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Abstract

We consider the likelihood ratio test (LRT) process related to the test of
the absence of QTL (i.e. a gene with quantitative effect on a trait) on a
chromosome. We consider two different recombination models. We prove
that even if the LRT is constructed from the false recombination model (i.e.
the model which does not correspond to the one of the data), the maximum
of the LRT process converges asymptotically to the maximum of the LRT
process constructed from the true recombination model. We also prove that
under some conditions, the arg max of the LRT processes will be different.

Keywords: QTL detection, Likelihood Ratio Test, Gaussian process,
Chi-Square process, Interference Phenomenon

1. Introduction

We study a backcross population: A×(A×B), where A and B are purely
homozygous lines and we address the problem of detecting a Quantitative
Trait Locus, so-called QTL (a gene influencing a quantitative trait which is
able to be measured) on a given chromosome. The trait is observed on n
individuals (progenies) and we denote by Yj, j = 1, ..., n, the observations,
which we will assume to be Gaussian, independent and identically distributed
(i.i.d.). The mechanism of genetics, or more precisely of meiosis, implies that
among the two chromosomes of each individual, one is purely inherited from

∗Corresponding author. Tel.:+1 608 265 9876; fax.:+1 608 262 0032
Email address: rabier@stat.wisc.edu (C-E. Rabier)

March 2, 2013



A while the other (the “recombined” one), consists of parts originated from
A and parts originated from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance
on [0, T ] is called the genetic distance, it is measured in Morgans (see for
instance Wu et al. [19] or Siegmund and Yakir [16]). K genetic markers are
located at fixed locations t1 = 0 < t2 < ... < tK = T . These markers will
help us to find the QTL. X(tk) refers to the genetic information at marker k.
For one individual, X(tk) takes the value +1 if, for example, the “recombined
chromosome” is originated from A at location tk and takes the value −1 if it
is originated from B.

We use the Haldane [9] modeling for the genetic information at marker
locations. It can be represented as follows: X(0) is a random sign and
X(tk) = X(0)(−1)N(tk) where N(.) is a standard Poisson process on [0, T ].
A QTL is lying at an unknown position t? between two genetic markers.
U(t?) is the genetic information at the QTL location. In the same way
as for the genetic information at marker locations, U(t?) takes value +1
if the “recombined chromosome” is originated from A at t?, and −1 if it
is originated from B. Due to Mendel law, U(t?) takes value +1 and −1
with equal probability. We assume an “analysis of variance model” for the
quantitative trait :

Y = µ + U(t?) q + σε (1)

where ε is a Gaussian white noise.
The originality of this paper is that, inside the marker interval which

contains the QTL, we consider two different recombination models. Indeed,
it is always difficult for geneticists to know which model to use when they
analyze real data. Obviously, for a given data set, geneticists usually try
to use the most appropriate recombination model. However, it can happen
that we do not choose the correct recombination model. As a consequence,
the main question is : how does it affect QTL detection ? This way, in this
paper, the focus is on the robustness of statistical tests in QTL detection.
For the following, we will call “true recombination” model, the recombination
model of the data whereas we will call “false recombination” model, the
recombination model which is not the one of the data.

In particular, we will consider that our true recombination model, inside
the marker interval which contains the QTL, is the Haldane model (i.e. the
same model as the one at marker locations). Due to the independence of
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increments of Poisson process, this model allows double recombinations be-
tween the QTL and its flanking markers. For instance, if the QTL is lying
between the first two markers (i.e. t? ∈]t1, t2[, we can have the scenario
X(t1) = 1, U(t?) = −1 and X(t2) = 1, which means that there has been a
recombination between the first marker and the QTL, and also a recombina-
tion between the QTL and the second marker. Obviously, in the same way,
we can have the scenario X(t1) = −1, U(t?) = 1 and X(t2) = −1.

The false recombination model that we use in this paper (and which is
chosen by geneticists) is the one proposed by Rebäı et al. [15] for which double
recombination between the QTL and its flanking markers is not allowed (see
in particular their Section 2). With this model, the focus is on the interfer-
ence phenomenon : a recombination event inhibits the formation of another
recombination event nearby. This phenomenon was noticed by geneticists
working on the Drosophila (Sturtevant [17], Muller [12]). In McPeek and
Speed [11], the authors study several interference models and also mention
the importance of modeling interference. Let Ũ(t?) be the analogue of U(t?)
of formula (1) but for the interference model. Due to Mendel law, Ũ(t?) still
takes value +1 and −1 with equal probability. The “analysis of variance
model” for the quantitative trait is now :

Y = µ + Ũ(t?) q + σε (2)

So, under the interference model, if the QTL is lying between the first two
markers (i.e. t? ∈]t1, t2[), we can not have the scenario X(t1) = 1, Ũ(t?) = −1
and X(t2) = 1, which would have supposed that there had been a recom-
bination between the first marker and the QTL, and also a recombination
between the second marker and the QTL. In particular, the model considers
that if we have a recombination between the QTL and one of its flanking
marker, we could not have a recombination between the QTL and the other
flanking marker. In other words, if X(t1) = 1 and Ũ(t?) = −1, then we have
automatically X(t2) = −1. In the same way, if X(t2) = 1 and Ũ(t?) = −1,
then we have automatically X(t1) = −1. We will explain in details this
model in Section 2 and present the law of Ũ(t?), given its flanking markers.
Note that in Rebäı et al. [15], the focus is only on one marker interval. In
Rebäı et al. [14], this model was extended to a whole chromosome.

As said previously, only the quantitative trait and the genetic information
at marker locations are available. As a consequence, one observation will be

(Y, X(t1), ..., X(tK)) .
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We observe n observations (Yj, Xj(t1), ..., Xj(tK)) i.i.d. Under the model
without interference (cf. formula 1), and conditionally to X(t1), . . . , X(tK) ,
Y obeys to a mixture model with known weights :

p(t∗)f(µ+q,σ)(.) + {1− p(t∗)} f(µ−q,σ)(.), (3)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the
function p(t?) is the probability P {U(t?) = 1} conditionally to the flanking
markers (see Azäıs et al. [2] and in particular their formula 3).

Furthermore, under the interference model (cf. formula 2) and condition-
ally to X(t1), . . . , X(tK) , Y obeys to a mixture model with known weights
:

p̃(t∗)f(µ+q,σ)(.) + {1− p̃(t∗)} f(µ−q,σ)(.), (4)

where the function p̃(t?) is the probability P
{
Ũ(t?) = 1

}
conditionally to

the flanking markers (see Section 2) .
A challenge in QTL detection is that the true location t∗ is not known.

So, we test the presence of a QTL at each position t ∈ [0, T ]. For the model
without interference, Λn(t) and Sn(t) are respectively the likelihood ratio test
(LRT) statistic and the score test statistic of the null hypothesis “q = 0” in
formula (3). In the same way, for the interference model, Λ̃n(t) and S̃n(t)
are respectively the likelihood ratio test (LRT) statistic and the score test
statistic of the null hypothesis “q = 0” in formula (4). When t∗ is unknown,
considering the maximum of Λn(t) (resp. Λ̃n(t)) still gives the LRT of “q = 0”
for the model without (resp. with) interference.

Under the model without interference, the distributions of the LRT,
sup Λn(.), have been given using some approximations by Cierco [6], Azäıs
and Cierco-Ayrolles [1], Azäıs and Wschebor [4], Chang et al. [5]. Recently,
Azäıs et al. [2] have given the exact distribution under the null hypoth-
esis and contiguous alternatives : the distribution of the LRT statistic is
asymptotically that of the maximum of the square of a “non linear normal-
ized interpolated Gaussian process”. Under the interference model, I have
proved in Rabier [13] that the distribution of the LRT statistic, sup Λ̃n(.),
is asymptotically that of the maximum of the square of a “linear normal-
ized interpolated process”. It is a generalization of the results obtained by
Rebäı et al. [15], Rebäı et al. [14], where the authors focused only on the null
hypothesis and characterized the process only by its covariance function.
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In this paper, we propose to study the distribution of sup Λ̃n(.) under
the model without interference. In other words, we focus on a test statistic
constructed from the false recombination model (i.e. with interference), and
we study its distribution under the true recombination model (i.e. without
interference). The goal is to compare its distribution with the distribution of
sup Λn(.) (given in Azäıs et al. [2]), constructed from the true recombination
model.

The main result of the paper (Theorems 1 and 3) is that, under the
true model (i.e. without interference), the distribution of the LRT statistic,
sup Λ̃n(.), is asymptotically that of the maximum of the square of a “linear
normalized interpolated process”. The second important result (Theorems
2 and 4) is that, under the null hypothesis and contiguous alternatives, the
maximum of the square of this “linear normalized interpolated process” is
the same as those of the square of the “non linear normalized interpolated
process” obtained by Azäıs et al. [2]. That is to say, under the model without
interference, we have the following relationship :

sup Λ̃n(.) = sup Λn(.) + oP (1) , (5)

where oP (1) denotes a sequence of random vectors which tend to 0 in proba-
bility. As a consequence, there is “an asymptotic robustness of the likelihood
ratio test” : even if we choose the false model in order to construct our
LRT statistic, we will get asymptotically the optimal power for the detection
of the QTL. On the other hand, Lemma 1 gives asymptotic results about
arg sup Λ̃n(.) and arg sup Λn(.). According to Lemma 1, under some given
conditions, if we choose the false model, the location of the QTL will be
estimated differently.

At the end of the paper, the focus is on the reverse configuration : now the
true recombination model is the model with interference and the false model
is the one without interference. We prove that formula (5) is still true under
the model with interference. As a result, we can really use the terminology
“asymptotic robustness of the likelihood ratio test” in QTL detection. This
is a result which could be of interest for geneticists.

Note that a direct consequence of the results presented in this paper,
is that in order to compute thresholds, the Monte-Carlo Quasi Monte-Carlo
method proposed by Azäıs et al. [2] and based on Genz [8], is suitable for any
model. We refer to the book of Van der Vaart [18] for elements of asymptotic
statistics used in proofs.
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2. Main results : two genetic markers

To begin with, we suppose that there are only two markers (K = 2)
located at 0 and T : 0 = t1 < t2 = T . Furthermore, a QTL is lying between
these two markers at t? ∈]t1, t2[. Note that in order to make the reading
easier, we consider that the QTL is not located on markers. However, the
result can be prolonged by continuity at marker locations. Let’s suppose that
we are under the interference model (cf. Section 1).

Let r(t1, t2) be the probability that there is a recombination between the
two markers. Calculations on the Poisson distribution show that :

r(t1, t2) = P {X(t1)X(t2) = −1} = P {|N(t1)−N(t2)| odd} =
1

2
(1− e−2|t1−t2|).

We will call rt1(t
?) (resp. rt2(t

?)) the probability of recombination between
the first (resp. second) marker and the QTL. So,

rt1(t
?) = P

{
X(t1)Ũ(t?) = −1

}
, rt2(t

?) = P
{
X(t2)Ũ(t?) = −1

}
.

As explained in Section 1, only one recombination is allowed between the
QTL and the two markers. We have :

{X(t1)X(t2) = −1} ⇔
{
X(t1)Ũ(t?) = −1

}
∪
{
X(t2)Ũ(t?) = −1

}
.

Indeed, X(t1)Ũ(t?) = −1 means that there has been a recombination be-
tween the first marker and the QTL, so the second marker is not allowed
to recombine with the QTL. As a consequence, X(t2) = Ũ(t?) and we have
X(t1)X(t2) = −1. Same remark for X(t2)Ũ(t?) = −1 but this time, it is the
first marker which is not allowed to recombine with the QTL.

Note that since
{
X(t1)Ũ(t?) = −1

}
∩
{
X(t2)Ũ(t?) = −1

}
= �, we have

r(t1, t2) = rt1(t
?) + rt2(t

?). (6)

In the same way as in Rebäı et al. [15], we consider :

rt1(t
?) =

t? − t1
t2 − t1

r(t1, t2) , rt2(t
?) =

t2 − t?

t2 − t1
r(t1, t2).

This way, the probability of recombination between the marker and the QTL
is proportional to the probability of recombination between the two markers,
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and also proportional to the distance between the QTL and the marker. Note
that formula (6) stands with these expressions of rt1(t

?) and rt2(t
?).

Let’s define now

p̃(t?) = P
{
Ũ(t?) = 1

∣∣X(t1), X(t2)
}
.

Obviously, since Ũ(t?) takes value +1 or −1, we have

1− p̃(t?) = P
{
Ũ(t?) = −1

∣∣X(t1), X(t2)
}
.

Since only one recombination is allowed between the QTL and its flanking
markers, we have

P
{
Ũ(t?) = 1

∣∣X(t1) = 1, X(t2) = 1
}

= 1 , P
{
Ũ(t?) = 1

∣∣X(t1) = −1, X(t2) = −1
}

= 0.

Besides, according to Bayes rules

P
{
Ũ(t?) = 1

∣∣X(t1) = 1, X(t2) = −1
}

=
P
{
X(t1) = 1

∣∣Ũ(t?) = 1, X(t2) = −1
}
P
{
Ũ(t?) = 1, X(t2) = −1

}
P {X(t1) = 1, X(t2) = −1}

=
rt2(t

?)/2

r(t1, t2)/2
=

rt2(t
?)

r(t1, t2)
=
t2 − t?

t2 − t1
.

In the same way,

P
{
Ũ(t?) = 1

∣∣X(t1) = −1, X(t2) = 1
}

=
rt1(t

?)

r(t1, t2)
=
t? − t1
t2 − t1

.

As a consequence,

p̃(t?) = 1X(t1)=11X(t2)=1 +
t2 − t?

t2 − t1
1X(t1)=11X(t2)=−1 +

t? − t1
t2 − t1

1X(t1)=−11X(t2)=1 .

(7)

Note that, using properties of conditional expectation, it is easy to check

that we have P
{
Ũ(t?) = 1

}
= 1/2, so Ũ(t?) takes values +1 and −1 with

equal probability (as explained in Section 1).
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As explained previously, since the location t? of the QTL is unknown, we
will have to perform tests at each position t between the two genetic mark-
ers. We will consider only positions t distinct of the marker locations and
the result can be prolonged by continuity on markers. Let θ = (q, µ, σ)
be the parameter of the model at t fixed. The likelihood of the triplet
(Y, X(t1), X(t2)) with respect to the measure λ ⊗ N ⊗ N , λ being the
Lebesgue measure, N the counting measure on N, is ∀t ∈]t1, t2[ :

L̃t(θ) =
[
p̃(t) f(µ+q,σ)(y) + {1− p̃(t)} f(µ−q,σ)(y)

]
g(t) (8)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
can be removed because it does not depend on the parameters. Note that,
for t = t? we find our formula (4) of the introduction where p̃(t?) is described
in formula (7). As explained in Section 1, for the interference model, Λ̃n(t)
and S̃n(t) are respectively the likelihood ratio test (LRT) statistic and the
score test statistic at t of the null hypothesis “q = 0” in formula (8).

Our main result is the following :

Theorem 1. Suppose that the parameters (q, µ, σ2) vary in a compact and
that σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and
define the following local alternative

Hat? : “the QTL is located at the position t? with effect q = a/
√
n where a 6= 0 ”.

With the previous defined notations and under the model without interference

S̃n(.)⇒ Z̃(.) , Λ̃n(.)
F.d.−→ Z̃2(.) , sup Λ̃n(.)

L−→ sup Z̃2(.)

as n tends to infinity, under H0 and Hat? where :

• ⇒ is the weak convergence,
F.d.→ is the convergence of finite-dimensional

distributions and
L−→ is the convergence in distribution
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• Z̃(.) is the Gaussian process with unit variance such as :

Z̃(t) =
α̃(t)Z̃(t1) + β̃(t)Z̃(t2)√

V
{
α̃(t)Z̃(t1) + β̃(t)Z̃(t2)

}
where

Cov
{
Z̃(t1), Z̃(t2)

}
= ρ(t1, t2) = exp(−2|t1 − t2|) ,

α̃(t) =
t2 − t
t2 − t1

, β̃(t) =
t− t1
t2 − t1

and with expectation :

– under H0, m̃(t) = 0

– under Hat?

m̃t?(t) =
α̃(t) m̃t?(t1) + β̃(t) m̃t?(t2)√
V
{
α̃(t)Z̃(t1) + β̃(t)Z̃(t2)

}
where

m̃t?(t1) = aρ(t1, t
?)/σ , m̃t?(t2) = aρ(t?, t2)/σ .

Before interpreting this theorem, we remind that the LRT statistic, sup Λ̃n(.)
is constructed from the false recombination model (i.e. with interference).
Theorem 1 gives the asymptotic distribution of the LRT statistic under the
null hypothesis H0 and under the local alternative Hat? of one QTL located
at t? without interference (cf. formula 1). So, according to Theorem 1, the
LRT statistic, sup Λ̃n(.), converges to the maximum of the square of a “linear
normalized interpolated process” called Z̃(.).

In Theorem 2.1 of Azäıs et al. [2], is presented the asymptotic distribu-
tion of the LRT statistic, sup Λn(.), constructed from the true recombination
model (i.e. without interference). It converges in distribution to the maxi-
mum of the square of a “non linear normalized interpolated process” called
Z(.) :

Z(t) =
α(t)Z(t1) + β(t)Z(t2)√
V {α(t)Z(t1) + β(t)Z(t2)}

. (9)
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We refer to Theorem 2.1 of Azäıs et al. [2] for the expressions of α(.) and
β(.). Note that α(t1) = 1, β(t1) = 0, α(t2) = 0, β(t2) = 1. Besides, since
the models are exactly the same for the the genetic information at marker
locations, we have Z̃(t1) = Z(t1) and Z̃(t2) = Z(t2).

Let’s define the following quantity :

h(t1, t2) =
Z̃2(t1) + Z̃2(t2)− 2ρ(t1, t2)Z̃(t1)Z̃(t2)

1− ρ2(t1, t2)
1 Z̃(t2)

Z̃(t1)
∈]ρ(t1,t2), 1

ρ(t1,t2)
[

.

Another important result of this paper is the following :

Theorem 2. With the previous defined notations, under H0 and Hat?,

max
t∈[t1,t2]

Z̃2(t) = max
t∈[t1,t2]

Z2(t) = max
{
Z̃2(t1), h(t1, t2), Z̃

2(t2)
}
.

In other words, under the null hypothesis and under the alternative, the
maximum of the square of the “non linear normalized interpolated process”,
Z(.), is the same as the maximum of the square of the “linear normalized
interpolated process”, Z̃(.). As a consequence, sup Λ̃n(.) = sup Λn(.)+oP (1),
where oP (1) denotes a sequence of random vectors which tend to 0 in prob-
ability. In other words, there is “an asymptotic robustness of the likelihood
ratio test” : even if we choose the false model in order to construct our LRT
statistic, we will get asymptotically the optimal power for the detection of
the QTL. This result provides new tools to be used in the data analysis for
geneticists. Let us introduce now the following lemma which focus on the
arg max of our processes :

Lemma 1. With the previous defined notations, under H0 and Hat?,

• arg max Z̃2(.) = arg maxZ2(.) = t2 when Z̃(t2)/Z̃(t1) = 1/ρ(t1, t2)

• arg max Z̃2(.) = arg maxZ2(.) = t1 when Z̃(t2)/Z̃(t1) = ρ(t1, t2)

• arg max Z̃2(.) = ξ̃ and arg maxZ2(.) = ξ when Z̃(t2)/Z̃(t1) ∈]ρ(t1, t2), 1/ρ(t1, t2)[
with

ξ̃ =
(t2 − t1)

{
ρ(t1, t2)Z̃(t1)− Z̃(t2)

}
{ρ(t1, t2)− 1}

{
Z̃(t1) + Z̃(t2)

} + t1 ,
(t2 − t1)β(ξ)

α(ξ) + β(ξ)
+ t1 = ξ̃ .
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According to Lemma 1, when the ratio Z̃(t2)/Z̃(t1) is equal to 1/ρ(t1, t2),
the arg max of Z2(.) and Z̃2(.) are the same : t2. That is to say, in both
cases, the QTL location is estimated to be on the second marker. In the same
way, when Z̃(t2)/Z̃(t1) is equal to ρ(t1, t2), the QTL location in both cases,
is estimated to be on the first marker. However, when Z̃(t2)/Z̃(t1) belongs
to the interval ]ρ(t1, t2), 1/ρ(t1, t2)[, the arg max ξ of Z2(.) and ξ̃ of Z̃2(.) are
no the same anymore. As a result, the QTL location is not estimated at the
same location.

To sum up Theorem 2 and Lemma 1, if we choose the false recombination
model in order to construct our LRT statistic, we will keep asymptotically
the optimal power, but the location of the QTL can be estimated differently
than if we used the true recombination model.

Proof of Theorem 1

Fisher Information matrix

As said previously, we consider values of t distinct of marker locations
and the result can be prolonged by continuity on markers. We first compute
the Fisher information at a point θ0 that belongs to H0. Let l̃t(θ) be the log
likelihood and let define the quantity ũ(t) such as :

ũ(t) = 2p̃(t)− 1 .

We have

∂l̃t
∂q
|θ0 =

y − µ
σ2

ũ(t) (10)

∂l̃t
∂µ
|θ0 =

y − µ
σ2

,
∂l̃t
∂σ
|θ0= −

1

σ
+

(y − µ)2

σ3

After some calculations, we find

Iθ0 = Diag

[
E {ũ2(t)}

σ2
,

1

σ2
,

2

σ2

]
. (11)
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Study of the score process under the null hypothesis

The log likelihood at t, associated to n observations will be denoted by
l̃nt (θ). Since the Fisher Information matrix is diagonal, the score statistics of
the hypothesis “q = 0” will be defined as

S̃n(t) =

∂l̃nt
∂q
|θ0√

V
(
∂l̃nt
∂q
|θ0
) .

The study is based on the key lemma :

Lemma 2.
ũ(t) = α̃(t)X(t1) + β̃(t)X(t2)

with α̃(t) = t2−t
t2−t1 and β̃(t) = t−t1

t2−t1 .

To prove this lemma, use formula (7) and check that both coincide whatever
the value of X(t1), X(t2) is.

Now using formula (10), we have

∂l̃nt
∂q
|θ0=

n∑
j=1

Yj − µ
σ2

ũj(t) = 1/σ
n∑
j=1

εjũj(t) =
α̃(t)

σ

n∑
j=1

εjXj(t1)+
β̃(t)

σ

n∑
j=1

εjXj(t2)

(12)
this proves the interpolation.
On the other hand

S̃n(tk) =
n∑
j=1

εjXj(tk)√
n

k = 1, 2

and a direct application of central limit theorem implies that these two vari-
ables have a limit distribution which is Gaussian centered distribution with
variance (

1 exp(−2|t2 − t1|)
exp(−2|t2 − t1|) 1

)
.

This proves the expression of the covariance. The weak convergence of the
score process, S̃n(.), is then a direct consequence of (12), the convergence of
(S̃n(t1), S̃n(t2)) and the Continuous Mapping Theorem.
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Study under the local alternative

Let us consider a local alternative defined by t∗ and q = a/
√
n. We

consider values of t and t? distinct of marker locations and the result can
be prolonged by continuity on markers. Since we consider that the true
model is the model without interference, we have to consider the “analysis of
variance model” for the quantitative trait, described in formula (1). Under
the alternative

S̃n(t) =
a

nσ

n∑
j=1

Uj(t
∗)ũj(t)√

V {ũ(t)}
+

1√
n

n∑
j=1

εj
ũj(t)√
V {ũ(t)}

The second term has the same distribution as under the null hypothesis
and the first one gives the expectation. As said in Section 1, we use the
Haldane [9] modeling for the genetic information at marker locations t1 and
t2. Besides, since we consider a model without interference, we also consider
Haldane [9] modeling inside the marker interval. In other words, X(0) is
a random sign and X(t) = X(0)(−1)N(t) where N(.) is a standard Poisson
process on [0, T ] (here t1 = 0 and t2 = T ). This way, the genetic information
U(t?) at the QTL location t? is exactly the quantity X(t?). We refer to Azäıs
et al. [2] for more details about Haldane [9] modeling. As a consequence,
using Lemma 2, it comes

E
{
S̃n(t)

}
=
a E {U(t∗)ũ(t)}
σ
√

V {ũ(t)}
=
a
[
α̃(t)E {X(t?)X(t1)}+ β̃(t)E {X(t?)X(t2)}

]
σ
√

V {ũ(t)}

=
a α̃(t)ρ(t1, t

?)

σ
√

V {ũ(t)}
+
a β̃(t)ρ(t?, t2)

σ
√
V {ũ(t)}

.

This gives the result.

About the LRT process

For the interference model, the likelihood ratio statistic at t, correspond-
ing to n independent observations, will be defined as

Λ̃n(t) = 2
{
l̃nt (θ̂)− l̃nt (θ̂|H0)

}
,

where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0 the MLE
under H0.
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Since the model with t fixed is regular, it is easy to prove that for fixed t

Λ̃n(t) = S̃2
n(t) + oP (1) (13)

under the null hypothesis.
Let us consider the local alternative defined by t∗ and q = a/

√
n. Since

we consider that in reality we are under a model without interference, con-
ditionnally to X(t1) and X(t2), the quantitative trait Y follows the mixture
model described in formula (3). We refer to formula (3) of Azäıs et al. [2] for
the details about the weights p(t?) of the mixture model. As mentioned in
Azäıs et al. [2], the model with t∗ fixed is differentiable in quadratic mean,
this implies that the alternative defines a contiguous sequence of alternatives.
By Le Cam’s first Lemma, relation (13) remains true under the alternative.
This gives the result for the convergence of finite-dimensional distribution.
Concerning the study of the supremum of the LRT process, the proof is ex-
actly the same as in Azäıs et al. [2] which is based on results of Azäıs et al.
[3] and Gassiat [7].

Proof of Theorem 2 and Lemma 1
We consider the process W (.) on [0, 1] such as ∀t′ ∈ [0, 1] :

W (t′) =
(1− t′) Z(t1) + t′ Z(t2)√

(1− t′)2 + t′ 2 + 2 ρ(t1, t2) t′ (1− t′)

We can remark that W (0) = Z(t1) = Z̃(t1) and W (1) = Z(t2) = Z̃(t2).
Besides, we can apply Lemma 2.2 of Azäıs et al. [2] by taking γ1(t

′) = 1− t′,
γ2(t

′) = t′, ρ̃ = ρ(t1, t2), C1 = Z(t1), C2 = Z(t2) since γ1(t′)
γ1(t′)+γ2(t′)

and
γ2(t′)

γ1(t′)+γ2(t′)
take every values in [0, 1]. It comes according to Lemma 2.2 of

Azäıs et al. [2]

max
t′∈[0,1]

W 2(t′) = max
{
Z2(t1), h(t1, t2), Z

2(t2)
}
.

Besides, according to the proof of Lemma 2.2 of Azäıs et al. [2] :

arg maxW 2(.) = t2 when Z(t2)/Z(t1) = 1/ρ(t1, t2) ,

arg maxW 2(.) = t1 when Z(t2)/Z(t1) = ρ(t1, t2) ,

arg maxW 2(.) = ξ′ when Z(t2)/Z(t1) ∈]ρ(t1, t2), 1/ρ(t1, t2)[ ,
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where

ξ′ =
ρ(t1, t2)Z(t1)− Z(t2)

{ρ(t1, t2)− 1} {Z(t1) + Z(t2)}
.

By construction, we have ∀t ∈ [t1, t2]

Z̃(t) = W

(
t− t1
t2 − t1

)
and Z(t) = W

{
β(t)

α(t) + β(t)

}
.

Besides, the functions t−t1
t2−t1 and β(t)

α(t)+β(t)
take every values in [0, 1]. It comes

max
t∈[t1,t2]

Z2(t) = max
t∈[t1,t2]

Z̃2(t) = max
t′∈[0,1]

W 2(t′) = max
{
Z2(t1), h(t1, t2), Z

2(t2)
}

.

Furthermore,

W (ξ′) = Z̃(ξ̃) = Z(ξ) where ξ̃ = ξ′(t2 − t1) + t1

and ξ′ =
α(ξ)

α(ξ) + β(ξ)
.

As a consequence,

ξ̃ =
(t2 − t1)β(ξ)

α(ξ) + β(ξ)
+ t1 .

It concludes the proof.

3. Several markers : the “interval mapping” of Lander and Bot-
stein [10]

We suppose now that there are K markers 0 = t1 < t2 < ... < tK = T . A
QTL is lying at a position t? . In the same way as in Section 2, we consider
that the QTL is lying between its two flanking markers without interference
(cf. formula 1). In order to find the QTL, we will perform tests at every
positions t on the chromosome, using a model with interference (since we
consider the false recombination model). We consider values t or t? of the
parameters that are distinct of the markers positions, and the result will be
prolonged by continuity at the markers positions. For t ∈ [t1, tK ]\TK where
TK = {t1, ..., tK}, we define t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .
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In other words, t belongs to the “Marker interval” (t`, tr).

As explained in Section 1, since we consider Haldane [9] modeling for the
genetic information at marker locations, we just need to keep the flanking
markers in order to infer the value of Ũ(t?). It is a direct consequence of
the independance of the increments of Poisson process. In others words, the
information brought by the other markers is useless. So, we have

P
{
Ũ(t?) = 1

∣∣X(t1), ..., X(tK)
}

= P
{
Ũ(t?) = 1

∣∣X(t?`), X(t?r)
}
.

As a consequence, our problem becomes the same as the one with two genetic
markers (see Section 2). In order to perform our tests at every positions t,
we simply have to consider all the different marker intervals.

Theorem 3. We have the same result as in Theorem 1, provided that we
make some adjustments and that we redefine Z̃(.) in the following way :

• in the definition of α̃(t) and β̃(t), t1 becomes t` and t2 becomes tr

• under the null hypothesis, the process Z̃(.) considered at marker posi-
tions is the ”squeleton” of an Ornstein-Uhlenbeck process: the station-
ary Gaussian process with covariance ρ(tk, tk′) = exp(−2|tk − tk′|)

• at the other positions, Z̃(.) is obtained from Z̃(t`) and Z̃(tr) by inter-
polation and normalization using the functions α̃(t) and β̃(t)

• at the marker positions, the expectation is such as m̃t?(tk) = aρ(tk, t
?)/σ

• at other positions, the expectation is obtained from m̃t?(t
`) and m̃t?(t

r)
by interpolation and normalization using the functions α̃(t) and β̃(t).

Under the null hypothesis, the proof of the theorem is the same as the proof
of Theorem 1 since we can limit our attention to the interval (t`, tr) when
considering a unique instant t. Under the alternative, the proof is extactly
the same as the proof of Theorem 1 when t and t? belong to the same marker
interval (t`, tr). When t and t? belong to two different marker intervals, since
we consider that the true model is the one without interference, we have
U(t?) = X(t?), and the expectation can be obtained in the same way as in
the proof of Theorem 1.

Let us generalize our Theorem 2 to the case of several markers :
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Theorem 4. With the previous defined notations, under H0 and Hat?,

max
t∈[0,T ]

Z̃2(t) = max
t∈[0,T ]

Z2(t) .

where Z(.) is the “non linear normalized interpolated process” of Theorem
3.1 of Azäıs et al. [2].

To prove this theorem, just consider that the maximum on [0, T ] is the max-
imum of the maximums obtained for the different marker intervals. In the
same way, Lemma 1 can be generalized to the case of several markers.

As a consequence, we have the same conclusion as in the part of this paper
dealing with only two genetic markers : if we choose the false recombination
model in order to construct our LRT statistic, we will keep asymptotically
the optimal power, but the location of the QTL can be estimated differently
than if we used the true recombination model.

4. The reverse configuration

In order to make the analysis developed in this paper more general, we
propose in this section to focus on the reverse configuration : now the true
recombination model is the model with interference and the false model is
the one without interference. Note that as previously, Haldane modeling is
used for the genetic information at marker locations. The main question is :
do we still have an “asymptotic robustness of the LRT” ?

To begin with, let us consider only two genetic markers located at t1 = 0
and t2 = T . We remind that sup Λn(.) (resp. sup Λ̃n(.)) denotes the LRT
statistic for the model without interference (resp. with interference), that
is to say based on formula (3) (resp. based on formula 4). In Rabier [13],
under the interference model, I have proved that the distribution of sup Λ̃n(.)
is asymptotically that of the maximum of the square of a “linear normalized
interpolated process”. This “linear normalized interpolated process” is the
same process as our process Z̃(.) except that the mean functions are totally
different under the alternative. In both cases, the mean functions are linear
interpolated functions. However, since the expectation at marker locations
are different, the mean functions are totally different. More precisely, ac-
cording to our Theorem 1, the expectation at t1 is aρ(t1, t

?)/σ, whereas in

Rabier [13], the expectation at t1 is a
[
α̃(t?) + β̃(t?)ρ(t1, t2)

]
/σ. In the same

way, here, the expectation at t2 is aρ(t?, t2)/σ, whereas in Rabier [13], the
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expectation at t2 is a
[
α̃(t?)ρ(t1, t2) + β̃(t?)

]
/σ. It is due to the fact that the

model for the quantitative trait Y is not the same if the true model is with-
out interference (cf. formula 1) or with interference (cf. formula 2). Note
also that in both cases, we have a “linear normalized interpolated process”
since we consider the weights p̃(t) of the mixture model of formula (4), which
verify (cf. Lemma 2):

2p̃(t)− 1 = α̃(t)X(t1) + β̃(t)X(t2) .

Let us now focus on the statistic of interest : sup Λn(.). In Azäıs et
al. [2], under a model without interference, the authors have proved that the
distribution of sup Λn(.) is that of the maximum of the square of a “non linear
normalized interpolated process”. If we consider a model with interference,
the distribution of sup Λn(.) will still be that of the maximum of the square
of a “non linear normalized interpolated process” since the weights p(t) of
the mixture model of formula (3) verify (cf. Lemma 2.3 of Azäıs et al. [2]):

2p(t)− 1 = α(t)X(t1) + β(t)X(t2) .

In the same way as before, the mean function will still be a non linear in-
terpolated function but the values at marker locations will be obtained from
the true model, i.e. with interference (cf. formula 2). In other words, the

expectation at t1 will be a
[
α̃(t?) + β̃(t?)ρ(t1, t2)

]
/σ and the expectation at

t2 will be a
[
α̃(t?)ρ(t1, t2) + β̃(t?)

]
/σ.

Finally, under the interference model, sup Λn(.) will converge to the square
of a “non linear normalized interpolated process” whereas sup Λ̃n(.) to the
square of a “linear normalized interpolated process”. The mean functions of
these two Gaussian processes are exactly the same at marker locations. Using
the same kind of proof as the one of Theorem 2, the maximum of the square
of the two processes will be the same, and sup Λn(.) = sup Λ̃n(.) + oP (1)
under the interference model. Note that we will still have the analogue of
Lemma 1.

The result can easily be generalized to several markers. Note that the
expectation at marker locations is given in Theorem 3.1 of Rabier [13].

5. Conclusion

To conclude, in this paper, we have considered two different recombina-
tion models : a model with interference and a model without interference.
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We have proved that even if we choose the false recombination model in or-
der to construct our statistical test, we will keep asymptotically the optimal
power. However, the location of the QTL can be estimated differently than
if we had chosen the true recombination model. This is a result which could
be of interest for geneticists.
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