given by a XReg expression is in-
terval bounded is Exptime-complete.

Proof. Building an automaton from an XReg expression is in Exptime (see
[6]). Hence, the Exptime upper bound follows from Proposition 10. To show
Exptime-hardness, we reduce satisfiability of XReg (see [9, 23]) to testing in-
terval boundedness. Let Q be a XReg expression over an alphabet Σ. We
define DTD D as follows: D � pΣZta, bu, r, P q where P 1prq � Σ�a | w P P prqu,
P paq � a|b, P pbq � ε and, for every α P Σztru, P pαq � Σ�. We rewrite Q
in linear time into an expression Q1 that checks whether the tree satisfies D
and whether Q can be satisfied using only the elements from Σ. If those checks
succeed, then Q1 selects the (unique) node labeled b, and selects no other node
except the root, otherwise it selects only the root. Because the DTD D allows
to have b elements at arbitrary depth, the view defined by query Q1 is interval
bounded iff Q is not satisfiable.

Here is how we can build Q1. We denote by Q0 the expression resulting from
the addition of a filter rnotpself::a or self::bqs to each elementary axis of Q; every
occurrence of ñ, for instance, is replaced by the expression:

rnotpself::a or self::bqs {ñ{ rnotpself::a or self::bqs .

We also build in linear time an expression QD such that for every tree t, t |ù QD

iff t P LpDq. The expression Q1 can be built in linear time from QD and Q0:

Q1 � ó�rnotò or pself::b and ò∗{rnotò andQ0 andQDsqs 2

6. Comparing Security Policies: MSO

Reminder: In this section, we assume the query is given by way of an au-
tomaton A over Σ � t0, 1u, that recognizes a maximal language.
Notation: Given root preserving annotations A1 and A2, for every tree t �
pNt, roott, childt, nextt, λtq, we denote by t b A1 b A2 the tree t b A1 b A2 �
pNt, roott, childt, nextt, λ

1
tq such that for all n P Nt, λ

1
tpnq � pλtpnq, A1pnq, A2pnqq.

For interval-bounded annotations, testing comparison 2 amounts to testing
determinacy:

Lemma 7. Let Q1 and Q2 denote two MSO queries, with dompQ1q � dompQ2q
and Q2 interval-bounded. Then

27

• Q1 ¤2,MSO Q2 iff @t, t1,View pQ2, tq � View pQ2, t
1q ùñ View pQ1, tq �

View pQ1, t
1q,

• i.e., Q1 ¤2,MSO Q2 iff Q1 ¤2 Q2.

Furthermore, if Q2 is k-interval-bounded and Q1 ¤2 Q2, one can compute a
query (automaton) Q such that RewritepQ,Q2q � Q1 in time exponential in k.

Proof. Since Q1 ¤2,MSO Q2 ùñ Q1 ¤2 Q2, all we need is to prove that we
can compute a query (automaton) Q such that RewritepQ,Q2q � Q1 whenever
Q1 ¤2 Q2. Let k P N be a natural number such that Q2 is k-interval-bounded.
We suppose Q1 ¤2 Q2. Then, by Proposition 4, Q1 ¤1 Q2. We define an
automaton A � pΣ�t0, 1u2, S,Γ, I, F,Rq with language LpAq � ttbAQ1

bAQ2
|

t P dompQ1qu. Note that since we suppose Q1 ¤1 Q2, no label pa, 1, 0q can
occur in any tree recognized by A. Next, to abstract from elements in t that
are not selected by Q2, in order to ’rewrite’ Q1 in terms of Q2, we use the
same construction as in Proposition 8 which computes an automaton for the
view. Indeed, A can be considered as defining an interval bounded query on
trees labeled by Σ� t0, 1u which will select all the nodes labeled by Σ� t1u as
Q1 ¤1 Q2.
Construction of an automaton rewriting Q1 in terms of Q2: the idea is to

eliminate transitions q
pη,pa,0,0qq:γ
ÝÝÝÝÝÝÝÝÑ q1 for every q, q1 P S, η P top, clu, q P Σ, γ P Γ,

replacing them with ’ǫ’ transitions. The interval-boundedness restriction allows
us to eliminate those transitions. First, let E � S � S be the set of all pairs
pq, q1q such that A accepts some tree with labels in Σ � t0u � t0u from initial
state q to final state q1. More formally, pq, q1q P E if and only if there is some
tree t in L ppΣ, S,Γ, tqu, tq1u, Rqq, with λtpnq P Σ� t0u � t0u for all n P Nt.

We define a VPA B � pΣ�t0, 1u, S�Γ¤k,Γ�Γ¤k, I�tǫu, F �tǫu, R1q from
A as follows. Basically, B simulates within its state a stack of depth at most k.

• B has transition pq, uq
ǫ
ÝÑ pp, γuq for every transition q

pop,pa,0,0qq:γ
ÝÝÝÝÝÝÝÝÑ p of A

and u P Γ¤pk�1q.

• B has transition pq, γuq
ǫ
ÝÑ pp, uq for every transition q

pcl,pa,0,0qq:γ
ÝÝÝÝÝÝÝÝÑ p of A

and u P Γ¤pk�1q.

• B has transition pq, uq
pop,pa,x1qq:xγ,uy
ÝÝÝÝÝÝÝÝÝÝÑ pp, ǫq for every transition q

pop,pa,x1,1qq:γ
ÝÝÝÝÝÝÝÝÝÑ

p of A and u P Γ¤k.

• B has transition pq, ǫq
pcl,pa,x1qq:xγ,uy
ÝÝÝÝÝÝÝÝÝÝÑ pp, uq for every transition q

pcl,pa,x1,1qq:γ
ÝÝÝÝÝÝÝÝÝÑ

p of A and u P Γ¤k.

• B has transition pq, uq
ǫ
ÝÑ pp, uq for every u P Γ¤k and pq, pq P E .

One can compute B from A in time exponential in k. There is a polynomial
p1 such that |B| ¤ pp1p|Q1| � |Q2|qq

k
. To conclude the proof, we observe that

due to our determinacy hypothesis, B recognizes a maximal language, and by

28

construction, it defines a query Q such that RewritepQ,Q2q � Q1, as evidenced
by the following invariant.

Let w a word over top, clu �Σ, pq, uq a state in S � Γ¤k, and σ a word over
Γ � Γ¤k. We denote by σ1 the same σ considered as a word over Γ. We also
define for every word w1 over top, clu�Σ�t0, 1u� pΣYt0uq the word π2,3pw

1q
as the word obtained from w by projecting each letter on its second and third
component, and then removing all occurrences of letter p0, 0q. We claim that
for all such w, q, and σ, B preserves the following invariant.

Invariant: B can reach configuration ppq, uq, σq after reading w if and only
if there exists a word w1 over top, clu � Σ � t0, 1u � pΣ Y t0uq such that the
following two conditions are satisfied: (1) π2,3pw

1q � w, and (2) A can reach
configuration pq, σ1uq after reading w1. 2

From this, since determinacy is co-recursively enumerable, and ¤2 is recursively
enumerable, we can deduce immediately the decidability of ¤2 for interval-
bounded annotations, but we can do much better. A first approach for testing
¤2 could be to build the “square” of B and test whether there are two trees
t � t1 accepted by B, with the same projection over Σ; ΠΣptq � ΠΣpt

1q. We
would be able to test this property on B, in terms of accessibility of states.

Corollary 1. Let Q1 and Q2 be two MSO queries, such that dompQ1q � dompQ2q.
Given a fixed constant k, if Q2 is k-interval bounded, then we can test in poly-
nomial time whether Q1 ¤2 Q2 This holds in particular for downward closed
views.

Similarly, when the depth of the domain is bounded by a fixed constant, the
complexity for testing Q1 ¤2 Q2 becomes NLogspace.

Proof. We first check in polynomial time that Q1 ¤1 Q2; otherwise, Q1 ¦2 Q2.
We then build the automaton B above, and eliminate its epsilon transitions,
resulting in a VPA pΣ�t0, 1u, SB ,ΓB , IB , FB , RBq. Finally, we build the square
Bsquare of this automaton B, namely pΣ�t0, 1u�t0, 1u, S2

B ,Γ
2
B , I

2
B , F

2
B , Rsquareq

such that Bsquare has rule pq1, q2q
pη,pb,α1,α2qq:pγ1,γ2q
ÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq11, q

1
2q P Rsquare iff B has

rules q1
pη,pb,α1qq:γ1q
ÝÝÝÝÝÝÝÝÑ q11 P R and q2

pη,pb,α2qq:γ2q
ÝÝÝÝÝÝÝÝÑ q12 P R. By construction, and

as we supposed Q1 ¤1 Q2, it holds that Q1 ¤2 Q2 if and only if for all b, α1, α2

with α1 � α2, the language of Bsquare contains no tree with a node labeled
pb, α1, α2q. This is a problem of reachability, which can be solved in polynomial
time for VPAs. Since there is a polynomial p2 such that Bsquare is built in time

at most pp2p|Q1| � |Q2|qq
k
, we get the polynomial time complexity when k is a

fixed constant.
When the depth of the domain is bounded by a fixed constant k, we observe

that the stack of any run of Bsquare over a tree of depth k can be represented
as a word in pΓ2

Bq
¤k. Therefore, Bsquare is equivalent to a word automaton Aw

of polynomial size. We cannot afford to build the full Bsquare , and even less
Aw, but we can simulate Aw on-the fly: each transition can be simulated using
logarithmic space and if Aw accepts a word containing some label pb, α1, α2q

29

with α1 � α2, then it accepts such a tree of size polynomial, which gives a
NLogspace algorithm for testing Q1 ¤2 Q2.

Observe that it is actually sufficient to assume that Q2 is k-interval bounded
or has domain of bounded depth. Query Q1 need not be constrained. 2

However, the full construction of B induces an exponential cost in terms of
time and space, so that for general interval-bounded queries, this approach uses
exponential time. We provide a polynomial space algorithm instead for interval-
bounded queries.

Lemma 8. Let Q1, Q2 be MSO queries, with Q2 interval bounded. If there
are two trees t, t1 such that View pQ2, tq � View pQ2, t

1q but View pQ1, tq �
View pQ1, t

1q, then there are two such trees of size exponential and depth poly-
nomial in the size of the automata Q1, Q2.

Proof. We prove this with a pumping argument, adapting the standard pump-
ing arguments for tree automata in order to preserve the difference between the
views for Q1 (we shall therefore consider three nodes instead of two). Let
A1 � pΣ, S1,Γ1, I1, F1,∆1q and A2 � pΣ, S2,Γ2, I2, F2,∆2q be two query au-
tomata, with corresponding queries Q1 and Q2 such that Q2 is an interval
bounded query and Q1 ¤1 Q2. Let pt, t1q be a pair of trees of minimal size such
that View pQ2, tq � View pQ2, t

1q but Q1ptq � Q1pt
1q. Let ρt2 (resp. ρt

1

2) denote
accepting runs of the automaton A2 on AQ2

ptq (resp. AQ2
pt1q), and ρt1 (resp.

ρt
1

1) denote accepting runs of the automaton A1 on AQ1
ptq (resp. AQ1

pt1q). We

also denote by pρt2q
Ò, pρt

1

1 q
Ò, etc. the corresponding functions that map a node

n to the pair of states assigned by the run of the automaton before reading the
opening tag and after processing the closing tag of n.

Vertical pumping: We decorate every node n in Q2ptq (therefore also in
Q2pt

1q) with the tuple ρpnq � pρt2pnq, ρ
t1

2 pnq, ρ
t
1pnq, ρ

t1

1 pnqq. Suppose there is
some node in Q2ptq at depth strictly greater than pk � 1q � 2 � |S2|

2 � |S1|
2 in

t or t1, then there are three distinct nodes nÒ, n�, nÓ in Q2ptq such that nÒ is an
ancestor of n�, n� an ancestor of nÓ, and ρpnÒq � ρpn�q � ρpnÓq as depicted in
Figure 7.

We consider two cases depending on whether there exists below n� a node n
that belongs to Q1ptq∆Q1pt

1q. In the first case we assume there is some node
n below n� that belongs to Q1ptq∆Q1pt

1q. Then we could replace the subtree
below nÒ with the subtree below n� in t and t1: the two trees thus obtained would
have same view for Q2 and different views for Q1, which contradicts minimality
of the pair pt, t1q. In the second case there is no node n P Q1ptq∆Q1pt

1q below
n�, but then we could replace the subtree below n� with the subtree below nÓ in
t and t1: the two trees thus obtained would have same view for Q2 and different
views for Q1, which contradicts minimality of the pair pt, t1q. So either way, our
minimality hypothesis enters in contradiction with the existence of a node of
depth greater than pk � 1q � 2 � |S2|

2 � |S1|
2 in Q2ptq or in Q2pt

1q. Hence no
node in Q2ptq or Q2pt

1q has depth greater than pk � 1q � 2 � |S2|
2 � |S1|

2.
Thus, t and t1 have polynomial depth. Notice that the pumping argument

used to bound the depth of the trees does not increase the size of the trees.

30

We can use another pumping argument, pumping “horizontally” this time, and
bound the number of children of every node in t or t1 by an exponential.

Horizontal pumping: As before we use a pumping argument over nodes
in Q2ptq, because this makes it easier to preserve equality of the views for
Q2. Let n P Q2ptq. Then n also belongs to Q2pt

1q. However, it could very
well be that no child of n in t or t1 belongs to Q2ptq, while some descendant
of n would still belong to Q2ptq. To avoid those difficulties, we consider the
children n1, n2, . . . , nM of n in View pQ2, tq, in document order. We decorate
each node ni with two tuples ~ρpni, opq and ~ρpni, clq in pS1 � Γ¤k

1 q2 � pS2 �
Γ¤k
2 q2. Tuple ~ρpni, opq is associated to the opening tag of ni and ~ρpni, clq to

its closing tag. The tuples are defined as follows. Let dt ¤ k denote the
number of stack symbols that have been added (and not yet removed) after
reading the opening tag of n and before reading the opening tag of ni in t:
dtpniq � depthtpniq � depthtpnq � 1, and similarly dt1pniq � deptht1pniq �
deptht1pnq � 1. The tuples ~ρpni, opq and ~ρpni, clq are respectively defined as
ppq2, u2q, pq

1
2, u

1
2q, pq1, u2q, pq

1
1, u

1
1qq and pps2, u2q, ps

1
2, u

1
2q, ps1, u2q, ps

1
1, u

1
1qq where

pρt2q
Òpniq � pq2, s2q, pρ

t1

1 q
Òpniq � pq11, s

1
1q, etc. and u2 P pΓ2q

dtpniq contains the
dtpniq topmost symbols of the stack for run ρt2 before processing the opening
tag of node ni, u

1
1 P pΓ1q

dt1 contains the dt1pniq topmost symbols of the stack
for run ρt

1

1 before processing the opening tag of node ni etc.
We assume that Γ1,Γ2 both contain at least two elements. The other cases

can be treated similarly. The number of different tuples ~ρ that can be con-
structed is strictly smaller than |S1|

2 � |Γ1|
2k�2 � |S2|

2 � |Γ2|
2k�2. Hence if

M ¥ 2|S1|
2 � |Γ1|

2k�2 � |S2|
2 � |Γ2|

2k�2, there exist 1 ¤ i j l ¤ M such
that ~ρpni, opq � ~ρpnj , opq � ~ρpnl, opq. This however contradicts the minimality
of t and t1: the trees ti,j and t1i,j obtained from t and t1 by removing all tags
between the opening of ni (included) and the opening of nj (excluded) satisfy
View pQ2, ti,jq � View

�
Q2, t

1
i,j

�
, and likewise the trees tj,l and t1j,l obtained by

removing all tags between nj and nl. The contradiction stems from the obser-
vation that Q1pti,jq � Q1pt

1
i,jq or Q1ptj,lq � Q1pt

1
j,lq. This concludes the proof

that every node from Q2ptq has at most 2 � |S1|
2 � |Γ1|

2k�1 � |S2|
2 � |Γ2|

2k�1

children in View pQ2, tq.
We still have to bound the number of nodes in NtzQ2ptq and likewise in t1,

but here the pumping argument is the usual one, as we can apply the pumping
argument from Lemma 3 independently in t and t1 on the “hidden” parts, pro-
vided nodes selected by Q2 are not affected. For each node n P Nt and every
sequence n1, n2, . . . , nL of consecutive children of n, if L ¥ |S1| � |S2| then one
of these children has necessarily a descendant in Q2ptq otherwise the pumping
argument from Lemma 3 would contradict the minimality of t and t1. Conse-
quently, the number of children of a node in t or t1 can be roughly bounded
by Op|S1|

3 � |Γ1|
2k�2 � |S2|

3 � |Γ2|
2k�2q. Moreover, each node n P Nt without

descendant in Q2ptq has no descendants of depth greater than its own depth
plus |S1|

2 � |S2|
2, according to the pumping argument of Lemma 3. Therefore,

no node in t or t1 has depth greater than k� 3� |S2|
2� |S1|

2. The combination
of those horizontal and vertical pumping arguments allows to conclude the proof

31

for Lemma 8: t and t1 have size at most exponential. 2

nÒ

n�

nÓ

nÒ

n�

nÓ
n P Q1ptqzQ1pt

1q

n�

nÓ

n�

nÓ

View pQ2, tq � View pQ2, t
1q

View pQ1, tq � View pQ1, t
1q

tree t tree t1

ó ó

Figure 7: Pumping argument for ¤2

Corollary 2. Given MSO queries Q1 and Q2, with Q2 interval bounded, we
can test Q1 ¤2,MSO Q2 in polynomial space.

Proof. Let Q1 be an MSO query and Q2 an MSO k-interval-bounded query.
Then, by Lemma 7 it is enough to test whether there are trees t, t1 such that
Q2ptq � Q2pt

1q but Q1ptq � Q1pt
1q. Moreover, Lemma 8 gives a bound on the

size and depth of t and t1. This suggests the following algorithm: we guess the
size of t, t1, and guess step by step the run of both view automata over t and
t1. We only need to store the stack and the current state, which provides a
non-deterministic algorithm in polynomial space. The result then follows from
Savitch’s theorem. 2

In the following, we are interested in MSO queries whose domain can be
expressed by a non recursive DTD. We write that the domain is a non-recursive
DTD even if no DTD is manipulated here. Since queries whose domain a non-
recursive DTD are a special case of interval-bounded queries, we get immediately
from Corollary 2:

32

Corollary 3. Let Q1 and Q2 be two MSO queries. When the domain is a
non-recursive DTD, one can test Q1 ¤2,MSO Q2 in polynomial space.

In order to establish the complexity of Testcomp2,MSO , we use a reduction from
the Compressed Membership Problem for regular expressions with squares.

The syntax of regular expression with squares is E ::� empty
�� a �� E ”,”E

��
E ”|”E

�� E∗
�� E2, where E2 represents E,E. A straight line program is a context

free grammar G � pV, T, S, P q with V the non-terminals, T the terminals, S the
initial non-terminal, and P : V Ñ pV Y T q� the productions, such that there
is a single production from each non-terminal, and the production relation is
acyclic. Thus, each straight line program G represents a single word wG. In
that setting, the Compressed Membership Problem is the problem deciding given
a regular expression with squares E (over alphabet T), and a word w over T
given by a straight line program, whether w belongs to the language of E.

Theorem 5 (Theorem 6 in [22]). The Compressed Membership Problem is
Pspace-complete for regular expressions with squares.

Lemma 9. For MSO queries given by automata, Testcomp2,MSO is Pspace-
hard even when the domain is a non-recursive DTD.

Proof. The proof works by reduction from the compressed membership prob-
lem for regular expressions with squares. Fix a straight line program G �
pV, T, S, P q and a regular expression with squares E over T . We can compute
in polynomial time a visibly pushdown automaton A recognizing the derivation
trees of G, and another one AE whose frontier (the language formed by the
leaves of the trees in LpAEq) is the language of E. Furthermore, LpAEq and
LpAq can be described by non recursive DTDs.

Let D be the domain that consists of trees with root r, and a unique subtree
either in LpAEq or in LpAq below the root. Let Q1, Q2 be queries over D such
that

• Q1 selects all the leaves of t if t consists of a root r and a subtree in LpAq:
(then View pQ1, tq represents the word wG), or selects nothing but the
root r if t consists of a root r and a subtree in LpAEq.

• Q2 selects all the leave nodes, irrespective of whether they belong to
LpAqorLpAEq.

Q1 ¤2 Q2 iff wG does not belong to the language of E. This concludes the
proof. 2

We can conclude from Corollary 2 and Lemma 9 that

Theorem 6. Testcomp2,MSO is Pspace-complete when queries are given by
automata and the domain is a non-recursive DTD.

Theorem 7. Testcomp2,MSO is Pspace-complete for interval-bounded MSO
queries given by automata.

33

Theorem 8. Q1 ¤3 Q2 is Pspace-complete for MSO queries given by au-
tomata, when the domain has bounded depth k.

Proof. We have the hardness by using the same construction as in Lemma 9.
Let us prove that this problem can be decided in polynomial space.

Here is a proof following a schema similar to ¤2: we define an automaton
A � pΣ�t0, 1u2, S,Γ, I, F,Rq with language LpAq � ttbAQ1

bAQ2
| t P LpDqu.

We transform A into a word transducer from View pQ2,�q to View pQ1,�q.
We build a word automaton Aw � pΣ � t0, 1u2, S � Γk, I � tεu, F � tεu, Rwq
equivalent to A: for all η P Σ � t0, 1u2, u P Γ¤pk�1q, q, q1 P S, and all γ P Γ,

Aw has rule pq, uq
pop,ηq
ÝÝÝÝÑ pq1, uγq iff A has rule q

pop,ηq:γ
ÝÝÝÝÝÑ q1. Aw has rule

pq, uγq
pcl,ηq
ÝÝÝÑ pq1, uq iff A has rule q

pcl,ηq:γ
ÝÝÝÝÑ q1.

From Aw we build automaton Bw � pΣ�t0, 1u2, S�Γk, I�tεu, F�tεu, RBq,
such that for all x1, x2 P t0, 1u, u P Γ¤pk�1q, q, q1 P S, and all γ P Γ, Bw has rule

pq, uq
pop,x1,x2q
ÝÝÝÝÝÝÑ pq1, uγq iff x1 � 1 or x2 � 1 and there exists b P Σ such that

Aw has rule pq, uq
pop,pb,x1,x2qq
ÝÝÝÝÝÝÝÝÝÑ pq1, uγq. Bw has rule pq, uq

ε
ÝÑ pq1, uγq iff there

exists b P Σ such that Aw has rule pq, uq
pop,pb,0,0qq
ÝÝÝÝÝÝÝÑ pq1, uγq. We add similar

rules for the closing tags. We remark that the number of consecutive transitions
in a minimal (accepting) run of Bw over some input is bounded by |Aw|

k.
Now, we can see Bw as a word transducer of polynomial size (remember that

k is a fixed constant), and Q1 ¤2 Q2 if and only if that transducer is functional.
We use the result from [17, 18] that functionality of word transducers is decidable
in NLogspace. Their proof uses result on the emptiness of automata with
reversal-bounded counters to prove that whenever there is an input on which
a word transducer T can produce two different outputs then there is such an
input of size polynomial in T . Here, Bw is of exponential size, so that we cannot
afford to build it, but we can simulate its transitions on-the-fly, and check for
every input v of size polynomial in |Bw| – i.e., for every input of exponential size
– if Bw can produce two different outputs on v. This gives a non-deterministic
algorithm in polynomial space: guess the size of the input, and simulate Bw

on-the-fly on this input. The result then follows from Savitch’s theorem. 2

Theorem 9. Testcomp3,MSO is in Exptime for interval-bounded queries when
queries are given by automata.

Proof. See Appendix

7. Comparing Security Policies: XReg

In this section we suppose the queries Q1 and Q2 are given by XReg expres-
sions. Query containment is Exptime-complete[23] for XReg and since this
holds for boolean queries, the interval-boundedness restriction does not help.
This complexity can be lowered to Pspace over non-recursive DTDs.

34

Theorem 10. Let QX and QX 1 be two root preserving XReg queries. When
the domain of QX is a non-recursive DTD, deciding QX ¤1 QX 1 is Pspace-
complete.

Proof. For XReg, query containment and satisfiability are equivalent prob-
lems: QX ¤1 QX 1 if and only if pX�1{r òsq ^ pX 1�1{r òsq is not satisfiable.
The Pspace-hardness is obvious since XReg generalize regular expressions, and
containment for regular expressions is Pspace-hard. Moreover, XReg has the
small model property: it is a well known property of PDL, hence of XReg [3]
that for every X P XReg, if there exists a tree t that satisfies X , then there
exists such a tree of size at most exponential in X . As a consequence of this,
the Pspace-completeness of query containment for XReg over non-recursive
DTDs is not really surprising: [3] identifies the possibility of building exponen-
tially deep models as the main reason why PDL (hence XReg) is Exptime-
hard. It is therefore natural that classical model-theoretic methods provide
a Pspace algorithm when we bound the depth of the trees: we build a tree
non-deterministically one branch at a time and check that it satisfies X .

[6] provides a linear-time algorithm to translate a XReg formula X into a
two-way alternating automaton A. A has state space S -roughly corresponding
to the subformula of X - of linear size, of course. This alternating automaton A

is translated in exponential time into a standard tree automaton A1 such that
for every tree t, A1 accepts t if and only if X is satisfied in t. Actually, the con-
struction in [6] works over first-child-next-sibling encoding, but the translation
to VPA is obvious, using [16] for instance, so that we can assume A1 to be a
VPA pΣ, Q,Γ, I, F,Rq.

We cannot afford the full construction of A1, because it induces an expo-
nential cost. However, the states and stack symbols of A1 are of the form
Γ, Q P t0, 1upS�S�Sq, so that representing a state uses only polynomial space.
Furthermore, although this result is not mentionned in [6], a careful analysis
of the rules for constructing R guarantees that we can check the transitions of
A1 using only polynomial time: in the VPA setting, this means that for every

q, q1 P Q, γ P Γ, η P top, clu and a P Σ, we can check that q
pη,aq:γ
ÝÝÝÝÑ q1 belongs

to R using polynomial time.
We non-deterministically guess letter by letter the linearization of the tree

and the rule we apply. We only need to remember the stack of the automaton,
which is of polynomial size by our hypothesis that the DTD is non-recursive.
The result then follows from Savitch’s theorem. 2

Theorem 11. Let Q1 and Q2 be two root preserving XReg queries. When the
domain of Q1 is a non-recursive DTD, deciding Q1 ¤2,XReg Q2 is Pspace-
complete.

Proof. Since MSO and XReg have the same expressivity when the depth of
the trees is bounded, Q1 ¤2,XReg Q2 if and only if Q1 ¤2,MSO Q2. So, by
Lemma 7, Q1 ¤2,XReg Q2 if and only if Q1 ¤2 Q2. To begin, we first check
that Q1 ¤1 Q2, in polynomial space by Theorem 10. Using the method in [6]

35

we can build in exponential time two automata A1 and A2 over Σ�t0, 1u such
that A1 (resp. A2) recognizes the language AQ1

(resp. AQ2
). Then, we use

a pumping argument similar to Lemma 8: if there are two trees t, t1 such that
Q2ptq � Q2pt

1q but Q1ptq � Q1pt
1q, then there are two such trees in which the

number of children of every node is a polynomial in A1 and A2. Thus, there
exists a polynomial p such that the number of children below each node is at
most 2ppnq where n is the sum of the size of Q1 and Q2. Since our hypothesis
on the domain bounds the depth of the trees by n, the size of t and t1 is at most
2ppnq�n. To sum up, we have proved that if there are two trees t, t1 such that
Q2ptq � Q2pt

1q but Q1ptq � Q1pt
1q, then there are two such trees of size at most

exponential in Q1 and Q2.
We cannot afford to build automata A1 and A2, but we can simulate their

execution on-the-fly: we guess non-deterministically and letter by letter two
trees t and t1 over Σ�t0, 1u of size exponential in Q1 and Q2, and simulate the
execution of A1 and A2, checking Q2ptq � Q2pt

1q and Q1ptq � Q1pt
1q. 2

We denote by MembMSO
XReg the problem of deciding, given a query automaton

QA, whether there exists a XReg query Q equivalent to QA. Using product
alphabet similarly to the proof of Theorem 11, it is obvious that this problem
can be reduced in polynomial time to the Boolean version of the problems which
we will therefore also denote by MembMSO

XReg:

Input: A VPA A

Question: Is there a XReg filter f such that for every tree t, pt, roottq |ù f

if and only if t P LpAq?

Proposition 12. The problem of deciding ¤2,XReg for interval bounded XReg

queries can be reduced in exponential time to MembMSO
XReg.

Proof. Immediate from the construction in Lemma 7 : We compute an au-
tomaton A with language LpAq � tt b AQ1

b AQ2
| t P dompQ1qu, test

Q1 ¤2 Q2 and in this case the construction provides a query Q satisfying
RewritepQ,Q2q � Q1. These tests and the construction of Q require at most
exponential time. Then, Q1 ¤2,XReg Q2 if and only if there exists a XReg query
equivalent to Q. 2

However, since the exact complexity, or even the decidability of problem
MembMSO

XReg have not been established in the litterature (to the best of our knowl-
edge), this is of little help. Actually, the gap in expressiveness between MSO
and XReg has been established very recently [31]. Thus, the following result
sheds a new light on the problem of deciding ¤2,XReg.

Proposition 13. MembMSO
XReg can be reduced in polynomial time to ¤2,XReg with

interval bounded XReg annotations

Proof. Fix A � pΣ, Q,Γ, I, F,Rq a VPA, which we assume w.l.o.g. to be
complete. That is, we assume A has a run (not necessarily accepting, of course)

36

over all trees t in TΣ. We build a DTD D and interval-bounded queries Q1, Q2

defined by XReg expressions, such that Q1 ¤2,XReg Q2 iff there exists a XReg

filter f such that for every tree t, pt, roottq |ù f if and only if t P LpAq. We
assume without loss of generality that Σ X Q � H. We build a DTD D over
alphabet Σ Y Q defined via the following rules. Abusing notations for regular
expressions, we use sets, writing S instead of s1 | s2 | . . . | sn for a set S
consisting of elements s1, . . . sn. For all a P Σ, aÑ pQ,Σq

�
, Q.

The proof works as follows: under r, D simulates a run of automaton A over
a tree. Q1 checks the simulation of the transitions and, when the run is valid
and leads to an accepting state, Q1 selects all nodes from the tree with label in
Σ. A contrario, if either the run leads to rejection, or if the elements labeled in
Σ simulate no valid run, Q1 selects only the root. Q2 selects all nodes from the
tree with label in Σ when the run is valid, whether it is accepting or it leads
to rejection, but selects only the root if the elements labeled in Σ simulate no
valid run. The crux of the proof is to make sure with nodes labeled in Q that
View pQ1, Dq � LpAq, while View pQ2, Dq is the set of all trees over Σ.

This result is obtained with the following queries: let E be the set of all
pq1, q

1
1, q2, q

1
2, aq in Q4�Σ such that there exists some γ in Γ that verifies simul-

taneously q1
pop,aq:γ
ÝÝÝÝÝÑ q11 and q12

pcl,aq:γ
ÝÝÝÝÑ q2. We define auxiliary XReg filters:

fΣ �
�

bPΣ self::b

froot �

�ª
qiPI

rórnotðss{self::qi

�
^

�
�ª

qfPF

rórnotñss{self::qf

�

f
q1,q2
q1

1
,q1

2

� pself::aq ^ pð::q1q ^ pñ::q2q ^
�
órnotðs{self::q11

�
^
�
órnotñs{self::q12

�

fvalid �

�
�not

�
�ó�{

�
�fΣ ^

�
�not

ª
pq1,q1

1
,q2,q

1

2
,aqPE

f
q1,q2
q1

1
,q1

2

�

�
�
�

�
�

The two XReg queries are defined as Q2 � rfvalids {ó
�{rfΣs Y selfrnotòs and

Q1 � rfvalid ^ froots {ó
�{rfΣs Y selfrnotòs. It should be clear that Q1 ¤2,XReg

Q2 if and only if there exists a XReg filter f such that for every tree t,
pt, roottq |ù f if and only if t P LpAq. Actually, the two queries Q1 and Q2

are even downward-closed. 2

From this proof and the expressivity gap between MSO and XReg [31], we can
deduce that even for downward closed queries, Q1 ¤2,MSO Q2 does not imply
Q1 ¤2,XReg Q2. Furthermore, in terms of expressivity, the queries Q1 and Q2

used in the proof belong to a small fragment of XReg in that they do not use
the full expressivity of the Kleene star. This means that when the depth of the
domain is not bounded, in general, given any fragment C of XReg and queries
Q1

1, Q
1
2 P C, Q1

1 ¤2 Q
1
2 does not imply Q1

1 ¤2,C Q1
2 as soon as C is expressive

enough to define Q1 and Q2.

37

Corollary 4. There exist two downward-closed queries Q1 and Q2 given by
XReg expressions such that Q1 ¤2 Q2 but Q1 ¦2,XReg Q2.

Because the third comparison (like¤2) is essentially independent from any query
language, these difficulties due to the expressiveness of XReg do not apply when
comparing XReg queries w.r.t. comparison ¤3.

Proposition 14. The problem of deciding ¤3 for interval bounded XReg queries
can be decided in exponential time.

Proof. The proof first translates the XReg expressions into automata us-
ing [31], and proceeds as for Theorem 9: even if the automata that recognize
AQ1

and AQ2
have exponential size, the overall complexity remains exponential.

2

As usual, this complexity drops to Pspace when the depth of the domain is
bounded by the size of the query:

Proposition 15. The problem of deciding Q1 ¤3 Q2 for XReg queries Q1 and
Q2 over non-recursive DTD D can be decided in polynomial space.

Proof. We adapt the proof of Theorem 8. Once more, we use the translation
from XReg expressions into automata, to build an automaton A of exponential
size with language LpAq � tt b AQ1

b AQ2
| t P LpDqu. Actually, we do not

build the automaton, because it is of exponential size. But since the depth is
bounded, we can simulate its transitions in polynomial space, which also implies
we can simulate in polynomial space the transitions of Bw -where Bw is defined
from A as in the proof of Theorem 8. The proof proceeds as for Theorem 8. 2

VPA XReg

SAS non-rec DTD IB gen non-rec DTD IB gen

¤1

PTime PTime PTime Pspace-c Exptime-c Exptime-c

¤2 p1q

Pspace-c
p2q

Pspace-c undec Pspace-c
Memb

MSO
XReg

undec
Exptime-h

¤3 p1q

Pspace-c
Exptime

undec Pspace-c Exptime-c undec
Pspace-h

p1q: When the depth of the DTD is bounded by a fixed integer k, this problem
becomes polynomial.
p2q: When the constant for interval boundedness is a fixed integer k, this problem
becomes polynomial.

38

8. Conclusions and future work

Summary. In this paper, we have first studied the problem of rewriting queries
with views, when the classes used to defined queries and views are XReg and
MSO. In a second part, we have defined different manner to compare views
(i.e. on queries), with a security point of view. We suggest three comparisons,
the first one being essentially containment, while the second and third one re-
spectively decide if a view can be rewritten in terms of another, and if a view
determines another (when we do not consider the identifiers). We provide a
systematic study of the decidability and complexity for the three comparisons
when the depth of the xml documents is bounded, when the document may have
an arbitrary depth but the query defining the policies are restricted to guarantee
the interval-boundedness property, and in the general setting without restriction
on queries and document.

Related work. The closure under query rewriting has been investigated for sev-
eral xpath query languages. Benedikt and Fundulaki [2] define subtree queries
and study their closure under composition. A subtree query can be seen as a
downward-closed view, with the additional requirement that leaves of the view
trees must be leaves also in the original tree. The authors study for which frag-
ment of xpath (with vertical axes) the subtree queries are closed under rewriting.
Vercammen et al. [34] study the closure under composition of xpath. Their set-
ting is similar to ours, but the fragments of xpath they consider are different, as
they do not allow the transitive closure operator but allow path intersection and
path complementation operators. Some of their fragments are not closed under
composition: essentially those that exclude path complementation but includ-
ing recursive axes, or sibling axes, or union. The remaining fragments studied
in the paper are closed under composition. What is more, the time complexity
for the rewriting are similar to ours. The approach adopted by Vercammen et
al. also relies on the rewriting of the base axes, but exploits path intersection
instead of the transitive closure operator. Fan et al. [12, 14] show that the
downward fragment of xpath is closed under rewriting for non-recursive views,
whereas downward regular xpath is closed under query rewriting for arbitrary
views (recursive or not). The complexity for rewriting downward regular xpath,
though, is exponential. Fan et al. therefore devise an approach, based on alter-
nating automata, to escape the exponential lower bound on rewriting for their
fragment of regular xpath.

Our first comparison corresponds to the inclusion of queries, so the results
are deduced immediately from the literature. The second comparison was shown
to be equivalent to the problem of rewriting some query in terms of another,
which means it is related to the rewriting problems studied, among many others,
in [7, 8] for regular expressions and regular path queries, in [10] for tree patterns,
or mentioned in [25] for logical queries on graphs. It is also close to the notion
of query rewriting as discussed above.

The third is related to the problems known in the literature as the deter-
minacy problem [25] or losslessness [8] for different query formalisms. While

39

the results are negative in the most general setting, leading to undecidability of
those comparisons, natural restrictions like interval boundedness give interest-
ing results: namely, using the terminology of [25], Lemma 7 states that MSO
is complete for MSO-to IB-MSO rewriting, which means that whenever a view
QV given by an IB-MSO query provides enough information to answer an-
other MSO query Q (posed on the source document), then we can rewrite Q in
terms of QV using another MSO query Q1. In other words, given any interval-
bounded view QV and query Q, either there exists a MSO query Q1 such that
RewritepQ1, QV q � Q or QV does not provide enough information to answer
query Q and the expressiveness of MSO is not involved in the impossibility to
rewrite Q in terms of QV . In contrast, XReg queries do not have this prop-
erty, even with the interval-boundedness restriction. We prove that deciding the
second comparison for interval-bounded security access specification can be re-
duced to testing whether a MSO query can be expressed via an equivalent XReg
query, a problem whose decidability is still open. Moreover, Proposition 13 ex-
hibits a polynomial time reduction from this open problem to the comparison
of interval-bounded XReg access specification. We obtain Pspace-hardness
lower bounds, even when interval-boundedness restrictions are enforced. How-
ever, reasonable restrictions on the constant k for interval-boundedness provide
tractable cases with polynomial algorithms.

Another approach to guarantee privacy is mentioned in [21], that requires
the administrator to define the information he considers secret using a boolean
first order query Q. The secret is considered to be revealed by the view QV

if there exists some document t such that CertainQV
pQ;View pQV , tqq � true,

i.e. if there is a view document from which we can guess that Q holds. Given
a boolean query Q and a view QV , one has to check whether there exists a
such document t that reveals Q. [21] proves this problem is undecidable in
general, and decidable for downward closed views, in polynomial time if the
queries are given by an automaton, and exponential time if they are given by
a ConditionalXPath formula. Since the proof only requires the regularity of
View pQV , Dq, their proof of decidability can be extended to interval-bounded
views. This approach allows more precise verification of the policy, and could
replace the comparison of policies, except that this flexibility comes at the price
of a weaker guarantee. Actually, this definition of secret might be vulnerable
to probabilistic attacks in case of a priori knowledge or assumptions on the
source document, while comparison ¤2 is so restrictive that it really provides a
strong guarantee that view A1 discloses less information than view A2 as soon
as A1 ¤2 A2.

Bohannon et al. [4] study related notions though in a very different frame-
work. They consider a function that maps each document satisfying one DTD
D1 to a document satisfying another DTD D2. Such a function σ is invertible
if the original document can be recovered from the target document. Similarly,
the function σ is query preserving with respect to a query language L if there is
a computable function F : L Ñ L such that for any Q P L and any document
t satisfying D1, Qptq � F pQqpσptqq. In short, σ is query preserving w.r.t. L if
every query from L can be rewritten as the composition of another query from

40

L with σ. The paper considers schema mappings, whereas we consider views.
What is more, we distinguish two settings depending on whether identifiers are
taken into account or not, a distinction that is absent from [4]. Their definition
of invertibility may be considered under both settings. We observe that when
considering identifiers, Q1 ¤2 Q2 if and only if Q2 is query-preserving w.r.t.
PublicpQ1q. Also, Id ¤3 V if and only if V is invertible in the sense of [4], where
Id is the identity query, i.e., the view that hides no node. For this, we must con-
sider invertibility without identifiers in our model: if we assume each node has
a (unique and arbitrary) identifier, every query V that deletes an unbounded
number of nodes would not be invertible due to the impossibility to recover the
identifiers of the hidden nodes.

Future work and discussion. MSO views could also be defined differently, for
instance by using automata with selecting states, or automata over alphabet
Σ�t0, 1u such that the nodes selected in a tree t P TΣ over alphabet Σ are: tn P
Nt | Dt

1 P TΣ�t0,1u.ΠΣpt
1q � t, λt1pnq P Σ � t1uu, without requiring maximality

of the languages. However inclusion of queries represented by such automata is
already Pspace-complete over non-recursive DTDs.

All results can be generalized to the setting of views and queries that not
only select nodes, but also rename some of them: instead of recognizing (maxi-
mal) languages over alphabet Σ�t0, 1u, the automata could have been defined
over alphabet Σ � Σ, a node labeled with pa, bq representing the relabeling of
a into b. We could then adapt the comparisons of security access specifications
to this setting, which would lead to similar results using mostly the same con-
structions. However, dealing with more general cases, where insertions, copying
or restructuring are allowed e.g., would require other techniques.

Our model of security view is based on nodes authorizations, whereas ad-
ministrator could want to express also relationships authorizations [15]. This
work could be developed into several directions, like considering views defined
by other kinds of transducers allowing to modify the structure of the document
instead of monadic queries. Our framework could at least be extended to deal
with n-ary queries from the user, while keeping the view defined by a monadic
one. One may also study other restrictions that would allow polynomial algo-
rithms.

Regarding the rewriting problem studied in the first part of this paper, it
would be interesting to study how the knowledge of the domain -in the case of
annotated DTD- could be incorporated to optimize the quadratic query rewrit-
ing.

Acknowledgements: The authors thank Iovka Boneva and Yves André for
fruitful discussions on access control and security views.

References

[1] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In STOC,
pages 202–211, 2004.

41

[2] M. Benedikt and I. Fundulaki. XML subtree queries: Specification and
composition. In International Symposium on Database Programming Lan-
guages (DBPL), pages 138–153, 2005.

[3] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cam-
bridge University Press, New York, NY, USA, 2001.

[4] Philip Bohannon, Wenfei Fan, Michael Flaster, and P. P. S. Narayan. In-
formation preserving XML Schema embedding. In VLDB, pages 85–96,
2005.

[5] A. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math.
Logik Grundlagen Math, 6:66–92, 1960.

[6] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. An automata-
theoretic approach to regular XPath. In DBPL, pages 18–35, 2009.

[7] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Rewriting of regular expressions and regular path queries. J. Com-
put. Syst. Sci., 64(3):443–465, 2002.

[8] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. View-based query processing: On the relationship between rewriting,
answering and losslessness. Theor. Comput. Sci., 371(3):169–182, 2007.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. An automata-theoretic approach to regular xpath. In Philippa
Gardner and Floris Geerts, editors, DBPL, volume 5708 of Lecture Notes
in Computer Science, pages 18–35. Springer, 2009.

[10] Bogdan Cautis, Alin Deutsch, Nicola Onose, and Vasilis Vassalos. Efficient
rewriting of xpath queries using query set specifications. PVLDB, 2(1):301–
312, 2009.

[11] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent
Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Available
online since 1997: http://tata.gforge.inria.fr, October 2007.

[12] W. Fan, C.-Y. Chan, and M. N. Garofalakis. Secure XML querying with se-
curity views. In ACM SIGMOD International Conference on Management
of Data, pages 587–598, 2004.

[13] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. SMOQE: A system
for providing secure access to XML. In International Conference on Very
Large Data Bases (VLDB), pages 1227–1230. ACM, 2006.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular XPath
queries on XML views. In International Conference on Data Engineering
(ICDE), pages 666–675, 2007.

42

[15] Béatrice Finance, Säıda Medjdoub, and Philippe Pucheral. The case for
access control on xml relationships. In Proceedings of the 14th ACM in-
ternational conference on Information and knowledge management, CIKM
’05, pages 107–114, New York, NY, USA, 2005. ACM.

[16] Olivier Gauwin. StreamingTree automata and XPath. PhD thesis, Uni-
versity Lille I, September 2009. Available online at http://hal.inria.fr/tel-
00421911/en.

[17] E.M. Gurari and O.H Ibarra. The complexity of decision problems for
finite-turn multicounter machines. J. Comput. Syst. Sci., 22(2):220–229,
1981.

[18] E.M. Gurari and O.H Ibarra. A note on finitely-valued and finitely am-
biguous transducers. Mathematical Systems Theory, 16(1):61–66, 1983.

[19] G. Kuper, F. Massacci, and N. Rassadko. Generalized XML security views.
In SACMAT ’05: Proceedings of the tenth ACM Symposium on Access
Control Models and Technologies, pages 77–84. ACM, 2005.

[20] L. Libkin and C. Sirangelo. Reasoning about XML with temporal logics
and automata. In International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), volume 5330, pages 97–112.
Springer LNAI, 2008.

[21] L. Libkin and C. Sirangelo. Reasoning about XML with temporal logics
and automata. J. Applied Logic, 8(2):210–232, 2010.

[22] Markus Lohrey. Compressed membership problems for regular expressions
and hierarchical automata. Int. J. Found. Comput. Sci., 21(5):817–841,
2010.

[23] M. Marx. XPath with conditional axis relations. In International Confer-
ence on Extending Database Technology (EDBT), pages 477–494, 2004.

[24] Makoto Murata, Akihiko Tozawa, Michiharu Kudo, and Satoshi Hada.
XML access control using static analysis. ACM Trans. Inf. Syst. Secur.,
9(3):292–324, 2006.

[25] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determi-
nacy and rewriting. ACM Trans. Database Syst., 35(3), 2010.

[26] Wojciech Plandowski. Testing equivalence of morphisms on context-free
languages. In ESA, pages 460–470, 1994.

[27] N. Rassadko. Policy classes and query rewriting algorithm for XML security
views. In 20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSec), volume 4127 of Lecture Notes in Computer
Science, pages 104–118. Springer, 2006.

43

[28] N. Rassadko. Query rewriting algorithm evaluation for XML security views.
In Secure Data Management (VLDB Workshop), volume 4721 of Lecture
Notes in Computer Science, pages 64–80. Springer, 2007.

[29] A. Stoica and C. Farkas. Secure XML views. In IFIP WG 11.3 Sixteenth
International Conference on Data and Applications Security, volume 256
of Research Directions in Data and Applications Security, pages 133–146.
Kluwer, 2002.

[30] T. G. Szymanski and J. H. Williams. Non-canonical parsing. In 14th
Annual Symposium on Foundations of Computer Science, pages 122–129.
IEEE, 1973.

[31] B. ten Cate and L. Segoufin. XPath, transitive closure logic, and nested
tree walking automata. In ACM Symposium on Principles of Database
Systems (PODS), pages 251–260, 2008.

[32] Balder ten Cate. The expressivity of XPath with transitive closure. In
PODS, pages 328–337, 2006.

[33] J. W. Thatcher and Wright J. B. Generalized finite automata with an ap-
plication to a decision problem of second-order logic. Mathematical System
Theory, 2:57–82, 1968.

[34] R. Vercammen, J. Hidders, and J. Paredaens. Query translation for XPath-
based security views. In EDBT Workshops, volume 4254 of Lecture Notes
in Computer Science, pages 250–263. Springer, 2006.

9. Appendix

In order to prove Theorem 9, we could first think of adapting immediately
the proof of Lemma 8 in order to use Proposition 3. Let pt, t1q be a pair of
trees of minimal size such that View pQ2, tq � View pQ2, t

1q but View pQ1, tq �
View pQ1, t

1q. Let φ denote an isomorphism between View pQ2, tq and View pQ2, t
1q

.
Suppose there are three nodes nÒt , n

�
t , n

Ó
t in Q2ptq, and three nodes nÒt1 , n

�
t1 , n

Ó
t1

such that nÒt is an ancestor of n�t , n�t an ancestor of nÓt , φpnÒt q � n
Ò
t1 , φpn

�
t q � n�t1 ,

φpnÓt q � n
Ó
t1 , ρtpn

Ò
t q � ρtpn

�
t q � ρtpn

Ó
t q and ρt1pn

Ò
t1q � ρt1pn

�
t1q � ρt1pn

Ó
t1q, where

ρt, ρ
1
t are defined similarly to ρ in Lemma 8. Replacing the subtrees below n

Ò
t

(resp. nÒt1) with the subtree below n�t (resp. n�t1), we preserve isomorphic views
for Q2. However, the views for Q1 may become isomorphic. One could think
that at least one of the combinations for the pumping would make sure the
views for Q1 remain non isomorphic. It so happens that this is not true, as
illustrated in Figure 8. In this figure, Q2 selects all the nodes labeled with d,
plus the root, and Q1 selects all the nodes with label different from d. Clearly,
View pQ2, tq � View pQ2, t

1q and View pQ1, tq � View pQ1, t
1q. We can build the

44

automata for Q2 and Q1 such that ρt (resp. ρt1) has the same value on all
nodes labeled d in t (resp. t1). However, whatever combination is chosen for
the pumping, the views for Q1 become isomorphic after we replace the subtrees.
For instance, if we replace the subtree below nÒ with the subtree below n� in
both trees, the views obtained for Q1 are both isomorphic to rpcpaqq, and if
we replace the subtree below n� with the subtree below nÓ in both trees, the
views obtained for Q1 are both isomorphic to rpa, b, aq. So, there is no trivial
adaptation from the proof of Lemma 8, and it is not clear how to adapt this
pumping lemma. Therefore, we developped a new method, based on alignment
of trees, which we discuss hereunder.

tbA1ptq bA2ptq

nÒ

n�

nÓ

pr, 1, 1q

pd, 0, 1q

pa, 1, 0qpb, 1, 0qpd, 0, 1q

pc, 1, 0q

pd, 0, 1q

pa, 1, 0q

t1 bA1pt
1q bA2pt

1qpr, 1, 1q

pd, 0, 1q

pd, 0, 1q

pc, 1, 0q

pd, 0, 1q

pa, 1, 0q

pb, 1, 0qpa, 1, 0q

nÒ

n�

nÓ

Figure 8: The pumping of Lemma 8 does not work for ¤3

Caveat: In this whole proof, we consider trees as terms, i.e., we do not consider
identifiers.Two trees will be considered equal iff they are isomorphic. We also
define an hedge as a sequence of trees.

We define alphabet Σalign as Σalign � Σ2 Y pΣ � t0uq Y pt0u � Σq. Given
two trees t1, t2 over Σalign, we denote by t14t2 the square of t1 and t2, i.e.,
the tree defined by the recursive algorithm hereunder. Similarly, given two
(IB)alignment languages L1 and L2, we define L14L2 as tt14t2 | t1 P L1, t2 P
L2u.

A recursive definition for t14t2. We define more generally operation 4 as a
binary operation on hedges.

We note hedges as follow: � represents the concatenation of hedges, f rhs
represents the tree with root f and, such that, if h � t1 � t2 � . . . � tk, then
f rhs is the tree fpt1, t2, . . . , tkq. Hence, f rarb � cs � ds � g represents the hedge
fpapb, cq, dq � g. To avoid confusion, we note pairs/triples of symbols (i.e. tags
over product alphabets like Σ�Σ) between “ x”, “y ” instead of usual parenthesis.
We fix the following priorities for operations: insertion r s of an hedge under a
node has highest priority, next comes the concatenation � of two hedges, and
4 has the lowest priority. The rules are as follows: for every letters a, b P Σ,
α1, α2 P Σ Y t0u, every hedges h1, h2, w1, w2,

45

1. pxb, α1y rh1s � w1q4 pxb, α2y rh2s � w2q � xb, α1, α2y rh14h2s � pw14w2q

2. px0, ay rh1s � w1q4h1 is defined as:"
x0, a, 0y rT ph1qs � pw14h

1q if h1 is a hedge over t0u � Σ
px0, a, opy � h1 � x0, a, cly � w1q4h1 otherwise

where T is defined by T px0, cy rhs � wq � x0, c, 0y rT phqs � T pwq and the
image by T of the empty word(neutral element of the monoid) is the empty
word.

3. px0, a, opy � w1q4h1 � x0, a, 0, opy � pw14h
1q 2. Symmetrically, for closing

tags, px0, a, cly � w1q4h1 � x0, a, 0, cly � pw14h
1q.

4. for the right operand, we add the three symmetrical rules h4 x0, ay rh2s�w2,
h4 px0, a, opy � w2q, and h4 px0, a, cly � w2q. The second rule, for instance,
is h1

4 px0, a, opy � w1q � x0, 0, a, opy � pw14h
1q. However, in order to get at

most one result, we fix that rules 2 and 3 have higher priority than their
’right’ counterpart. Thus, the ’right’ rules can be applied only if no left
one can.

This definition is extended to languages by L14L2 � tt14t2 | t1 P L1, t2 P L2u.

Example 7. In figure 9, we represent two alignment trees and their square.

pr, rq

p0, aq

pb, bq pc, 0q

p0, dq

p0, gq

pd, dq

pd, 0q

tree t1

pr, rq

p0, dq

pb, 0q pc, cq pd, dq

pd, 0q

tree t2

pr, r, rq

p0, a, 0, opq p0, 0, d, opq pb, b, 0q pc, 0, cq p0, a, 0, clq pd, d, d, q p0, 0, d, clq

p0, d, 0q

p0, g, 0q

pd, 0, 0q

tree t � t14t2

Figure 9: Two alignment trees and their square

2the construction fails if a node of the form x0, a, opy has a child

46

We define two morphisms φ1, φ2 on linearization(and, by abuse, on trees):

• @η P top, clu,@a P Σ,@α1, α2 P Σ Y t0u,@i P t1, 2u, φipη, a, α1, α2q �
pη, a, αiq if αi P Σ, ǫ3 otherwise .

• @η, η1 P top, clu,@a P Σ, φ1pop, 0, a, 0, η1q � pη1, 0, aq, φ1pcl, 0, a, 0, η1q �
ǫ1, and φ1pη, 0, 0, a, η

1q � ǫ1. Similarly, φ2pop, 0, 0, a, η1q � pη1, 0, aq,
φ2pcl, 0, 0, a, η1q � ǫ1, and φ2pη, 0, a, 0, η

1q � ǫ1.

• @η P top, clu,@a P Σ, φ1pη, 0, a, 0q � pη, 0, aq, and φ1pη, 0, 0, aq � ǫ1.

Similarly, φ2pη, 0, 0, aq � pη, 0, aq, and φ2pη, 0, a, 0q � ǫ1.

We also denote by π1 the following morphism on linearization(and, by abuse,
on trees). For all a P Σ, all β P Σ Y t0u, π1pa, βq � a and π1p0, βq � ǫ1.
Intuitively, it represents the projection on first component, where nodes with
label 0 are deleted (and a node whose father has been deleted is adopted by its
closest “non-deleted” ancestor).

Proposition 16. For every two trees t1 and t2 over Σalign, t14t2 exists iff
π1pt1q � π1pt2q, in which case it is a unique tree, t1 � φ1pt14t2q and t2 �
φ2pt14t2q.

Proof. t14t2 exists iff π1pt1q � π1pt2q(recall that equality means isomorphism)
because rule 1 is the only rule that allows a tag in Σ on the first component,
and this rule requires that the same letter b occurs at the same position in
π1pt1q and π1pt2q. Clearly, this is also a sufficient condition for the existence of
t14t2. The priority rules make the algorithm deterministic: only one rule can
be applied at any time, which guarantees the uniqueness. As for t1 � φ1pt14t2q
and t2 � φ2pt14t2q, it can be proved by induction, analysing each of the rules.

We denote by V2Ñ1 the function that maps each tree t over Σ to the tree t1

over Σalign defined by Nt1 � tn P Nt | A2pnq � 1_A1pnq � 1u, descendantst1 �
descendantstXN

2
t1 , followingt1 � followingtXN

2
t1 ,

4 and λt1pnq � pα, βq where
α � 0 if A2pnq � 0, and α � 1 otherwise, while β � 0 if A1pnq � 0, and β � 1

otherwise. This definition is extended to languages by V2Ñ1pLq �
�

tPL V2Ñ1ptq.

Proposition 17. Given two k-interval bounded root preserving queries Q1 and
Q2 with dompQ1q � dompQ2q � D, there is a polynomial p0 such that one can
compute an automaton B that recognizes V2Ñ1pDq in time p|AQ1

| � |AQ2
|qp0pkq

Proof. We can first build an automaton B0 that recognizes LpB0q � tt b
AQ1

b AQ2
| t P LpDqu in polynomial time. B is built from B0 by simulating

the transitions through the nodes labeled pa, 0, 0q for all a P Σ. This can be
achieved using tricks similar to the construction for Lemma 7, working in time
exponential in k.

3the neutral element of the free monoid
4for the time being trees are defined using children , not descendants, and next, not fol-

lowing so we need to adapt....

47

Remark 2. Due to the k-interval boundedness of A2, V2Ñ1pDq presents the
following property: for every t in V2Ñ1pDq, for every nodes n1, n2, . . . , nk�1 P
Nt, with pn1, n2q P childt, pn2, n3q P childt . . . , and pnk, nk�1q P childt, if
λtpn1q P t0u � Σ, λtpn2q P t0u � Σ, . . . and λtpnk�1q P t0u � Σ, then for every
descendant n1 of nk�1, λtpn

1q P t0u � Σ.

Proposition 18. Given two k-interval bounded root preserving queries Q1 and
Q2 with dompQ1q � dompQ2q � D, there is a polynomial p such that one
can compute an automaton Balign that recognizes V2Ñ1pDq4V2Ñ1pDq in time
p|AQ1

| � |AQ2
|qppkq

Proof. Actually this holds not only for V2Ñ1, but also for every language
presenting the property in Remark 2. Let B � pΣalign, Q,Γ, I, F,Rq be the
automaton recognizing V2Ñ1pDq as in Proposition 17. We define automaton
Balign as pΣ1, Q1,Γ1, I 1, F 1, R1q where:

• Σ1 � Σ1 Y Σ2 Y Σ3 with

Σ1 � Σ � pΣ Y t0uq � pΣ Y t0uq ,

Σ2 � pt0u � t0u � Σq Y pt0u � Σ � t0uq ,

Σ3 � pt0u � t0u � Σ � top, cluq Y pt0u � Σ � t0u � top, cluq .

• Q1 � Q13 YQ2 where Q13 � Q�Q� Γ¤k � Γ¤k � tJ,Ku � tCl, Cru and
Q2 � pQ� t7uq Y pt7u �Qq

• Γ1 � Γ13 Y Γ2 where Γ13 � Γ � Γ � Γ¤k � Γ¤k � tJ,Ku and Γ2 �
Γ Y pΓ � Γ¤k � Γ¤k � tJ,Ku �Qq

• I 1 � tpql, qr, ε, ε,Kq | ql, qr P Iu

• F 1 � tpql, qr, ε, ε,Kq | ql, qr P F u

• the rules in R1 are defined as follows: for all ql, qr, q
1
l, q

1
r P Q, all γl, γr P Γ,

all ul, ur P Γ¤k, all η P tK,Ju, all C P tCl, Cru, all α1, α2 P Σ Y t0u, all
θ P top, clu and all b P Σ;

– pql, qr, ul, ur, η, Cq
pop,pb,α1,α2qq:pγl,γr,ul,ur,K,Clq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, q

1
r, ε, ε,Kq is in R1

if there are rules ql
pop,pb,α1qq:γl
ÝÝÝÝÝÝÝÝÑ q1l and qr

pop,pb,α2qq:γr
ÝÝÝÝÝÝÝÝÝÑ q1r in R.

– pql, qr, ε, ε,K, Cq
pcl,pb,α1,α2qq:pγl,γr,ul,ur,K,Clq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, q

1
r, ul, ur,Kq is in R1

if there are rules ql
pcl,pb,α1qq:γl
ÝÝÝÝÝÝÝÝÑ q1l and qr

pcl,pb,α2qq:γr
ÝÝÝÝÝÝÝÝÑ q1r in R.

– pql, qr, ul, ur, η, Clq
pop,p0,b,0,opqqpcl,p0,b,0,opqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul � γl, ur,J, Clq is

in R1 if there is a rule ql
pop,p0,bqq:γl
ÝÝÝÝÝÝÝÝÑ q1l in R and ul P Γ¤k�1.

We use a transition that does not modify the stack and reads two
symbols at a time for the sake of clarity. Actually, this does not

48

strictly follow the syntax of V PA transitions. However, it is straight-
forward to introduce a few new states to simulate this behaviour with
two transitions, the first transition pushing a symbol into the stack
which is immediately removed by the second one.

– pql, qr, ul � γl, ur,K, Clq
pop,p0,b,0,clqqpcl,p0,b,0,clqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul, ur,K, Clq is

in R1 if there is a rule ql
pcl,p0,bqq:γl
ÝÝÝÝÝÝÝÑ q1l in R and ul P Γ¤k�1.

– The rules for p0, 0, b, opq and p0, 0, b, clq are symmetric, except for the
Cl, Cr constraints that need to be adapted, yielding rules

pql, qr, ul, ur, η, Cq
pop,p0,0,b,opqqpcl,p0,0,b,opqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul � γl, ur,J, Crq and

pql, qr, ul � γl, ur,K, Cq
pop,p0,0,b,clqqpcl,p0,0,b,clqq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul, ur,K, Crq.

– pql, qr, ul, ur, η, Clq
pop,p0,b,0qq:pγl,ul,ur,η,qrq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, 7q is in R1 if there is a

rule ql
pop,p0,bqq:γl
ÝÝÝÝÝÝÝÝÑ q1l in R.

– pql, 7q
pcl,p0,b,0qq:pγl,ul,ur,η,qrq
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ pq1l, qr, ul, ur, η, Clq is in R1 if there is a

rule ql
pcl,p0,bqq:γl
ÝÝÝÝÝÝÝÑ q1l in R.

– pql, 7q
pθ,p0,b,0qq:γl
ÝÝÝÝÝÝÝÝÑ pq1l, 7q is in R1 if rule ql

pθ,p0,bqq:γl
ÝÝÝÝÝÝÝÑ q1l is in R.

– Rules for p0, 0, bq are symmetric, using states in t7u � Q instead of
Q� t7u, and replacing Cl with Cr.

Basically, we build a product automaton, and the difficulty stems from the syn-
chronization of the stacks. The stacks are synchronized on transitions that read
a letter in Σ1. The state and stack use words ul, ur to simulate the runs on
letters in Σ2. The property in Remark 2 allows to bound by k the required size
for ul and ur. To guarantee the uniqueness property, the definition of the 4 op-
eration demands that we read a letter in Σ1 between an opening tag p0, b, 0, opq
and the corresponding closing tag p0, b, 0, clq. We use J to remember this in-
formation that one has to read a letter in Σ1 before reading the next closing
tag in Σ3. K is used whenever there is no such constraint. Also for uniqueness,
rules 2 and 3 have higher priority than their ’right’ counterpart. So, no node
with label in pt0u � t0u � Σq or pt0u � t0u � Σ � top, cluq can be the left sib-
ling of a node with label in pt0u � Σ � t0uq or Ypt0u � Σ � t0u � top, cluq. We
use Cr to remember this information: a tag Cr in the state forbids transition
labeled by pt0u � Σ � t0uq or Ypt0u � Σ � t0u � top, cluq. Last, but not least,
all descendants of a node of the form p0, 0, bq in t14t2 have label in t0u�t0u�Σ.
Therefore, we do not simulate the second part of the run in that subtree, which
explains why we use a state of the form p7, qq, using the “7” symbol on the left
so as to avoid switching to symbols of the form t0u � Σ � t0u.

Proposition 19. Given two k-interval bounded root preserving queries Q1 and
Q2 with dompQ1q � dompQ2q � D, Q1 ¤3 Q2 iff morphisms φ1 and φ2 are
equal over V2Ñ1pDq4V2Ñ1pDq, i.e., iff @t P V2Ñ1pDq4V2Ñ1pDq, φ1ptq � φ2ptq.

49

Finally, we use Plandowski’s result [26] stating that equivalence of mor-
phisms on a context-free language is decidable in polynomial time. Using this
result for morphisms φ1 and φ2 on LpBalignq we get an algorithm that works in
exponential time that concludes the proof of Theorem 9.

50

