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Abstract

A new estimation method for the two-component mixture model introduced in Van-
dekerkhove (2012) is proposed. This model, which consists of a two-component mixture
of linear regressions in which one component is entirely known while the proportion,
the slope, the intercept and the error distribution of the other component are unknown,
seems to be of interest for the analysis of large datasets produced from two-color ChIP-
chip high-density microarrays. In spite of good performance for datasets of reasonable
size, the method proposed in Vandekerkhove (2012) suffers from a serious drawback
when the sample size becomes large, as it is based on the optimization of a contrast
function whose pointwise computation requires O(n2) operations. The range of appli-
cability of the method derived in this work is substantially larger as it is based on a
method-of-moment estimator whose computation only requires O(n) operations. From
a theoretical perspective, the asymptotic normality of both the estimator of the Eu-
clidean parameter vector and of the semiparametric estimator of the c.d.f. of the error
is proved under weak conditions not involving the zero-symmetry assumption typically
used this last decade. The finite-sample performance of the latter estimators is studied
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under various scenarios through Monte Carlo experiments. From a more practical per-
spective, the proposed method is applied to the tone data analyzed, among others, by
Hunter and Young (2012), and to the ChIPmix data studied by Martin-Magniette et al.
(2008). An extension of the considered model involving an unknown scale parameter
for the first component is discussed in the final section.

1 Introduction

Practitioners are frequently interested in modeling the relationship between a random re-
sponse variable Y and a d-dimensional random explanatory vector X by means of a linear
regression model estimated from a random sample (Xi, Yi)1≤i≤n of (X, Y ). Quite often, the
homogeneity assumption claiming that the linear regression coefficients are the same for all
the observations (X1, Y1), . . . , (Xn, Yn) is inadequate. To allow different parameters for dif-
ferent groups of observations, a Finite Mixture of Regressions (FMR) can be considered; see
Leisch (2004) and Grün and Leisch (2006) for a nice overview.

Statistical inference for the fully parametric FMR model was first considered by Quandt
and Ramsey (1978) who proposed an estimation method based on the moment generating
function. An EM estimating approach was proposed by De Veaux (1989) in the case of two
components. Variations of the latter approach were also considered in Jones and McLach-
lan (1992) and Turner (2000). Hawkins et al. (2001) studied the problem of determining
the number of components in the parametric FMR model using methods derived from the
likelihood equation. In Hurn et al. (2003), the authors proposed a Bayesian approach to
estimate the regression coefficients and also considered an extension of the model in which
the number of components is unspecified. Zhu and Zhang (2004) established the asymp-
totic theory for maximum likelihood estimators in parametric FMR models. More recently,
Städler et al. (2010) proposed an ℓ1-penalized method based on a Lasso-type estimator for
a high-dimensional FMR model with d≫ n.

As an alternative to parametric approaches to the estimation of a FMR model, some
authors suggested the use of more flexible semiparametric approaches. This research direc-
tion finds its origin in the work of Hall and Zhou (2003) in which d-variate semiparametric
mixture models of random vectors with independent components were considered. These au-
thors showed in particular that, for d ≥ 3, it is possible to identify a two-component model
without parametrizing the distributions of the component random vectors. To the best of
our knowledge, Leung and Qin (2006) were the first to estimate a FMR model semipara-
metrically. In the two-component case, they studied the situation in which the components
are related by Anderson (1979)’s exponential tilt model. Hunter and Young (2012) studied
the identifiability of an m-component semiparametric FMR model and numerically investi-
gated an EM algorithm for estimating its parameters. Vandekerkhove (2012) proposed an
M -estimation method for a two-component semiparametric mixture of regressions with sym-
metric errors in which one component is known. The latter approach was applied to data
extracted from a high-density microarray and modeled in Martin-Magniette et al. (2008) by
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means of a parametric FMR. The semiparametric approach of Vandekerkhove (2012) is of
interest for two main reasons. Due to its semiparametric nature, the method allows to detect
complex structures in the error of the unknown regression component. It can additionally
be regarded as a tool to assess the relevance of the usual EM-type Euclidean parameter
estimation. Its main drawbacks however are that it is not theoretically valid when the errors
are not symmetric and that its use is very computationally expensive for large datasets as it
requires the optimization of a contrast function whose pointwise evaluation requires O(n2)
operations.

The object of interest of this paper is the two-component FMR model studied by Vandek-
erkhove (2012) in which one component is entirely known while the proportion, the slope, the
intercept and the error distribution of the other component are unknown. The estimation
of the Euclidean parameter vector is achieved through a method of moments. Semipara-
metric estimators of the c.d.f. and the p.d.f. of the error of the unknown component are
proposed. The proof of the asymptotic normality of the Euclidean and functional estimators
is not based on zero-symmetry-like assumptions frequently found in the literature but only
involves finite moments of order eight for the explanatory variable and the boundness of the
p.d.f.s of the errors and their derivatives. The almost sure uniform consistency of the estima-
tor of the p.d.f. of the unknown error is obtained under similar conditions. A consequence of
these theoretical results is that, unlike for EM-type approaches, the estimation uncertainty
can be assessed through large-sample standard errors for the Euclidean parameters and by
means of an approximate confidence band for the c.d.f. of the unknown error. The latter is
computed using an unconditional weighted bootstrap whose asymptotic validity is proved.

From a practical perspective, it is worth mentioning that the range of applicability of
the resulting semiparametric estimation procedure is substantially larger than the one of
Vandekerkhove (2012) as its computation only requires O(n) operations. As a consequence,
very large datasets can be easily processed. For instance, as shall be seen in Section 6, the
estimation of the parameters of the model from the ChIPmix data considered in Martin-
Magniette et al. (2008) consisting of n = 176, 343 observations took less than 30 seconds
on one 2.4 GHz processor. The estimation of the same model from a subset of n = 30, 000
observations using the method of Vandekerkhove (2012) took more than two days on a similar
processor.

The paper is organized as follows. Section 2 is devoted to a detailed description of the
model, while Section 3 is concerned with its identifiability through the moment method. The
estimators of the Euclidean parameter vector and of the functional parameter are described
in detail in Section 4. The finite-sample performance of the proposed estimation method is
studied for various scenarios through Monte Carlo experiments in Section 5. In Section 6,
the proposed method is applied to the tone data analyzed, among others, by Hunter and
Young (2012), and to the ChIPmix data considered in Martin-Magniette et al. (2008). An
extension of the FMR model under consideration involving an unknown scale parameter for
the first component is discussed in the final section.
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2 Problem and notation

Let Z be a Bernoulli random variable with unknown parameter π0 ∈ [0, 1], let X be an X -
valued random variable with X ⊂ R, and let ε∗, ε∗∗ be two absolutely continuous centered real
valued random variables with finite variances and independent of X. Assume additionally
that Z is independent of X, ε∗ and ε∗∗. Furthermore, for fixed α∗

0, β
∗
0 , α

∗∗
0 , β

∗∗
0 ∈ R, let Ỹ be

the random variable defined by

Ỹ = (1− Z)(α∗
0 + β∗

0X + ε∗) + Z(α∗∗
0 + β∗∗

0 X + ε∗∗),

i.e.,

Ỹ =

{

α∗
0 + β∗

0X + ε∗ if Z = 0,
α∗∗
0 + β∗∗

0 X + ε∗∗ if Z = 1.

The above display is the equation of a mixture of two linear regressions with Z as mixing
variable.

Let F ∗ and F ∗∗ denote the c.d.f.s of ε∗ and ε∗∗, respectively. Furthermore, α∗
0, β

∗
0 and F ∗

are assumed known while α∗∗
0 , β∗∗

0 , π0 and F
∗∗ are assumed unknown. The aim of this work is

to propose and study an estimator of (α∗∗
0 , β

∗∗
0 , π0, F

∗∗) based on n i.i.d. copies (Xi, Ỹi)1≤i≤n

of (X, Ỹ ). Now, define Y = Ỹ −α∗
0−β∗

0X, α0 = α∗∗
0 −α∗

0 and β0 = β∗∗
0 −β∗

0 , and notice that

Y =

{

ε∗ if Z = 0,
α0 + β0X + ε if Z = 1,

(1)

where, to simplify the notation, ε = ε∗∗ and F = F ∗∗. It follows that the previous estimation
problem is equivalent to the problem of estimating (α0, β0, π0, F ) from the observation of n
i.i.d. copies (Xi, Yi)1≤i≤n of (X, Y ).

As we continue, the unknown c.d.f.s of X and Y will be denoted by FX and FY , respec-
tively. Also, for any x ∈ X , the conditional c.d.f. of Y given X = x will be denoted by
FY |X(·|x), and we have

FY |X(y|x) = (1− π0)F
∗(y) + π0F (y − α0 − β0x), y ∈ R. (2)

It follows that, for any x ∈ X , fY |X(·|x), the conditional p.d.f. of Y given X = x, can be
expressed as

fY |X(y|x) = (1− π0)f
∗(y) + π0f(y − α0 − β0x), y ∈ R, (3)

where f ∗ and f are the p.d.f.s of ε∗ and ε, assuming that they exist on R.

Note that, as shall be discussed in Section 7, it is possible to consider a slightly more
general version of this model involving an unknown scale parameter for the first component.
This more elaborate model remains identifiable and estimation through the moment method
is theoretically possible. However, from a practical perspective, estimation of this scale
parameter through the moment method seems quite unstable insomuch as that an alternative
estimation method appears required.
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3 Identifiability through the moment method

Since (1) is clearly equivalent to

Y = (1− Z)ε∗ + Z(α0 + β0X + ε), (4)

we immediately obtain that

E(Y |X) = π0α0 + π0β0X a.s. (5)

It follows that the coefficients γ0,1 = π0α0 and γ0,2 = π0β0 can be identified from (5) if X is
not reduced to a singleton. In addition, we have

E(Y 2|X) = E[{(1− Z)ε∗ + Z(α0 + β0X + ε)}2|X] a.s.

= E(1− Z)E{(ε∗)2}+ E(Z)E{(α0 + β0X)2 + ε2|X} a.s.

= (1− π0)(σ
∗
0)

2 + π0
(

α2
0 + 2α0β0X + β2

0X
2 + σ2

0

)

a.s.

= (1− π0)(σ
∗
0)

2 + π0(α
2
0 + σ2

0) + 2π0α0β0X + π0β
2
0X

2 a.s., (6)

where σ∗
0 and σ0 are the standard deviations of ε∗ and ε, respectively. If X contains three

points x1, x2, x3 such that the vectors {(1, x1, x21), (1, x2, x22), (1, x3, x23)} are linearly indepen-
dent then, from (6), we can identify the coefficients γ0,3 = (1 − π0)(σ

∗
0)

2 + π0(α
2
0 + σ2

0),
γ0,4 = 2π0α0β0 and γ0,5 = π0β

2
0 . In other words, under the aforementioned conditions on X ,

we have






















γ0,1 = π0α0

γ0,2 = π0β0
γ0,3 = (1− π0)(σ

∗
0)

2 + π0(α
2
0 + σ2

0)
γ0,4 = 2π0α0β0 = 2α0γ0,2
γ0,5 = π0β

2
0 = β0γ0,2.

(7)

From the above system of equations, we see that α0, β0 and π0 can be identified provided
π0β0 6= 0, that is, provided the unknown component actually exists and its slope is non zero.
The latter condition will be assumed to hold in the rest of the paper.

Let us now consider the functional part F of the model. For any η = (α, β) ∈ R
2, denote

by J(·,η) the c.d.f. defined by

J(t,η) = Pr(Y ≤ t+ α + βX), t ∈ R. (8)

For any t ∈ R, this can be rewritten as

J(t,η) =

∫

R

FY |X(t+ α + βx|x)dFX(x)

=(1− π0)

∫

R

F ∗(t+ α + βx)dFX(x) + π0

∫

R

F{t+ (α− α0) + (β − β0)x}dFX(x).
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For η = η0 = (α0, β0), we then obtain

J(t,η0) = (1− π0)

∫

R

F ∗(t+ α0 + β0x)dFX(x) + π0F (t), t ∈ R.

Now, for any η ∈ R
2, let K(·,η) be defined by

K(t,η) =

∫

R

F ∗(t+ α + βx)dFX(x), t ∈ R. (9)

It follows that F is identified since

F (t) =
1

π0
{J(t,η0)− (1− π0)K(t,η0)} , t ∈ R. (10)

The above equation is at the root of the derivation of an estimator for F .

4 Estimation

Let P be the probability distribution of (X, Y ). For ease of exposition, we will frequently use
the notation adopted in the theory of empirical processes in the sense of van der Vaart and
Wellner (2000) or Kosorok (2008) for instance. Given a measurable function f : R2 → R

k,
for some integer k ≥ 1, Pf will denote the integral

∫

fdP . Also, the empirical measure
obtained from the random sample (Xi, Yi)1≤i≤n will be denoted by Pn = n−1

∑n
i=1 δXi,Yi

,
where δx,y is the probability distribution that assigns a mass of 1 at (x, y). The expectation
of f under the empirical measure is then Pnf = n−1

∑n
i=1 f(Xi, Yi) and the quantity Gnf =√

n(Pnf −Pf) is the empirical process evaluated at f . The arrow ‘ ’ will be used to denote
weak convergence in the sense of Definition 1.3.3 of van der Vaart and Wellner (2000) and, for
any set S, ℓ∞(S) will stand for the space of all bounded real-valued functions on S equipped
with the uniform metric. Key results and more details can be found for instance in van der
Vaart (1998), van der Vaart and Wellner (2000) and Kosorok (2008).

4.1 Estimation of the Euclidean parameter vector

To estimate the Euclidean parameter vector (α0, β0, π0) ∈ R×R \ {0} × (0, 1], we first need
to estimate the vector γ0 = (γ0,1, . . . , γ0,5) ∈ R

5 whose components were expressed in terms
of α0, β0 and π0 in the previous section. From (5) and (6), it is natural to consider the
regression function

dn(γ) = Pnϕγ , γ ∈ R
5,

where, for any γ ∈ R
5, ϕγ : R2 → R is defined by

ϕγ(x, y) = (y − γ1 − γ2x)
2 + (y2 − γ3 − γ4x− γ5x

2)2, x, y ∈ R.
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As an estimator of γ0, we then naturally consider γn = argminγ dn(γ) that satisfies

ḋn(γn) = Pnϕ̇γn
= 0,

where ϕ̇γ , the gradient of ϕγ with respect to γ, is given by

ϕ̇γ(x, y) = −2













y − γ1 − γ2x
x(y − γ1 − γ2x)

y2 − γ3 − γ4x− γ5x
2

x(y2 − γ3 − γ4x− γ5x
2)

x2(y2 − γ3 − γ4x− γ5x
2)













, x, y ∈ R.

Now, for any integers p, q ≥ 1, define

XpY q =
1

n

n
∑

i=1

Xp
i Y

q
i ,

and let

Γn = 2













1 X 0 0 0

X X2 0 0 0

0 0 1 X X2

0 0 X X2 X3

0 0 X2 X3 X4













and θn = 2













Y
XY

Y 2

XY 2

X2Y 2













,

which respectively estimate

Γ0 = 2













1 E(X) 0 0 0
E(X) E(X2) 0 0 0
0 0 1 E(X) E(X2)
0 0 E(X) E(X2) E(X3)
0 0 E(X2) E(X3) E(X4)













and θ0 = 2













E(Y )
E(XY )
E(Y 2)
E(XY 2)
E(X2Y 2)













.

The linear equation Pnϕ̇γn
= 0 can then equivalently be rewritten as Γnγn = θn. Provided

the matrices Γn and Γ0 are invertible, we can write γn = Γ−1
n θn and γ0 = Γ−1

0 θ0.

To obtain an estimator of (α0, β0, π0), we use the relationships induced by (5) and (6) and
recalled in (7). Leaving the third equation aside because it involves the unknown standard
deviation σ0 of ε, we obtain three possible estimators of α0:

αn =
γn,1γn,5
γ2n,2

, αn =
γn,4
2γn,2

, or αn =
γ2n,4

4γn,1γn,5
,

three possibles estimators of β0:

βn =
γn,5
γn,2

, βn =
γn,4
2γn,1

, or βn =
γn,2γ

2
n,4

4γn,5γ2n,1
,
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and, three possibles estimators of π0:

πn =
γ2n,2
γn,5

, πn =
2γn,1γn,2
γn,4

, or πn =
4γ2n,1γn,5

γ2n,4
.

There are therefore 27 possible estimators of (α0, β0, π0). Their asymptotics can be obtained
under very reasonable conditions. Unfortunately, all 27 estimators turned out to behave
quite poorly in small samples. This prompted us to look for alternative estimators within
the “same class”.

We now describe an estimator of (α0, β0, π0) that was obtained empirically and that be-
haves significantly better for small samples than the aforementioned ones. The new regression
function under consideration is dn(γ) = Pnϕγ , γ ∈ R

8, where, for any (x, y) ∈ R
2,

ϕγ(x, y) = (y−γ1−γ2x)2+(y2−γ3−γ4x2)2+(x−γ5)2+(x2−γ6)2+(x3−γ7)2+(x4−γ8)2.

Now, let

Γn = 2

























1 X 0 0 0 0 0 0

X X2 0 0 0 0 0 0

0 0 1 X2 0 0 0 0

0 0 X2 X4 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























and θn = 2



























Y
XY

Y 2

X2Y 2

X

X2

X3

X4



























,

which respectively estimate

Γ0 = 2

























1 E(X) 0 0 0 0 0 0
E(X) E(X2) 0 0 0 0 0 0
0 0 1 E(X2) 0 0 0 0
0 0 E(X2) E(X4) 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

























and θ0 = 2

























E(Y )
E(XY )
E(Y 2)

E(X2Y 2)
E(X)
E(X2)
E(X3)
E(X4)

























.

Then, proceeding as previously, provided the matrices Γn and Γ0 are invertible, the estimator
γn = argminγ dn(γ) of γ0 = Γ−1

0 θ0 is given by γn = Γ−1
n θn. To obtain an estimator of

(α0, β0, π0), we have, from the second term of the regression function, that

γ0,4 =
cov(X2, Y 2)

V(X2)
=

cov(X2, Y 2)

γ0,8 − γ20,6
,
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where the second equality comes from the fact that γ0,6 = E(X2) and γ0,8 = E(X4). Now,
using (4), we find

cov(X2, Y 2) = π0β
2
0V(X

2) + 2π0α0β0cov(X
2, X),

which, combined with the fact that γ0,1 = π0α0 and γ0,2 = π0β0, gives

cov(X2, Y 2) = γ0,2β0(γ0,8 − γ20,6) + 2γ0,1β0(γ0,7 − γ0,5γ0,6).

This leads to the following estimator of (α0, β0, π0):

βn = gβ(γn) =
γn,4

γn,2 + 2γn,1(γn,7 − γn,5γn,6)/(γn,8 − γ2n,6)
,

πn = gπ(γn) =
γn,2
βn

,

αn = gα(γn) =
γn,1
πn

.

As we continue, the subsets of R
8 on which the functions gα, gβ and gπ exist and are

differentiable will be denoted by Dα, Dβ and Dπ, respectively, and Dα,β,π will stand for
Dα ∩ Dβ ∩ Dπ.

To derive the asymptotic behavior of the estimator (αn, βn, πn) = (gα(γn), g
β(γn), g

π(γn)),
we consider the following assumptions:

A1. (i) X has a finite fourth order moment; (ii) X has a finite eighth order moment.

A2. V(X) > 0 and V(X2) > 0.

Clearly, Assumption A1 (ii) implies Assumption A1 (i), and Assumption A2 implies that the
matrix Γ0 is invertible.

The following result, proved in Appendix A, characterizes the asymptotic behavior of the
estimator (αn, βn, πn).

Proposition 4.1. Assume that γ0 ∈ Dα,β,π.

(i) Under Assumptions A1 (i) and A2, (αn, βn, πn)
a.s.−−→ (α0, β0, π0).

(ii) Suppose that Assumptions A1 (ii) and A2 are satisfied and let Ψγ be the 3 by 8 matrix
defined by

Ψγ =







∂gα

∂γ1
· · · ∂gα

∂γ8
∂gβ

∂γ1
· · · ∂gβ

∂γ8
∂gπ

∂γ1
· · · ∂gπ

∂γ8






(γ), γ ∈ Dα,β,π.

Then, √
n(αn − α0, βn − β0, πn − π0) = −Gn(Ψγ0

Γ−1
0 ϕ̇γ0

) + oP (1).
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As a consequence,
√
n(αn−α0, βn−β0, πn−π0) converges in distribution to a centered

normal random vector with covariance matrix Σ = Ψγ0
Γ−1
0 P (ϕ̇γ0

ϕ̇⊤
γ0
)Γ−1

0 Ψ⊤
γ0
, which

can be consistently estimated by Σn = Ψγn
Γ−1
n Pn(ϕ̇γn

ϕ̇⊤
γn
)Γ−1

n Ψ⊤
γn

in the sense that

Σn
a.s.−−→ Σ.

An immediate consequence of the previous result is that large-sample standard errors of
αn, βn and πn are given by the square root of the diagonal elements of the matrix n−1Σn.
The finite-sample performance of these estimators is investigated in Section 5 and they are
used in the illustrations of Section 6.

4.2 Estimation of the functional parameter

To estimate the unknown c.d.f. F of ε, it is natural to start from (10). For a known η =
(α, β) ∈ R

2, the term J(·,η) defined in (8) may be estimated by the empirical c.d.f. of the
random sample (Yi − α− βXi)1≤i≤n, i.e.,

Jn(t,η) =
1

n

n
∑

i=1

1(Yi − α− βXi ≤ t), t ∈ R.

Similarly, since F ∗ (the c.d.f. of ε∗) is known, a natural estimator of the term K(t,η) defined
in (9) is given by the empirical mean of the random sample {F ∗(t+ α + βXi)}1≤i≤n, i.e.,

Kn(t,η) =
1

n

n
∑

i=1

F ∗(t+ α + βXi), t ∈ R.

To obtain estimators of J(·,η0) and K(·,η0), it is then natural to consider the plug-in
estimators Jn(·,ηn) and Kn(·,ηn), respectively, based on the estimator ηn = (αn, βn) =
(gα, gβ)(γn) of η0 proposed in the previous subsection.

We shall therefore consider the following nonparametric estimator of F :

Fn(t) =
1

πn
{Jn(t,ηn)− (1− πn)Kn(t,ηn)} , t ∈ R. (11)

Note that Fn is not necessarily a c.d.f. as it is not necessarily increasing and can be
smaller than zero or greater than one. In practice, we shall consider the partially corrected
estimator (Fn ∨ 0) ∧ 1, where ∨ and ∧ denote the maximum and minimum, respectively.

To derive the asymptotic behavior of the previous estimator, we consider the following
additional assumptions on the p.d.f.s f ∗ and f of ε∗ and ε, respectively:

A3. (i) f ∗ and f exist and are bounded on R; (ii) (f ∗)′ and f ′ exist and are bounded on R.
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Before stating one of our main results, let us first define some additional notation. Let
FJ and FK be two classes of measurable functions from R

2 to R defined respectively by

FJ =
{

(x, y) 7→ ψJ
t,η(x, y) = 1(y − α− βx ≤ t) : t ∈ R,η = (α, β) ∈ R

2
}

and
FK =

{

(x, y) 7→ ψK
t,η(x, y) = F ∗(t+ α + βx) : t ∈ R,η = (α, β) ∈ R

2
}

.

Furthermore, let Dα,β,π
γ0

be a bounded subset of Dα,β,π containing γ0, and let Fα,β,π be the

class of measurable functions from R
2 to R

3 defined by

Fα,β,π =
{

(x, y) 7→ −ΨγΓ
−1
0 ϕ̇γ(x, y) =

(

ψα
γ
(x, y), ψβ

γ
(x, y), ψπ

γ
(x, y)

)

: γ ∈ Dα,β,π
γ0

}

.

With the previous notation, notice that, for any t ∈ R,

√
n{Jn(t,η0)− J(t,η0)} = Gnψ

J
t,η0

and
√
n{Kn(t,η0)−K(t,η0)} = Gnψ

K
t,η0

,

and that, under Assumptions A1 (ii) and A2, Proposition 4.1 states that

√
n (αn − α0, βn − β0, πn − π0) = Gn

(

ψα
γ0
, ψβ

γ0
, ψπ

γ0

)

+ oP (1).

Next, for any γ ∈ Dα,β,π
γ0

, let

ψF
t,γ =

1

π
ψJ
t,η + f(t)ψα

γ
+ f(t)E(X)ψβ

γ
− 1− π

π
ψK
t,η +

PψK
t,η − PψJ

t,η

π2
ψπ
γ
, (12)

with η = (α, β) = (gα, gβ)(γ) and π = gπ(γ).

The following result, proved in Appendix B, gives the weak limit of the empirical pro-
cess

√
n(Fn − F ).

Proposition 4.2. Assume that γ0 ∈ Dα,β,π and that Assumptions A1, A2 and A3 hold.
Then, for any t ∈ R, √

n{Fn(t)− F (t)} = Gnψ
F
t,γ0

+Qn,t,

where supt∈R |Qn,t| = oP (1), and the empirical process t 7→ Gnψ
F
t,γ0

converges weakly to

t 7→ GψF
t,γ0

in ℓ∞(R).

Let us now discuss the estimation of the p.d.f. f of ε. Starting from (10) and after
differentiation, it seems sensible to estimate the expectation E {f ∗(t+ α0 + β0X)}, t ∈ R,
by the empirical mean of the observable sample {f ∗(t+ αn + βnXi)}1≤i≤n. Hence, a natural
estimator of f can be defined, for any t ∈ R, by

fn(t) =
1

πn

{

1

nhn

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

− (1− πn)

n

n
∑

i=1

f ∗(t+ αn + βnXi)

}

, (13)

11



where κ is a kernel function on R and (hn)n≥1 is a sequence of bandwidths converging to
zero.

In the same way that Fn is not necessarily a c.d.f., fn is not necessarily a p.d.f. In
practice, we shall use the partially corrected estimator fn ∨ 0. A fully corrected estimator
can be obtained from the work of Glad et al. (2003).

Consider the following additional assumptions on (hn)n≥1, κ and f ∗ :

A4. (i) hn = cn−α with α ∈ (0, 1/2) and c > 0 a constant; (ii) κ is a p.d.f. with bounded
variations on R and a finite first order moment; (iii) the p.d.f. f ∗ has bounded variations
on R.

The following result is proved in Appendix C.

Proposition 4.3. If γ0 ∈ Dα,β,π, and under Assumptions A1 (i), A2, A3 and A4,

sup
t∈R

|fn(t)− f(t)| a.s.−−→ 0.

Finally, note that, in all our numerical experiments, the kernel part of fn was computed
using the excellent ks R package (Duong, 2012) in which the univariate plug-in selector of
Wand and Jones (1994) was used for the bandwidth hn.

4.3 An unconditional weighted bootstrap for
√
n(Fn − F ) with ap-

plication to confidence bands for F

In applications, it may be of interest to carry out inference on F . The result stated in this
section can be used for this purpose. It is based on the unconditional multiplier central limit
theorem for empirical processes (see e.g. Kosorok, 2008, Theorem 10.1 and Corollary 10.3)
and can be used to obtain approximate independent copies of

√
n(Fn − F ).

Given i.i.d. random variables ξ1, . . . , ξn with mean 0, variance 1, satisfying
∫∞

0
{Pr(|ξ1| >

x)}1/2dx <∞, and independent of the random sample (Xi, Yi)1≤i≤n, let

G
′
n =

1√
n

n
∑

i=1

(ξi − ξ̄)δXi,Yi
,

where ξ̄ = n−1
∑n

i=1 ξi. Also, let Ψγn
Γ−1
n ϕ̇γn

= −
(

ψ̂α
γn
, ψ̂β

γn
, ψ̂π

γn

)

and, for any t ∈ R, let

ψ̂F
t,γn

=
1

πn
ψJ
t,ηn

+ fn(t)ψ̂
α
γn

+ fn(t)X̄ψ̂
β
γn

− 1− πn
πn

ψK
t,ηn

+
Pnψ

K
t,ηn

− Pnψ
J
t,ηn

π2
n

ψ̂π
γn

(14)

be an estimated version of the influence function ψF
t,γ0

arising in Proposition 4.2, where

ηn = (αn, βn) = (gα, gβ)(γn) and πn = gπ(γn).

12



The following proposition, proved in Appendix D, suggests, when n is large, to interpret
t 7→ G

′
nψ̂

F
t,γn

as an independent copy of
√
n(Fn − F ).

Proposition 4.4. Assume that γ0 ∈ Dα,β,π, and that Assumptions A1, A2, A3 and A4 hold.
Then, the process (t 7→ Gnψ

F
t,γ0

, t 7→ G
′
nψ̂

F
t,γn

) converges weakly to (t 7→ GψF
t,γ0

, t 7→ G
′ψF

t,γ0
)

in {ℓ∞(R)}2, where t 7→ G
′ψF

t,γ0
is an independent copy of t 7→ GψF

t,γ0
.

Let us now explain how the latter result can be used in practice to obtain an approximate
confidence band for F . LetN be a large integer and let ξ

(j)
i , i ∈ {1, . . . , n}, j ∈ {1, . . . , N}, be

i.i.d. random variables with mean 0, variance 1, satisfying
∫∞

0
{Pr(|ξ(j)i | > x)}1/2dx <∞, and

independent of the data (Xi, Yi)1≤i≤n. For any j ∈ {1, . . . , N}, let G(j)
n = n−1/2

∑n
i=1(ξ

(j)
i −

ξ̄(j))δXi,Yi
, where ξ̄(j) = n−1

∑n
i=1 ξ

(j)
i . Then, a consequence of Propositions 4.2 and 4.4 is

that

(√
n(Fn − F ), t 7→ G

(1)
n ψ̂F

t,γn
, . . . , t 7→ G

(N)
n ψ̂F

t,γn

)

 

(

t 7→ GψF
t,γ0

, t 7→ G
(1)ψF

t,γ0
, . . . , t 7→ G

(N)ψF
t,γ0

)

in {ℓ∞(R)}N+1, where G
(1), . . . ,G(N) are independent copies of the P -Brownian bridge G.

From the continuous mapping theorem, it follows that

(

sup
t∈R

|√n(Fn − F )|, sup
t∈R

|G(1)
n ψ̂F

t,γn
|, . . . , sup

t∈R
|G(N)

n ψ̂F
t,γn

|
)

 

(

sup
t∈R

|GψF
t,γ0

|, sup
t∈R

|G(1)ψF
t,γ0

|, . . . , sup
t∈R

|G(N)ψF
t,γ0

|
)

in [0,∞)N+1. The previous result suggests to estimate quantiles of supt∈R |
√
n(Fn−F )| using

the generalized inverse of the empirical c.d.f.

Gn,N(x) =
1

N

n
∑

j=1

1

{

sup
t∈R

|G(j)
n ψ̂F

t,γn
| ≤ x

}

. (15)

A large-sample confidence band of level 1− p for F is thus given by Fn ±G−1
n,N(1− p)/

√
n.

Examples of such confidence bands are given in Figures 1 and 2, and the finite-sample prop-
erties of the above construction are empirically investigated in Section 5. Note that in all our
numerical experiments, the multipliers ξ

(j)
i were taken from the standard normal distribution,

and that the supremum in the previous display was replaced by a maximum over 100 points
U1, . . . , U100 uniformly spaced over the interval [min1≤i≤n(Yi − αn − βnXi),max1≤i≤n(Yi −
αn − βnXi)].

Finally, notice that Proposition 4.4 also suggests to estimate the standard error of Fn(t)
for some fixed t ∈ R by n−1/2{Pn(ψ̂

F
t,γn

)2}1/2. The finite-sample performance of this estimator
is investigated in Section 5 for different values of t.
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5 Monte Carlo experiments

A large number of Monte Carlo experiments was carried out to investigate the influence on
the estimators of various factors such as the degree of overlap of the mixed populations,
the proportion of the unknown component π0, or the shape of the noise ε involved in the
unknown regression model. Starting from (1), the following generic data generating models
were considered:

WO : ε∗ ∼ N (0, 1), (α0, β0) = (2, 1), X ∼ N (2, 32), E(ε2) = 1,

MO : ε∗ ∼ N (0, 1), (α0, β0) = (2, 1), X ∼ N (2, 32), E(ε2) = 4,

SO : ε∗ ∼ N (0, 1), (α0, β0) = (1, 0.5), X ∼ N (1, 22), E(ε2) = 4.

The abbreviations WO, MO and SO stand respectively for “Weak Overlap”, “Medium Over-
lap” and “Strong Overlap”. Three possibilities were considered for the distribution of ε: the
centered normal (the corresponding data generating models will be abbreviated by WOn,
MOn and SOn), a gamma distribution with shape parameter equal to two and rate parame-
ter equal to a half shifted to have mean zero (the corresponding models will be abbreviated
by WOg, MOg and SOg) and a standard exponential shifted to have mean zero (the cor-
responding models will be abbreviated by WOe, MOe and SOe). Depending on the model
they are used in, all three error distributions are scaled so that ε has the desired variance.

Examples of datasets generated from WOn, MOg and SOe with n = 500 and π0 = 0.7 are
represented in the first column of graphs of Figure 1. The solid (resp. dashed) lines represent
the true (resp. estimated) regression lines. The graphs of the second column represent, for
each of WOn, MOg and SOe, the true c.d.f. F of ε (solid line) and its estimate Fn (dashed
line) defined in (11). The dotted lines represent approximate confidence bands of level 0.95
for F computed as explained in Subsection 4.3 with N = 10, 000. Finally, the graphs of the
third column represent, for each of WOn, MOg and SOe, the true p.d.f. f of ε (solid line)
and its estimate fn (dashed line) defined in (13).

[Figure 1 about here.]

For each of the three groups of data generating models, {WOn, MOn, SOn}, {WOg,
MOg, SOg} and {WOe, MOe, SOe}, the values 0.4 and 0.7 were considered for π0, and the
values 100, 300, 1000 and 5000 were considered for n. For each of the nine data generating
scenarios, each value of π0, and each value of n, M = 1000 random samples were generated.
Tables 1, 2 and 3 report the number m of samples out of M for which πn 6∈ (0, 1], as well as
the estimated bias and standard deviation of αn, βn, πn, Fn{F−1(0.1)}, Fn{F−1(0.5)} and
Fn{F−1(0.9)} computed from the M −m valid estimates.

[Table 1 about here.]

[Table 2 about here.]
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[Table 3 about here.]

A first general comment concerning the results reported in Tables 1, 2 and 3 is that the
number m of samples for which πn 6∈ (0, 1] is the highest for the SO scenarios followed by
the MO scenarios and then the WO scenarios. Also, for a fixed amount of overlap between
the two mixed populations, it is when the distribution of ε is exponential that m tends to
be the highest followed by the gamma and the normal cases. Hence, as expected, the SO
scenarios are the hardest and, for a given degree of overlap, the most difficult problems are
those involving exponential errors for the unknown regression component.

Influence of the shape of the p.d.f. of ε. A surprising result, when observing Tables 1, 2
and 3, is that the nature of the distribution of ε appears to have very little influence on the
performance of the estimators αn, βn and πn. Under weak and moderate overlap in particular,
the estimated bias and standard deviations of the estimators are almost unaffected by the
distribution of the error of the unknown component.

The effect of the degree of overlap. As expected, the performance of the estimators αn,
βn and πn is strongly affected by the degree of overlap. Notice however that the results
obtained under the WO and MO data generating scenarios are rather comparable, while the
performance of the estimators gets significantly worse when switching to the SO scenarios,
especially for πn. Notice also that, overall, the biases of αn and βn are negative under WO
and MO and positive under SO.

The influence of π0. For a given degree of overlap and sample size, the parameter that
seems to affect the most the performance of the estimators is the proportion π0 of the
unknown component. On one hand, the number of samples for which πn /∈ (0, 1] is lower
for π0 = 0.4 than for π0 = 0.7. On the other hand, when considering the samples for which
πn ∈ (0, 1], the finite-sample behavior of αn and βn improves very clearly when π0 switches
from 0.4 to 0.7.

Performance of the functional estimator. The study of Fn{F−1(p)} for p ∈ {0.1, 0.5, 0.9}
clearly shows that, for a given degree of overlap between the two mixed population, the
performance of the functional estimator is the best when the distribution of ε is normal fol-
lowed by the gamma and the exponential settings. In addition, it appears that Fn{F−1(p)},
p ∈ {0.1, 0.5}, behaves the best under the MO scenarios, and that, somehow surprisingly,
Fn{F−1(0.9)} achieves its best results under the SO scenarios.

Asymptotics. The results reported in Tables 1, 2 and 3 are in accordance with the
asymptotic theory stated in the previous section. In particular, as expected, the estimated
biases and standard deviations of all the estimators tend to zero as n increases. Notice
for instance that under SOg and SOe with π0 = 0.4 (two of the most difficult scenarios),
the estimated standard deviation of αn is greater than 7 for n = 100, drops below 0.7 for
n = 300, and becomes very reasonable for n = 1000 and 5000.

Let us now present the results of the Monte Carlo experiments used to investigate
the finite-sample performance of the estimators of the standard errors of αn, βn, πn and
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Fn{F−1(p)}, p ∈ {0.1, 0.5, 0.9}, mentioned below Proposition 4.1 and at the end of Sub-
section 4.3, respectively. The setting is the same as previously with the exception that
n ∈ {100, 300, 1000, 5000, 25000}. The results are partially reported in Table 4 which gives,
for scenarios WOn, MOg and SOe and each of the aforementioned estimators, the standard
deviation of the estimates multiplied by

√
n and the mean of the estimated standard er-

rors multiplied by
√
n. As can be seen, for all estimators and all scenarios, the standard

deviation of the estimates and the mean of the estimated standard errors are always very
close for n = 25, 000. The convergence to zero of the difference between these two quan-
tities appears however slower for Fn{F−1(p)}, p ∈ {0.1, 0.5, 0.9}, than for αn, βn and πn,
the worse results being obtained for Fn{F−1(0.1)}. The results also confirm that the SO
scenarios are the hardest. Notice finally that the estimated standard errors of αn and βn
seem to underestimate on average the variability of αn and βn, and that the variability of
πn and Fn{F−1(p)}, p ∈ {0.1, 0.5, 0.9} appears to be underestimated on average for the WO
scenarios, and overestimated on average for the SO scenarios.

[Table 4 about here.]

We end this section by an investigation of the finite-sample properties of the confidence
band construction proposed in Subsection 4.3. Table 5 reports the proportion of samples for
which

max
t∈{U1,...,U100}

|Fn(t)− F (t)| > n−1/2G−1
n,N(0.95),

where Gn,N is defined as in (15) with N = 1000, and U1, . . . , Un are uniformly spaced over
the interval [min1≤i≤n(Yi − αn − βnXi),max1≤i≤n(Yi − αn − βnXi)]. As could have been
partly expected from the results reported in Table 4, the confidence bands are too narrow
on average for the WO and MO scenarios, the worse results being obtained when the error
of the unknown component is exponential. The results are, overall, more satisfactory for the
SO scenarios. In all cases, the estimated coverage probability appears to converge to 0.95,
although the convergence appears to be slow.

[Table 5 about here.]

6 Illustrations

We first applied the proposed method to a dataset initially reported in Cohen (1980) and
subsequently analyzed by De Veaux (1989) and Hunter and Young (2012), among others.
The dataset consists of n = 150 observations (xi, ỹi) where the xi are actual tones and
the ỹi are the corresponding perceived tones by a trained musician. To apply the proposed
semiparametric approach, we make the assumption that the equation of the tilted component
is y = x. Such an hypothesis seems to be in accordance with the detailed description of the
dataset given in Hunter and Young (2012). The transformation yi = ỹi−xi was then applied
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to obtain a dataset (xi, yi) that fits into the setting considered in this work. The original
dataset and the transformed dataset are represented in the upper left and upper right plots
of Figure 2.

[Figure 2 about here.]

The approach proposed in this paper was applied under the assumption that the distri-
bution of ε∗ in (1) is normal with standard deviation 0.079. The latter value was obtained by
considering the upper right plot of Figure 2 and by computing the sample standard deviation
of the yi such that yi ∈ (−0.25, 0.25) and xi < 1.75 or xi > 2.25.

The estimate (1.652,−0.817, 0.790) was obtained for (α0, β0, π0) with (0.217, 0.108, 0.104)
as vector of estimated standard errors. The corresponding estimated regression line is rep-
resented by a solid line in the upper right plot of Figure 2. The estimate (Fn ∨ 0) ∧ 1 (resp.
fn ∨ 0) of the unknown c.d.f. F (resp. p.d.f. f) of ε is represented in the lower left (resp.
right) plot of Figure 2. The dotted lines in the lower left plot represent an approximate con-
fidence band of level 0.95 for F computed as explained in Subsection 4.3 using N = 10, 000.
Note that, from the results of the previous section, the later is probably too narrow. Nu-
merical integration using the R function integrate (R Development Core Team, 2012) gave
∫ 1

−1
(fn ∨ 0) ≈ 1.01. The results reported in Figure 2 suggest that a normal assumption for

the error of the second component might not be appropriate.

As a second application, we considered the NimbleGen high density array dataset ana-
lyzed by Martin-Magniette et al. (2008). The dataset, produced by a two color ChIP-chip
experiment, consists of n = 176, 343 observations (xi, ỹi). A parametric mixture of linear
regressions with two unknown components was fitted to the data by Martin-Magniette et al.
(2008) under the assumption of normal errors using an EM approach. More details can be
found in Vandekerkhove (2012, Section 4.4). The latter author suggested to consider that
the intercept and the slope of the first component were precisely estimated by the values
1.47 and 0.82, respectively, obtained by Martin-Magniette et al. (2008), and applied the
transformation yi = ỹi − (1.47 + 0.82xi) to obtain a dataset (xi, yi) that fits into the setting
considered in this work. The original dataset of Martin-Magniette et al. (2008) and the
transformed dataset are represented in the upper left and upper right plots of Figure 3.

[Figure 3 about here.]

The approach proposed in this work was applied under the hypothesis that the distribu-
tion of ε∗ in (1) is normal with standard deviation 0.492. The latter value comes from the
consideration of the upper right plot of Figure 3 and is the sample standard deviation of the
yi for which xi < 8.5 or xi > 14.

The estimate (0.483, 0.075, 0.351) was obtained for (α0, β0, π0) with (0.037, 0.002, 0.008)
as vector of estimated standard errors. The corresponding estimated regression line is rep-
resented by a solid line in the upper right plot of Figure 3 while the dashed line represents
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the (transformed) regression line estimated by Martin-Magniette et al. (2008) under the as-
sumption of normal errors. The estimate (Fn ∨ 0) ∧ 1 (resp. fn ∨ 0) of the unknown c.d.f. F
(resp. p.d.f. f) of ε is represented in the lower left (resp. right) plot of Figure 3. Numerical

integration using the R function integrate gave
∫ 6

−6
(fn ∨ 0) ≈ 1.03. The estimation of

(α0, β0, π0, f, F ), implemented in R, took less than 30 seconds on one 2.4 GHz processor.
The lower right plot of Figure 2 clearly confirms that a normal assumption for the error of
the second component is not appropriate.

7 Extension of the model and discussion

From the two illustrations presented in the previous section, we see that the price to pay
for no parametric constraints on the second component is a complete specification of the
first component. As mentioned in Section 2, from a theoretical perspective, it is possible to
improve this situation by introducing an unknown scale parameter for the first component.
Using the notation previously defined, the extended model that we have in mind can be
written as

Y =

{

σ∗
0 ε̄

∗ if Z = 0,
α0 + β0X + ε if Z = 1,

(16)

where ε̄∗ is assumed to have variance one and known c.d.f. F̄ while σ∗
0 is unknown. With

respect to the model given in (1), this simply amounts to writing ε∗ as σ∗
0 ε̄

∗ and the c.d.f. F ∗

of ε∗ as F ∗ = F̄ (·/σ∗
0). The Euclidean parameter vector of this extended model is therefore

(α0, β0, π0, σ
∗
0) and the functional parameter is F , the c.d.f. of ε.

The model given in (16) is identifiable provided X , the set of possible values ofX, contains
four points x1, x2, x3, x4 such that the vectors {(1, xi, x2i , x3i )}1≤i≤4 are linearly independent.
This can be verified by using, in addition to (5) and (6), the fact that

E(Y 3|X) = π0α0(α
2
0 + 3σ2

0) + 3π0β0(α
2
0 + σ2

0)X + 3π0α0β
2
0X

2 + π0β
3
0X

3 a.s. (17)

By proceeding as in Section 3, one can for instance show that

(σ∗
0)

2 =
γ0,3γ0,5 − γ0,7γ0,2

γ0,5 − γ20,2
, (18)

where γ0,2 is the coefficient of X in (5), γ0,3 and γ0,5 are the coefficients of 1 and X2,
respectively, in (6), and γ0,7 is the coefficient of X2 in (17).

From a practical perspective however, using relationship (18) for estimation (or a similar
equation resulting from (5), (6) and (17)) turned out to be highly unstable. The reason
why estimation of σ∗

0 by the moment method does not work satisfactorily seems to be due
to the fact that (σ∗

0)
2 is always the difference of two positive quantities. The estimation

of each quantity is not precise enough to ensure that their difference is close to (σ∗
0)

2, and
the difference is often negative. As an alternative estimation method, an iterative EM-type
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algorithm could be used to estimate all the unknown parameters of the extended model.
Unfortunately, a weakness of such algorithms is that, up to now, the asymptotics of the
resulting estimators are not known.

A Proof of Proposition 4.1

Proof. Let us prove (i). From Assumption A1 (i) and (4), we have that E(XpY q) is finite
for all integers p, q ∈ {0, 1, 2}. It follows that all the components of the vector of expecta-
tions E{ϕ̇γ0

(X, Y )} = Pϕ̇γ0
are finite. The strong law of large numbers then implies that

Pnϕ̇γ0

a.s.−−→ Pϕ̇γ0
. Using the fact that γ0 is a zero of γ 7→ Pϕ̇γ , that Pnϕ̇γ0

= Γnγ0−θn, and

that Pnϕ̇γn
= Γnγn − θn = 0, we obtain that Γn(γn − γ0)

a.s.−−→ 0. The strong law of large

numbers also implies that Γn
a.s.−−→ Γ0. Matrix inversion being continuous with respect to any

usual topology on the space of square matrices, Assumption A2 implies that Γ−1
n

a.s.−−→ Γ−1
0 .

The continuous mapping theorem then implies that Γ−1
n Γn(γn − γ0) = γn − γ0

a.s.−−→ 0.
Since γ0 ∈ Dα,β,π, the strong consistency of (αn, βn, πn) is finally again a consequence of the
continuous mapping theorem as the function

γ 7→
(

gα, gβ, gπ
)

(γ) = (α, β, π) (19)

from R
8 to R

3 is continuous on Dα,β,π.

Let us now prove (ii). Using the fact that Pϕ̇γ0
= 0 and Pnϕ̇γn

= 0, we have

Pnϕ̇γ0
− Pϕ̇γ0

= −(Pnϕ̇γn
− Pnϕ̇γ0

) = −Pn(ϕ̇γn
− ϕ̇γ0

) = −Γn(γn − γ0),

which implies that Gnϕ̇γ0
= −Γn

√
n(γn − γ0). From Assumption A1 (ii) and (4), we

have that the covariance matrix of the random vector ϕ̇γ0
(X, Y ) is finite. The multi-

variate central limit theorem then implies that Gnϕ̇γ0
converges in distribution to a cen-

tered multivariate normal random vector Gϕ̇γ0
with covariance matrix Pϕ̇γ0

ϕ̇⊤
γ0
. Since

(Gnϕ̇γ0
,Γn) (Gϕ̇γ0

,Γ0) and under Assumption A2, we obtain, from the continuous map-
ping theorem, that √

n(γn − γ0) = −Γ−1
n Gnϕ̇γ0

 −Γ−1
0 Gϕ̇γ0

.

The map defined in (19) is differentiable at γ0 since γ0 ∈ Dα,β,π. We can thus apply the
delta method with that map to obtain that

√
n(αn − α0, βn − β0, πn − π0) = −Ψγ0

Γ−1
n Gnϕ̇γ0

+ oP (1),

Since Γ−1
n

a.s.−−→ Γ−1
0 under Assumption A2, we obtain that

√
n(αn − α0, βn − β0, πn − π0) = −Ψγ0

Γ−1
0 Gnϕ̇γ0

+ oP (1).

It remains to prove that Σn
a.s.−−→ Σ. Under Assumption A1 (ii), the strong law of large

numbers implies that Pnϕ̇γ0
ϕ̇⊤
γ0

a.s.−−→ Pϕ̇γ0
ϕ̇⊤
γ0
. The fact that Pnϕ̇γn

ϕ̇⊤
γn

= Pnϕ̇γ0
ϕ̇⊤
γ0

+
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Pn(ϕ̇γn
ϕ̇⊤
γn

− ϕ̇γ0
ϕ̇⊤
γ0
)

a.s.−−→ Pϕ̇γ0
ϕ̇⊤
γ0

is then a consequence of the fact that γn
a.s.−−→ γ0 and

the continuous mapping theorem. Similarly, since γ0 ∈ Dα,β,γ, we additionally have that
Ψγn

a.s.−−→ Ψγ0
. Combined with the fact that, under Assumption A2, Γ−1

n
a.s.−−→ Γ−1

0 , we obtain

that Σn
a.s.−−→ Σ from the continuous mapping theorem.

B Proof of Proposition 4.2

The proof of Proposition 4.2 is based on three lemmas.

Lemma B.1. The classes of functions FJ and FK are P -Donsker. So is the class Fα,β,π

provided Assumptions A1 (ii) and A2 hold, and γ0 ∈ Dα,β,π.

Proof. The class FJ is the class of indicator functions (x, y) 7→ 1{(x, y) ∈ Ct,η}, where
Ct,η = {(x, y) ∈ R

2 : y ≤ t + α + βx}. The collection C = {Ct,η : t ∈ R,η = (α, β) ∈ R
2}

is the set of all half-spaces in R
2. From van der Vaart and Wellner (2000, Exercise 14, p

152), it is a V C class with V C dimension 4. By Lemma 9.8 of Kosorok (2008), FJ has the
same V C dimension as C. Being a set of indicator functions, FJ clearly possesses a square
integrable envelope function and is therefore P -Donsker.

The class FK is a collection of monotone functions, and it is easy to verify that it has V C
dimension 1. Furthermore, it clearly possesses a square integrable envelope function because
the elements of FK are bounded. It is therefore P -Donsker.

The components classes of class Fα,β,π are well defined since Assumption A2 holds and
γ0 ∈ Dα,β,π. It is easy to see that they are linear combinations of a finite collection of
functions that, from Assumption A1 (ii), is P -Donsker. The components classes of Fα,β,π

are therefore V C classes. They possess square integrable envelope functions because Dα,β,π
γ0

is a bounded set. The class Fα,β,π is therefore P -Donsker.

Lemma B.2. Under Assumptions A1 (i) and A3 (i),

sup
t∈R

P (ψJ
t,η − ψJ

t,η0
)2 → 0 and sup

t∈R
P (ψK

t,η − ψK
t,η0

)2 → 0 as η → η0.

Proof. For class FJ , for any t ∈ R, we have

P (ψJ
t,η−ψJ

t,η0
)2 = |P (ψJ

t,η + ψJ
t,η0

− 2ψJ
t,ηψ

J
t,η0

)|
=P{(ψJ

t,η − ψJ
t,η0

)1(α0 + β0x < α + βx)}+ P{(ψJ
t,η0

− ψJ
t,η)1(α0 + β0x > α + βx)}

=

∫

R

{

FY |X(t+ α + βx|x)− FY |X(t+ α0 + β0x|x)
}

1(α0 + β0x < α + βx)dFX(x)

+

∫

R

{

FY |X(t+ α0 + β0x|x)− FY |X(t+ α + βx|x)
}

1(α0 + β0x > α + βx)dFX(x)

≤
∫

R

∣

∣FY |X(t+ α0 + β0x|x)− FY |X(t+ α + βx|x)
∣

∣ dFX(x),
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where FY |X is defined in (2). Since fY |X(·|x) defined in (3) exists for all x ∈ X , the mean
value theorem enables us to write, for any t ∈ R and x ∈ X ,

FY |X(t+α+βx|x)−FY |X(t+α0+β0x|x) = fY |X(t+ α̃x,t+ β̃x,tx|x) {(α− α0) + x(β − β0)} ,

where α̃x,t + β̃x,tx is between α + βx and α0 + β0x. It follows that

sup
t∈R

P (ψJ
t,η − ψJ

t,η0
)2 ≤ sup

t∈R

∫

R

fY |X(t+ α̃x,t + β̃x,tx|x) |(α− α0) + x(β − β0)| dFX(x)

≤
{

sup
t∈R

f ∗(t) + sup
t∈R

f(t)

}

{|α− α0|+ E(|X|)|β − β0|} .

Under Assumption A3 (i), the supremum on the right of the previous display is finite and,
under Assumption A1 (i), so is E(|X|). We therefore obtain the desired result.

For class FK , we have

sup
t∈R

P (ψK
t,η − ψK

t,η0
)2 =

∫

R

{F ∗(t+ α + βx)− F ∗(t+ α0 + β0x)}2dFX(x)

≤
∫

R

|F ∗(t+ α + βx)− F ∗(t+ α0 + β0x)|dFX(x),

from the convexity of x 7→ x2 on [0, 1]. Proceeding as previously, by the mean value theorem,
we obtain that

sup
t∈R

P (ψK
t,η − ψK

t,η0
)2 ≤

{

sup
t∈R

f ∗(t)

}

{|α− α0|+ E(|X|)|β − β0|} .

Under Assumptions A1 (i) and A3 (i), the right-hand side of the previous inequality tends
to zero as η → η0.

Lemma B.3. Under Assumptions A1 (ii), A2 and A3 (ii), for any t ∈ R,

√
n{Jn(ηn, t)− J(η0, t)} =

√
n
(

Pnψ
J
t,ηn

− PψJ
t,η0

)

= Gn

(

ψJ
t,η0

+ [(1− π0)E{f ∗(t+ α0 + β0X)}+ π0f(t)]ψ
α
γ0

+ [(1− π0)E{Xf ∗(t+ α0 + β0X)}+ π0f(t)E(X)]ψβ
γ0

)

+RJ
n,t,

and

√
n{Kn(ηn, t)−K(η0, t)} =

√
n
(

Pnψ
K
t,ηn

− PψK
t,η0

)

= Gn

(

ψK
t,η0

+ E{f ∗(t+ α0 + β0X)}ψα
γ0

+ E{Xf ∗(t+ α0 + β0X)}ψβ
γ0

)

+RK
n,t,

where supt∈R |RJ
n,t| →p 0 and supt∈R |RK

n,t| →p 0.
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Proof. We only prove the first statement as the proof of the second statement is similar. We
have

√
n
(

Pnψ
J
t,ηn

− PψJ
t,η0

)

= Gn

(

ψJ
t,ηn

− ψJ
t,η0

)

+Gnψ
J
t,η0

+
√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

, t ∈ R.

Using the fact that ηn
a.s.−−→ η0, Lemma B.1, and Lemma B.2, we can apply Theorem 2.1 in

van der Vaart and Wellner (2007) to obtain that

sup
t∈R

∣

∣

∣
Gn

(

ψJ
t,ηn

− ψJ
t,η0

)∣

∣

∣
→p 0.

Furthermore, for any t ∈ R, we have

√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

=
√
n

∫

R

{

FY |X(t+ αn + βnx|x)− FY |X(t+ α0 + β0x|x)
}

dFX(x),

where FY |X is defined in (2). Since f ′
Y |X(·|x), the derivative of fY |X(·|x), exists for all x ∈ X

from Assumption A3 (ii) and (3), we can apply the second-order mean value theorem to
obtain

√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

=
√
n

∫

R

fY |X(t+ α0 + β0x|x){(αn − α0) + (βn − β0)x}dFX(x) +RJ
n,t,

where

RJ
n,t =

√
n

2

∫

R

f ′
Y |X(t+ α̃x,t,n + β̃x,t,nx|x){(αn − α0) + (βn − β0)x}2dFX(x),

and α̃x,t,n + β̃x,t,nx is between α0 + β0x and αn + βnx. Now, from (3),

sup
t∈R

|RJ
n,t| ≤

√
n

{

sup
t∈R

(f ∗)′(t) + sup
t∈R

f ′(t)

}

×
{

(αn − α0)
2 + (βn − β0)

2
E(X2) + 2|αn − α0||βn − β0|E(|X|)

}

.

The supremum on the right of the previous inequality is finite from Assumption A3 (ii), and
so are E(|X|) and E(X2) from Assumption A1 (ii). Furthermore, under Assumptions A1 (ii)
and A2, we know from Proposition 4.1 that

√
n(αn − α0, βn − β0) converges in distribution

while (αn, βn)
a.s.−−→ (α0, β0). It follows that supt∈R |RJ

n,t| →p 0. Hence, we obtain that

√
nP
(

ψJ
t,ηn

− ψJ
t,η0

)

= E{fY |X(t+ α0 + β0X|X)}√n(αn − α0)

+ E{XfY |X(t+ α0 + β0X|X)}√n(βn − β0) +RJ
n,t, t ∈ R.

The desired result finally follows from the expression of fY |X given in (3) and Proposition 4.1.
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Proof of Proposition 4.2. Under Assumptions A1 (ii) and A2, and since γ0 ∈ Dα,β,π, we
know, from Lemma B.1, that the classes FJ , FK and Fα,β,π are P -Donsker. It follows that

(

t 7→ Gnψ
J
t,η0

, t 7→ Gnψ
K
t,η0

,Gnψ
α
γ0
,Gnψ

β
γ0
,Gnψ

π
γ0

)

converges weakly in {ℓ∞(R)}2 × R
3. Assumption A3 (i) then implies that the functions

t 7→ E{fY |X(t+ α0 + β0X|X)}, t 7→ E{XfY |X(t+ α0 + β0X|X)}, t 7→ E{f ∗(t+ α0 + β0X)},
and t 7→ E{Xf ∗(t+α0 + β0X)} are bounded. By the continuous mapping theorem, we thus
obtain that








t 7→ Gn

(

ψJ
t,η0

+ E{fY |X(t+ α0 + β0X|X)}ψα
γ0

+ E{XfY |X(t+ α0 + β0X|X)}ψβ
γ0

)

t 7→ Gn

(

ψK
t,η0

+ E{f ∗(t+ α0 + β0X)}ψα
γ0

+ E{Xf ∗(t+ α0 + β0X)}ψβ
γ0

)

Gnψ
π
γ0









converges weakly in {ℓ∞(R)}2 × R. It follows from Proposition 4.1 and Lemma B.3 that

√
n (Jn(ηn, ·)− J(η0, ·), Kn(ηn, ·)−K(η0, ·), πn − π0) ,

converges weakly in {ℓ∞(R)}2 × R. The desired result is finally a consequence of (11) and
the functional delta method applied with the map (J,K, π) 7→ {J − (1− π)K} /π.

C Proof of Proposition 4.3

Proof. The assumptions of Proposition 4.1 being verified, we have that πn
a.s.−−→ π0 6= 0. Then,

as can be verified from (13), to show the desired result, it suffices to show that

sup
t∈R

∣

∣

∣

∣

∣

1

nhn

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

− (1− π0)

n

n
∑

i=1

f ∗(t+ αn + βnXi)− π0f(t)

∣

∣

∣

∣

∣

a.s.−−→ 0.

The previous supremum is smaller than In + (1− π0)IIn, where

In = sup
t∈R

∣

∣

∣

∣

∣

1

nhn

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

− (1− π0)

∫

R

f ∗(t+ α0 + β0x)fX(x)dx− π0f(t)

∣

∣

∣

∣

∣

,

and

IIn = sup
t∈R

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f ∗(t+ αn + βnXi)−
∫

R

f ∗(t+ α0 + β0x)fX(x)dx

∣

∣

∣

∣

∣

.

Let us first show that In
a.s.−−→ 0. Consider the class F of measurable functions from R

2 to R

defined by

F =

{

(x, y) 7→ ψη,t,h(x) = κ

(

t− y + α + βx

h

)

: η = (α, β) ∈ R
2, t ∈ R, h ∈ (0,∞)

}

,
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and notice that

Pnψηn,t,hn
=

1

n

n
∑

i=1

κ

(

t− Yi + αn + βnXi

hn

)

, t ∈ R,

where ηn = (αn, βn). Then, In ≤ I ′n + I ′′n, where

I ′n =
1

hn
sup
t∈R

∣

∣Pnψηn,t,hn
− Pψηn,t,hn

∣

∣ =
1

hn
√
n
sup
t∈R

∣

∣Gnψηn,t,hn

∣

∣ , (20)

and

I ′′n = sup
t∈R

∣

∣

∣

∣

1

hn
Pψηn,t,hn

− g(t)

∣

∣

∣

∣

,

with

g(t) = (1− π0)

∫

R

f ∗(t+ α0 + β0x)fX(x)dx+ π0f(t), t ∈ R.

Let us first deal with I ′′n. From (3), notice that

g(t) =

∫

R

fY |X(t+ α0 + β0x|x)fX(x)dx, t ∈ R.

Also, for any t ∈ R,

Pψηn,t,hn
=

∫

R

{∫

R

κ

(

t− y + αn + βnx

hn

)

fY |X(y|x)dy
}

fX(x)dx,

which, using the change of variable u = (t− y + αn + βnx)/hn in the inner integral, can be
rewritten as

Pψηn,t,hn
= hn

∫

R

{∫

R

κ(u)fY |X(t+ αn + βnx− uhn|x)du
}

fX(x)dx.

Since κ is a p.d.f. from Assumption A4 (ii), it follows that, for any t ∈ R,

1

hn
Pψηn,t,hn

− g(t) =

∫

R

[∫

R

κ(u)
{

fY |X(t+ αn + βnx− uhn|x)− fY |X(t+ α0 + β0x|x)
}

du

]

fX(x)dx.

As f ′
Y |X(·|x), the derivative of fY |X(·|x), exists for all x ∈ X under Assumption A3 (ii), the

mean value theorem enables us to write

I ′′n ≤
{

sup
t∈R

(f ∗)′(t) + sup
t∈R

f ′(t)

}∫

R

[∫

R

κ(u) {|αn − α0|+ |βn − β0||x|+ |u|hn} du
]

fX(x)dx.

Hence,

I ′′n ≤
{

sup
t∈R

(f ∗)′(t) + sup
t∈R

f ′(t)

}{

|αn − α0|+ |βn − β0|E(|X|) + hn

∫

R

|u|κ(u)du
}

,
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which, from Assumptions A1 (i), A3 (ii), A4 (ii), and Proposition 4.1 (i), implies that
I ′′n

a.s.−−→ 0.

Let us now show that I ′n
a.s.−−→ 0. Since κ has bounded variations from Assumption A4 (ii),

it can be written as κ1 − κ2, where both κ1 and κ2 are bounded nondecreasing functions
on R. Without loss of generality, we shall assume that κ, κ1 and κ2 are bounded by 1. Then,
for j = 1, 2, we define

Fj =

{

(x, y) 7→ κj

(

t− y + α + βx

h

)

: (α, β, t) ∈ R
3, h ∈ (0,∞)

}

.

Proceeding as in Nolan and Pollard (1987, proof of Lemma 22), let us first show that Fj is
a V C class for j = 1, 2. Let κ−j be the generalized inverse of κj defined by κ−j (c) = inf{x ∈
R : κj(x) ≥ c}, c ∈ R. We consider the partition {C1, C2} of R defined by

{x ∈ R : κj(x) > c} =

{

(κ−j (c),∞) if c ∈ C1,
[

κ−j (c),∞) if c ∈ C2.

Given (α, β, t) ∈ R
3 and h ∈ (0,∞), the set

{

(x, y, c) ∈ R
3 : κj

(

t− y + α + βx

h

)

> c

}

(21)

can therefore be written as the union of

{

(x, y, c) ∈ R
2 × C1 : t− y + α + βx− hκ−j (c) > 0

}

and
{

(x, y, c) ∈ R
2 × C2 : t− y + α + βx− hκ−j (c) ≥ 0

}

.

Now, let fα,β,t,h(x, y, c) = t− y + α+ βx− hκ−j (c). The functions fα,β,t,h, with (α, β, t) ∈ R
3

and h ∈ (0,∞), span a finite-dimensional vector space. Hence, from Lemma 18 (ii) in Nolan
and Pollard (1987), the collections of all sets {(x, y, c) ∈ R

2 × C1 : fα,β,t,h(x, y, c) > 0} and
{(x, y, c) ∈ R

2 × C2 : fα,β,t,h(x, y, c) ≥ 0} are V C classes. It follows that the collection of
subgraphs of Fj defined by (21), and indexed by (α, β, t) ∈ R

3 and h ∈ (0,∞), is also V C,
which implies that Fj is a V C class of functions.

Given a probability distribution Q on R
2, recall that L2(Q) is the norm defined by

(Qf 2)1/2, with f a measurable function from R
2 to R. Given a class G of measurable functions

from R
2 to R, the covering number N(ε,G, L2(Q)) is the minimal number of L2(Q)-balls of

radius ε > 0 needed to cover the set G. From Lemma 16 in Nolan and Pollard (1987), since
F = F1−F2, and since F1 and F2 have for envelope the constant function 1 on R

2, we have

sup
Q
N(2ε,F , L2(Q)) ≤ sup

Q
N(ε,F1, L2(Q))× sup

Q
N(ε,F2, L2(Q)),

for probability measures Q on R
2. Using the fact that both F1 and F2 are V C classes of

functions with constant envelope 1, from Theorem 2.6.7 in van der Vaart and Wellner (2000)
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(see also the discussion on the top of page 246), we obtain that there exist constants u > 0
and v > 0 that depend on F1 and F2 such that

sup
Q
N(ε,F , L2(Q)) ≤

(u

ε

)v

, for every 0 < ε < u.

Then, by Theorem 2.14.9 in van der Vaart and Wellner (2000), there exists constants c1 > 0
and c2 > 0 such that, for every ε > 0,

Pr∗
(

sup
f∈F

|Gnf | > ε

)

≤ c1ε
c2 exp(−2ε2).

Starting from (20), we thus obtain that, for every ε > 0,

Pr∗(I ′n > ε) = Pr∗
(

sup
t∈R

∣

∣Gnψηn,t,hn

∣

∣ >
√
nhnε

)

≤ Pr∗
(

sup
f∈F

|Gnf | >
√
nhnε

)

≤ c1(
√
nhnε)

c2 exp(−2nh2nε
2) = an.

From Assumption A4 (i), it can be verified that an+1/an → 1 and that n(an+1/an−1) → −∞.
It follows from Raabe’s rule that the series with general term an converges. The Borel-
Cantelli lemma enables us to conclude that I ′n

a.s.−−→ 0, and we therefore obtain that In
a.s.−−→ 0.

Since f ∗ has bounded variations from Assumption A4 (iii), one can proceed along the
same lines to show that IIn

a.s.−−→ 0.

D Proof of Proposition 4.4

The proof of Proposition 4.4 is based on the following lemma.

Lemma D.1. Let Θ ⊂ R
p and H0 ⊂ R

q for some integers p, q > 0, let F = {fθ,ζ : θ ∈
Θ , ζ ∈ H0} be a class of measurable functions from R

2 to R, and let ζn be an estimator of
ζ0 ∈ H0 such that Pr(ζn ∈ H0) → 1. If F is P -Donsker and

sup
θ∈Θ

P (fθ,ζn − fθ,ζ0)
2 →p 0,

then,
sup
θ∈Θ

|G′
n(fθn,ζ − fθ,ζ0)| →p 0.

Proof. The result is the analogue of Theorem 2.1 of van der Vaart and Wellner (2007) in
which Gn is replaced by G

′
n. The proof of Theorem 2.1 relies on the fact that Gn  G

in ℓ∞(F) and on the uniform continuity of the sample paths of the P -Brownian bridge G;
see van der Vaart (1998, proof of Theorem 19.26) and van der Vaart (2002). From the
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functional multiplier central limit theorem (see e.g. Kosorok, 2008, Theorem 10.1), we know
that (Gn,G

′
n) converges weakly in {ℓ∞(F)}2 to (G,G′), where G

′ is an independent copy of
the G. The desired result therefore follows from a straightforward adaptation of the proof
of Theorem 2.1 of van der Vaart and Wellner (2007).

Proof of Proposition 4.4. Since Assumptions A1 (ii) and A2 hold, we have from Lemma B.1
that FJ , FK and Fα,β,π are P -Donsker. Furthermore, E(X) is finite from Assumption A1 (i),
the function f is bounded from Assumption A3 (i), and so is the function t 7→ P (ψK

t,η0
−ψJ

t,η0
)

from the definitions of J and K given in (8) and (9). Hence, from the functional multiplier
central limit theorem (see e.g. Kosorok, 2008, Theorem 10.1) and the continuous mapping
theorem, we obtain that

(

t 7→ Gnψ
F
t,γ0

, t 7→ G
′
nψ

F
t,γ0

)

 

(

t 7→ GψF
t,γ0

, t 7→ G
′ψF

t,γ0

)

in {ℓ∞(R)}2, where ψF
t,γ0

is defined in (12) and t 7→ G
′ψF

t,γ0
is an independent copy of

t 7→ GψF
t,γ0

. It remains to show that

sup
t∈R

∣

∣

∣
G

′
n

(

ψ̂F
t,γn

− ψF
t,γ0

)∣

∣

∣
→p 0.

From (12) and (14), for any t ∈ R, we can write

∣

∣

∣G
′
n

(

ψ̂F
t,γn

− ψF
t,γ0

)∣

∣

∣ ≤
∣

∣

∣

∣

G
′
n

(

1

πn
ψJ
t,ηn

− 1

π0
ψJ
t,η0

)∣

∣

∣

∣

+
∣

∣

∣
G

′
n

(

fn(t)ψ̂
α
γn

− f(t)ψα
γ0

)∣

∣

∣

+
∣

∣

∣
G

′
n

(

fn(t)X̄ψ̂
β
γn

− f(t)E(X)ψβ
γ0

)∣

∣

∣
+

∣

∣

∣

∣

G
′
n

(

1− πn
πn

ψK
t,ηn

− 1− π0
π0

ψK
t,η0

)∣

∣

∣

∣

+

∣

∣

∣

∣

∣

G
′
n

(

Pnψ
K
t,ηn

− Pnψ
J
t,ηn

π2
n

ψ̂π
γn

−
PψK

t,η0
− PψJ

t,η0

π2
0

ψπ
γ0

)∣

∣

∣

∣

∣

. (22)

The last absolute value on the right of the previous display is smaller than
∣

∣

∣

∣

∣

Pnψ
K
t,ηn

− Pnψ
J
t,ηn

π2
n

−
PψK

t,η0
− PψJ

t,η0

π2
0

∣

∣

∣

∣

∣

∣

∣

∣
G

′
nψ

π
γ0

∣

∣

∣
+

∣

∣

∣

∣

∣

PψK
t,η0

− PψJ
t,η0

π2
0

∣

∣

∣

∣

∣

∣

∣

∣
G

′
n

(

ψ̂π
γn

− ψπ
γ0

)∣

∣

∣
. (23)

Now,

sup
t∈R

∣

∣

∣
Pnψ

K
t,ηn

− Pnψ
J
t,ηn

− PψK
t,η0

+ PψJ
t,η0

∣

∣

∣
≤ n−1/2 sup

t∈R

∣

∣

∣
Gn

(

ψK
t,ηn

− ψJ
t,ηn

− ψK
t,η0

+ ψJ
t,η0

)∣

∣

∣

+ n−1/2 sup
t∈R

∣

∣

∣
Gn

(

ψK
t,η0

− ψJ
t,η0

)∣

∣

∣
+ sup

t∈R

∣

∣

∣
P
(

ψK
t,ηn

− ψJ
t,ηn

− ψK
t,η0

+ ψJ
t,η0

)∣

∣

∣
. (24)

Applying the mean value theorem as in the proof of Lemma B.2, we obtain that,

sup
t∈R

∣

∣

∣P
(

ψK
t,η − ψJ

t,η − ψK
t,η0

+ ψJ
t,η0

)∣

∣

∣→ 0 as η → η0,
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which, combined with the fact that ηn
a.s.−−→ η0 implies that the last term on the right

of (24) converges to zero in probability. From Lemma B.2 and Theorem 2.1 of van der Vaart
and Wellner (2007), we obtain that the first term on the right of (24) converges to zero in
probability. The second term on the right of (24) converges to zero in probability because the
classes FJ and FK are P -Donsker. The convergence to zero in probability of the term on the
left of (24) combined with the fact that πn

a.s.−−→ π0 and that |G′
nψ

π
γ0
| is bounded in probability

implies that the first product in (23) converges to zero in probability uniformly in t ∈ R.
Furthermore, Fα,β,π being P -Donsker, and since P‖Ψγn

Γ−1
n ϕ̇γn

− Ψγ0
Γ−1
0 ϕ̇γ0

‖2 →p 0 under

Assumptions A1 (ii) and A2, we have from Lemma D.1 that G
′
n(ψ̂

π
γn

− ψπ
γ0
) →p 0, which

implies that the second product in (23) converges to zero in probability uniformly in t ∈ R.

One can similarly show that the other terms on the right of (22) converge to zero in
probability uniformly in t ∈ R using, among other arguments, the fact that, from Lemma D.1,

sup
t∈R

∣

∣

∣
G

′
n

(

ψJ
t,ηn

− ψJ
t,η0

)∣

∣

∣
, sup

t∈R

∣

∣

∣
G

′
n

(

ψK
t,ηn

− ψK
t,η0

)∣

∣

∣ , G′
n(ψ̂

α
γn

− ψα
γ0
), and G

′
n(ψ̂

β
γn

− ψβ
γ0
)

converge to zero in probability, as well as supt∈R |fn(t) − f(t)| since the assumptions of
Proposition 4.3 are satisfied.
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Figure 1: First column, from top to bottom: datasets generated from WOn, MOg and SOe,
respectively, with n = 500 and π0 = 0.7; the solid (resp. dashed) lines represent the true
(resp. estimated) regression lines. Second column, from top to bottom: for WOn, MOg
and SOe, respectively, the true c.d.f. F of ε (solid line) and its estimate Fn (dashed line)
defined in (11). The dotted lines represent approximate confidence bands of level 0.95 for
F computed as explained in Subsection 4.3 with N = 10, 000. Third column, from top to
bottom: for WOn, MOg and SOe, respectively, the true p.d.f. f of ε (solid line) and its
estimate fn defined in (13) (dashed line).
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Figure 2: Upper left plot: the original tone data. Upper right plot: the transformed data; the
solid line represents the estimated regression line. Lower left plot: the estimate (Fn ∨ 0) ∧ 1
(solid line) of the unknown c.d.f. F of ε as well as well as an approximate confidence band
(dotted lines) of level 0.95 for F computed as explained in Subsection 4.3 with N = 10, 000.
Lower right plot: the estimate fn ∨ 0 of the unknown p.d.f. f of ε.
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Figure 3: Upper left plot: the original ChIPmix data analyzed by Martin-Magniette et al.
(2008). Upper right plot: the ChIPmix data transformed as in Vandekerkhove (2012); the
solid line represents the regression line estimated by the method in this work, while the
dashed line is the regression line estimated by Martin-Magniette et al. (2008). Lower left
plot: the estimate (Fn ∨ 0) ∧ 1 of the unknown c.d.f. F of ε. Lower right plot: the estimate
fn ∨ 0 of the unknown p.d.f. f of ε.
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Table 1: For M = 1000 random samples generated under scenarios WOn, MOn and SOn, number m of samples out of
M for which πn 6∈ (0, 1], as well as estimated bias and standard deviation of αn, βn, πn, Fn{F−1(0.1)}, Fn{F−1(0.5)} and
Fn{F−1(0.9)} computed from the M −m valid estimates.

αn βn πn Fn{F−1(0.1)} Fn{F−1(0.5)} Fn{F−1(0.9)}
Scenario π0 n m bias sd bias sd bias sd bias sd bias sd bias sd
WOn 0.4 100 15 -0.049 0.689 -0.008 0.340 0.038 0.139 0.140 0.144 0.051 0.160 -0.070 0.119

300 0 -0.032 0.392 -0.008 0.220 0.015 0.079 0.078 0.092 0.022 0.129 -0.048 0.098
1000 0 -0.010 0.213 -0.006 0.125 0.005 0.040 0.030 0.044 0.007 0.092 -0.022 0.062
5000 0 -0.005 0.096 -0.002 0.058 0.002 0.019 0.008 0.014 0.000 0.049 -0.007 0.030

0.7 100 38 0.015 0.357 0.019 0.181 0.003 0.101 0.060 0.080 0.035 0.122 -0.024 0.084
300 2 -0.011 0.205 -0.002 0.118 0.010 0.065 0.025 0.039 0.009 0.086 -0.018 0.061
1000 0 -0.002 0.112 0.000 0.067 0.001 0.036 0.009 0.018 0.003 0.054 -0.006 0.034
5000 0 -0.003 0.050 -0.001 0.030 0.001 0.017 0.002 0.006 -0.001 0.027 -0.002 0.015

MOn 0.4 100 34 -0.095 0.827 -0.020 0.376 0.056 0.153 0.054 0.088 0.039 0.099 -0.022 0.068
300 0 -0.008 0.456 -0.005 0.237 0.018 0.089 0.026 0.054 0.020 0.068 -0.011 0.049
1000 0 -0.014 0.264 -0.003 0.135 0.006 0.045 0.010 0.030 0.006 0.044 -0.005 0.030
5000 0 -0.004 0.115 -0.004 0.061 0.002 0.019 0.002 0.013 0.001 0.020 -0.002 0.014

0.7 100 64 -0.008 0.473 0.020 0.224 0.008 0.119 0.018 0.051 0.023 0.074 -0.005 0.048
300 4 -0.014 0.274 -0.005 0.147 0.012 0.082 0.011 0.031 0.006 0.046 -0.005 0.034
1000 0 -0.007 0.155 -0.002 0.084 0.005 0.046 0.004 0.018 0.002 0.027 -0.002 0.020
5000 0 -0.004 0.069 -0.001 0.038 0.001 0.021 0.001 0.007 0.000 0.012 -0.001 0.009

SOn 0.4 100 251 0.666 3.963 0.110 0.393 0.013 0.222 0.006 0.153 0.057 0.122 0.019 0.053
300 90 0.042 0.522 0.022 0.230 0.048 0.183 -0.018 0.047 0.021 0.051 0.007 0.028
1000 2 -0.009 0.279 0.003 0.139 0.026 0.116 -0.012 0.025 0.010 0.028 0.003 0.015
5000 0 0.005 0.122 0.002 0.063 0.003 0.046 -0.002 0.011 0.002 0.012 0.001 0.007

0.7 100 310 0.199 0.627 0.112 0.222 -0.057 0.192 -0.016 0.051 0.021 0.067 0.014 0.036
300 166 0.090 0.346 0.040 0.149 -0.019 0.152 -0.011 0.028 0.008 0.033 0.006 0.020
1000 36 0.005 0.177 0.006 0.090 0.008 0.106 -0.004 0.014 0.003 0.016 0.002 0.010
5000 0 0.000 0.084 0.000 0.043 0.005 0.053 -0.001 0.006 0.001 0.007 0.000 0.005
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Table 2: For M = 1000 random samples generated under scenarios WOg, MOg and SOg, number m of samples out of M
for which πn 6∈ (0, 1], as well as estimated bias and standard deviation of αn, βn, πn, Fn{F−1(0.1)}, Fn{F−1(0.5)} and
Fn{F−1(0.9)} computed from the M −m valid estimates.

αn βn πn Fn{F−1(0.1)} Fn{F−1(0.5)} Fn{F−1(0.9)}
Scenario π0 n m bias sd bias sd bias sd bias sd bias sd bias sd
WOg 0.4 100 21 -0.083 0.651 -0.022 0.342 0.044 0.134 0.186 0.167 0.004 0.164 -0.065 0.108

300 0 -0.053 0.381 -0.007 0.225 0.018 0.082 0.119 0.127 -0.008 0.134 -0.035 0.083
1000 0 -0.007 0.208 -0.003 0.128 0.005 0.040 0.058 0.087 -0.011 0.103 -0.012 0.043
5000 0 -0.004 0.094 -0.002 0.056 0.002 0.017 0.016 0.041 -0.006 0.055 -0.003 0.018

0.7 100 36 -0.014 0.360 -0.009 0.186 0.018 0.106 0.098 0.115 -0.008 0.132 -0.024 0.072
300 4 -0.009 0.211 -0.005 0.119 0.008 0.069 0.056 0.080 -0.010 0.100 -0.013 0.047
1000 0 -0.004 0.117 -0.000 0.069 0.002 0.038 0.025 0.050 -0.005 0.068 -0.003 0.024
5000 0 -0.002 0.051 -0.002 0.031 0.001 0.017 0.004 0.023 -0.003 0.031 -0.001 0.010

MOg 0.4 100 45 -0.067 0.846 0.002 0.400 0.047 0.156 0.106 0.122 0.008 0.112 -0.008 0.056
300 0 -0.049 0.458 -0.015 0.249 0.024 0.095 0.061 0.079 -0.001 0.079 -0.006 0.035
1000 0 -0.025 0.248 -0.012 0.141 0.008 0.045 0.024 0.044 -0.008 0.052 -0.003 0.020
5000 0 -0.006 0.115 -0.002 0.064 0.002 0.020 0.006 0.019 -0.002 0.026 -0.000 0.009

0.7 100 69 -0.011 0.511 0.007 0.222 0.018 0.124 0.049 0.081 -0.001 0.084 0.000 0.037
300 7 -0.031 0.299 -0.004 0.153 0.016 0.089 0.029 0.049 -0.005 0.059 -0.002 0.023
1000 0 -0.008 0.163 -0.003 0.087 0.006 0.049 0.011 0.027 -0.003 0.036 -0.001 0.012
5000 0 0.002 0.071 0.001 0.040 0.000 0.022 0.003 0.011 -0.000 0.017 0.000 0.006

SOg 0.4 100 305 1.339 12.672 0.155 0.455 0.012 0.224 0.062 0.190 0.024 0.138 0.021 0.049
300 145 0.076 0.619 0.055 0.274 0.041 0.182 0.018 0.087 0.001 0.060 0.010 0.024
1000 21 -0.011 0.314 -0.000 0.168 0.035 0.132 0.005 0.042 -0.000 0.032 0.003 0.013
5000 0 -0.004 0.152 -0.000 0.079 0.011 0.062 0.002 0.018 -0.000 0.014 0.001 0.006

0.7 100 386 1.222 22.682 0.169 0.326 -0.085 0.207 0.043 0.117 0.020 0.079 0.009 0.036
300 244 0.101 0.379 0.069 0.189 -0.028 0.167 0.017 0.051 0.005 0.037 0.003 0.017
1000 75 0.021 0.206 0.018 0.117 0.003 0.126 0.005 0.028 0.001 0.021 0.002 0.010
5000 0 -0.003 0.100 -0.000 0.055 0.007 0.067 0.001 0.012 0.000 0.009 0.000 0.004
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Table 3: For M = 1000 random samples generated under scenarios WOe, MOe and SOe, number m of samples out of M
for which πn 6∈ (0, 1], as well as estimated bias and standard deviation of αn, βn, πn, Fn{F−1(0.1)}, Fn{F−1(0.5)} and
Fn{F−1(0.9)} computed from the M −m valid estimates.

αn βn πn Fn{F−1(0.1)} Fn{F−1(0.5)} Fn{F−1(0.9)}
Scenario π0 n m bias sd bias sd bias sd bias sd bias sd bias sd
WOe 0.4 100 26 -0.040 0.715 -0.027 0.336 0.045 0.138 0.224 0.185 -0.008 0.179 -0.060 0.106

300 0 -0.017 0.380 -0.005 0.218 0.013 0.074 0.154 0.152 -0.021 0.151 -0.031 0.077
1000 0 -0.009 0.215 -0.003 0.125 0.004 0.040 0.084 0.115 -0.025 0.118 -0.011 0.041
5000 0 -0.003 0.092 0.001 0.055 0.001 0.017 0.028 0.073 -0.010 0.066 -0.002 0.015

0.7 100 47 0.000 0.372 0.007 0.189 0.013 0.108 0.145 0.149 -0.017 0.149 -0.021 0.071
300 1 -0.017 0.203 -0.001 0.126 0.010 0.071 0.085 0.113 -0.021 0.116 -0.011 0.046
1000 0 -0.006 0.111 -0.004 0.070 0.003 0.037 0.036 0.079 -0.017 0.079 -0.004 0.022
5000 0 -0.002 0.051 0.000 0.031 0.001 0.017 0.009 0.049 -0.004 0.039 -0.000 0.009

MOe 0.4 100 44 -0.020 1.104 -0.005 0.390 0.047 0.153 0.148 0.146 -0.008 0.128 -0.011 0.052
300 0 -0.040 0.463 -0.005 0.259 0.019 0.090 0.092 0.109 -0.017 0.097 -0.005 0.034
1000 0 -0.012 0.255 -0.005 0.146 0.007 0.046 0.043 0.073 -0.013 0.067 -0.001 0.019
5000 0 -0.005 0.115 -0.003 0.065 0.002 0.021 0.010 0.042 -0.004 0.034 -0.001 0.008

0.7 100 82 -0.021 0.498 0.014 0.242 0.015 0.127 0.081 0.120 -0.018 0.100 -0.000 0.036
300 4 -0.012 0.289 -0.002 0.155 0.012 0.086 0.048 0.082 -0.013 0.073 -0.001 0.022
1000 0 -0.002 0.162 -0.001 0.090 0.004 0.050 0.022 0.057 -0.006 0.048 -0.001 0.012
5000 0 -0.002 0.069 -0.002 0.040 0.001 0.022 0.002 0.030 -0.002 0.021 -0.000 0.006

SOe 0.4 100 325 0.972 7.133 0.191 0.533 0.008 0.220 0.104 0.205 -0.000 0.146 0.015 0.053
300 194 0.049 0.600 0.044 0.276 0.051 0.192 0.047 0.109 -0.013 0.074 0.007 0.027
1000 36 -0.014 0.342 0.005 0.177 0.045 0.147 0.029 0.074 -0.011 0.050 0.004 0.015
5000 0 -0.001 0.160 0.002 0.087 0.009 0.066 0.010 0.042 -0.002 0.025 0.001 0.007

0.7 100 399 0.432 1.880 0.213 0.437 -0.097 0.211 0.090 0.155 0.016 0.096 0.006 0.036
300 299 0.133 0.398 0.091 0.213 -0.043 0.170 0.048 0.094 0.007 0.054 0.001 0.018
1000 97 0.031 0.230 0.019 0.121 0.004 0.135 0.021 0.061 0.000 0.034 0.001 0.010
5000 1 -0.004 0.110 -0.001 0.061 0.011 0.077 0.004 0.031 -0.001 0.016 0.001 0.005
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Table 4: For M = 1000 random samples generated under scenarios WOn, MOg and SOe, number m of samples out of M
for which πn 6∈ (0, 1], and, for each of the estimators αn, βn, πn, Fn{F−1(0.1)}, Fn{F−1(0.5)} and Fn{F−1(0.9)}, standard
deviation of the M −m valid estimates times

√
n, and mean of the estimated standard errors times

√
n. The quantities

t1, t2 and t3 in the table are equal to F−1(0.1), F−1(0.5) and F−1(0.9), respectively.
αn βn πn Fn(t1) Fn(t2) Fn(t3)

Scenario π0 n m sd se sd se sd se sd se sd se sd se
WOn 0.4 100 16 6.66 6.67 3.51 2.92 1.37 1.23 1.43 1.15 1.57 1.36 1.18 1.11

300 0 7.10 6.49 3.88 3.43 1.42 1.23 1.55 1.18 2.22 1.90 1.72 1.50
1000 0 6.63 6.56 4.09 3.79 1.30 1.22 1.46 1.09 2.88 2.62 1.97 1.81
5000 0 6.42 6.61 4.00 3.92 1.19 1.24 0.95 0.86 3.31 3.23 1.88 1.93
25000 0 6.74 6.62 3.98 3.96 1.25 1.24 0.78 0.75 3.55 3.44 1.94 1.92

0.7 100 33 3.49 3.50 1.86 1.61 1.04 1.05 0.73 0.60 1.16 1.02 0.87 0.75
300 2 3.56 3.54 2.08 1.89 1.19 1.12 0.71 0.56 1.49 1.34 1.07 0.93
1000 0 3.77 3.58 2.17 2.08 1.23 1.17 0.56 0.50 1.82 1.65 1.17 1.05
5000 0 3.60 3.63 2.16 2.18 1.18 1.20 0.45 0.43 1.89 1.88 1.08 1.09
25000 0 3.60 3.61 2.12 2.17 1.18 1.19 0.41 0.41 1.94 1.92 1.04 1.07

MOg 0.4 100 57 7.96 7.91 3.92 3.33 1.53 1.46 1.15 1.03 1.11 1.08 0.54 0.62
300 2 7.99 7.69 4.41 3.93 1.60 1.39 1.43 1.09 1.38 1.32 0.61 0.64
1000 0 8.37 7.83 4.64 4.34 1.50 1.40 1.46 1.10 1.74 1.63 0.64 0.65
5000 0 8.39 8.04 4.69 4.54 1.52 1.43 1.38 1.13 1.96 1.86 0.65 0.64
25000 0 8.30 8.04 4.57 4.58 1.52 1.44 1.28 1.19 1.96 1.91 0.65 0.64

0.7 100 66 4.55 4.70 2.47 2.07 1.27 1.26 0.86 0.65 0.82 0.77 0.37 0.39
300 8 5.06 4.80 2.71 2.42 1.51 1.40 0.89 0.70 1.03 0.95 0.41 0.41
1000 0 5.05 4.95 2.73 2.64 1.57 1.48 0.86 0.70 1.15 1.10 0.43 0.42
5000 0 5.00 5.01 2.72 2.73 1.55 1.52 0.79 0.73 1.17 1.17 0.41 0.42
25000 0 4.93 5.03 2.71 2.76 1.52 1.53 0.79 0.78 1.19 1.19 0.42 0.42

SOe 0.4 100 294 76.74 60.97 6.19 4.65 2.24 3.59 1.94 2.30 1.36 1.94 0.51 0.80
300 171 11.91 10.92 5.13 4.92 3.40 4.35 2.13 1.64 1.40 1.55 0.46 0.60
1000 31 11.20 10.24 6.05 5.52 4.65 4.65 2.47 1.79 1.62 1.58 0.49 0.53
5000 0 11.47 10.87 6.17 5.93 4.64 4.38 2.91 2.47 1.70 1.68 0.48 0.48
25000 0 10.96 11.23 6.06 6.16 4.27 4.37 3.68 3.49 1.64 1.72 0.46 0.47

0.7 100 410 8.91 8.82 3.37 3.43 2.06 3.00 1.48 1.19 0.87 1.11 0.36 0.44
300 262 7.58 7.51 4.07 4.00 3.06 4.02 1.75 1.36 0.96 1.13 0.33 0.39
1000 121 7.41 7.55 4.09 4.23 4.44 5.04 1.92 1.54 1.07 1.19 0.31 0.36
5000 1 8.06 7.83 4.38 4.35 5.58 5.43 2.33 2.11 1.20 1.19 0.34 0.34
25000 0 8.00 8.00 4.36 4.45 5.44 5.50 2.80 2.76 1.22 1.22 0.33 0.34
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Table 5: For M = 1000 random samples generated under each of the nine scenarios consid-
ered in Section 5, number m of samples out of M for which πn 6∈ (0, 1], and proportion p out
of the M − m remaining samples for which Fn is not in the approximate confidence band
computed as explained in Subsection 4.3.

Generic ε ∼ Normal ε ∼ Gamma ε ∼ Exp
scenario π0 n m p m p m p
WO 0.4 100 22 0.306 27 0.362 24 0.444

300 0 0.238 0 0.251 2 0.334
1000 0 0.126 0 0.182 0 0.226
5000 0 0.082 0 0.080 0 0.133
25000 0 0.064 0 0.055 0 0.092

0.7 100 32 0.169 32 0.195 24 0.290
300 2 0.138 5 0.160 3 0.231
1000 0 0.092 0 0.108 0 0.168
5000 0 0.073 0 0.074 0 0.090
25000 0 0.056 0 0.041 0 0.081

MO 0.4 100 45 0.088 42 0.177 48 0.334
300 0 0.114 2 0.205 1 0.296
1000 0 0.103 0 0.127 0 0.207
5000 0 0.073 0 0.095 0 0.126
25000 0 0.050 0 0.073 0 0.085

0.7 100 76 0.088 60 0.117 67 0.247
300 7 0.102 13 0.146 12 0.215
1000 0 0.084 0 0.082 0 0.140
5000 0 0.054 0 0.067 0 0.096
25000 0 0.049 0 0.065 0 0.070

SO 0.4 100 259 0.003 327 0.030 316 0.072
300 103 0.006 128 0.057 182 0.117
1000 4 0.027 14 0.067 29 0.142
5000 0 0.029 0 0.077 0 0.123
25000 0 0.042 0 0.045 0 0.087

0.7 100 328 0.001 413 0.036 405 0.099
300 166 0.005 249 0.037 280 0.094
1000 32 0.028 91 0.043 119 0.083
5000 0 0.036 2 0.062 2 0.088
25000 0 0.044 0 0.061 0 0.071
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