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Abstract

This paper is composed of two parts. In the first part, via a reduction dimension
method, we derive a one-dimensional minimization problem involving S2 valued maps
for a thin T-shaped multidomain. In the second one, we analyze this limit model.
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1 Introduction

This paper, composed of two parts, carries on the research we started in [9]. In the first
part, via a reduction dimension method, we derive a one-dimensional minimization problem
involving S2 valued maps for a thin T-shaped multidomain. In the second one, we analyze
this limit model.

Let Ωn ⊂ R
3, n ∈ N, be a thin multidomain union of two joined orthogonal cylinders:

rnΘ × [0, 1[ and
]
−1

2
, 1

2

[
× rn

(]
−1

2
, 1

2

[
×] − 1, 0[

)
, where (0, 0) ∈ Θ ⊆] − 1

2
, 1

2
[×] − 1

2
, 1

2
[ and

rn is a vanishing positive parameter (see Figure 1). We point out that the first cylinder
has constant height along the direction x3, the second one has constant height along the
direction x1, while both of them have a small cross section and are joined by the surface
{0} × rnΘ.

For every n ∈ N and λ ∈ [0, +∞[, we consider the following minimization problem:

En,λ := min

{∫

Ωn

|DV (x1, x2, x3)|2d(x1, x2, x3)+

+λ

∫

Ωn

|V (x1, x2, x3) − Gn(x1, x2, x3)|2d(x1, x2, x3) : V ∈ H1(Ωn, S
2)

}
,

(1.1)
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Figure 1:

where Fn ∈ L2(Ωn, S
2), and S2 denotes the unit sphere of R

3. Problem (1.1) comes from
the classical 3D system for the static isotropic Heisenberg model (see [19]), where V is the
spin-density with finite spin magnitude (i.e., |V | = V 2

1 +V 2
2 +V 2

3 = 1) and Gn is an external
magnetic field. We recall that the Euler system associated to Problem (1.1) is

∆V + |DV |2V + λGn− < V, λGn > V = 0. (1.2)

System (1.2) is equivalent to the time independent spin equation of motion (see [14]).
The time dependent spin equation of motion was first derived by Landau and Lifshitz (see
[16]). We refer the reader to [12] and [14] about links between harmonic maps and the
Landau-Lifshitz equation of the spin chain.

For n fixed, in [13] it was proved that, for λ large enough and for every function Gn ∈
H1(Ωn, S2) which can not be approximated by smooth maps, every minimizer Vλ of (1.1) is
not regular, and energy En,λ is bounded. In this case, near each singularity x0, a minimizer
of (1.1) is of the type: R x−x0

|x−x0| , where R is a rotation. This description was first given in [4]

for minimizing harmonic maps. In [6], it was proved that, for λ small enough and for every
function Gn ∈ L2(Ωn, S2), every minimizer Vλ of (1.1) is regular. Problems of this type were
also studied in [2].
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The aim of our paper is twofold. Firstly, passing to the limit in (1.1), as n diverges,
we derive a one-dimensional static isotropic Heisenberg model for a thin T-shaped domain.
Secondly, we study the dependence on λ of the limit model. Precisely, in the first part of
this paper, we prove that

lim
n

En,λ

r2
n

=

ELim
λ := min

{
|Θ|

∫ 1

0

|w′(x3)|2 dx3 − 2λ

∫ 1

0

w(x3)

(∫

Θ

fa(x1, x2, x3)d(x1, x2)

)
dx3

+

∫ 1
2

− 1
2

|ζ ′(x1)|2 dx1 − 2λ

∫ 1
2

− 1
2

ζ(x1)

(∫

]− 1
2
, 1
2
[×]−1,0[

f b(x1, x2, x3)d(x2, x3)

)
dx1+

+2 (|Θ| + λ) : w ∈ H1(]0, 1[, S2), ζ ∈ H1
(]
−1

2
, 1

2

[
, S2

)
, w(0) = ζ(0)

}
,

(1.3)

where w′ and ζ ′ stand for the derivative of w and ζ, respectively, and (fa, f b) is the L2-
weak limit of the rescaled exterior field (see (2.5) and (2.9)). Moreover, we derive strong
H1-convergences for the rescaled minimizers (see Theorem 2.1 and Corollary 2.2).

The proof of this result is developed in several steps. After having rescaled the problem
on two fixed domains in the wake of [5], appropriate convergence assumptions on the rescaled
exterior fields enable us to obtain a priori estimates on rescaled minimizers. The first diffi-
culty arises in deriving w(0) = ζ(0) for the limit of rescaled minimizers. This limit junction
condition lies essentially on the compact embedding of H1

(]
−1

2
, 1

2

[)
into C0

([
−1

2
, 1

2

])
, and

on the fact that the small cross sections of the two cylinders scale down with same rate rn.
Then, next steps of the proof are based on the main ideas of Γ-convergence method intro-
duced in [7]. Precisely, as in [9] (see also [1] and [3]), working with a particular projection
from R

3 into S2 and using the Sard’s Lemma, we construct a recovery sequence for smooth
functions with values in S2. Finally, developing a suitable density result approximating func-
tions of our limit space with more regular functions, and using l.s.c arguments, we achieve
the proof. Other scalings are discussed in Remark 2.4.

We recall that in [9] we treated the same minimization problem in a thin multidomain
composed of two cylinders attached together that shrink respectively to a one-dimensional
segment and to a bidimensional disc, but in this situation the limit problem is uncoupled,
i.e., without junction conditions.

If fa is independent of (x1, x2), f b is independent of (x2, x3), |fa| = 1 a.e. in ]0, 1[ and
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|f b| = 1 a.e. in ]− 1
2
, 1

2
[, then the limit energy in (1.3) may be rewritten in the following way:

ELim
λ := min

{
|Θ|

∫ 1

0

(
|w′(x3)|2 + λ |w(x3) − fa(x3)|2

)
dx3+

+

∫ 1
2

− 1
2

(
|ζ ′(x1)|2 + λ

∣∣ζ(x1) − f b(x1)
∣∣2

)
dx1 :

w ∈ H1(]0, 1[, S2), ζ ∈ H1
(]
−1

2
, 1

2

[
, S2

)
, w(0) = ζ(0)

}
.

(1.4)

In the second part of this paper, we study the dependence on λ of the limit problem ELim
λ

given in (1.4). We recall that in [9] we have studied the asymptotic behavior both of 2-
dimensional and of 1-dimensional problem of the kind (1.3), but without junction conditions.

If λ = 0, ELim
0 = 0. Moreover it is easy to see that the function λ ∈ [0, +∞[→ ELim

λ is

increasing and
d ELim

λ

dλ
= |Θ|

∫ 1

0
|wλ − fa|2 dx3+

∫ 1
2

− 1
2

∣∣ζλ − f b
∣∣2 dx1, for λ a.e. in ]0, +∞[, where

(wλ, ζλ) is a minimizer of (1.4). Then, it remains to study the asymptotic behavior, as λ
diverges, of ELim

λ . If fa ∈ H1(]0, 1[, S2), f b ∈ H1
(]
−1

2
, 1

2

[
, S2

)
and fa(0) = f b(0), it is easy

to see that limλ→+∞ ELim
λ = |Θ| ‖(fa)′‖2

(L2(]0,1[))3 +
∥∥(f b)′

∥∥2

(L2(− 1
2
, 1
2
[))

3 , and every sequence of

minimizers converges to (fa, f b) weakly in H1(]0, 1[, S2)×H1
(]
−1

2
, 1

2

[
, S2

)
. In all remaining

cases, the energies diverge, as λ diverges. Then, we examine some particular, but significant
situations. For instance, we consider the case where fa = (1, 0, 0) and f b = (0, 1, 0), or

fa =
(

x3−γ

|x3−γ| , 0, 0
)

and f b =
(

x1−δ
|x1−δ| , 0, 0

)
, and we prove that energy ELim

λ is of order of
√

λ,

for λ large enough. Consequently, in these cases every sequence of minimizers converges to
(fa, f b) strongly-L2 (but not weakly-H1 × H1), as λ diverges. To prove this result, we find
sharp lower and upper estimates. For obtaining the lower bound we introduce a suitable
scalar problem. For obtaining the upper bound we use particular test functions which take
into account the junction condition w(0) = ζ(0). In the case δ ≤ 0, the building of test
functions satisfying the junction condition is more complicated and, to do that, we introduce
more sophisticated arguments (see Proposition 3.3) which make use of the same projection
from R

3 into S2 utilized in the recovery sequence.

For the study of rod structures and multi-structures we refer the reader to [15], [17], [18],
[20] and the references quoted therein. Results on T-shaped domain may be also found in [8],
[10] and [11]. Precisely, a quasilinear Neumann second order scalar problem was considered
in [8]. A fourth order problem was examined in [11]. The spectrum of a Laplace operator
was considered in [10].

2 First part: derivation of the limit model

In the sequel, x = (x1, x2, x3) denotes the generic point of R
3. If a, b, c ∈ R

3, then (a|b|c)
denotes the 3 × 3 real matrix having aT as first column, bT as second column, and cT as
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third column. In according to this notation, if v ∈ H1(A, R3) with A open subset of R
3, then

Dv := (Dx1v|Dx2v|Dx3v), where Dxi
v, i=1,2,3, stands for the derivative of v with respect to

xi.
Let Θ ⊆]− 1

2
, 1

2
[×]− 1

2
, 1

2
[ be an open connected set with smooth boundary such that the

origin in R
2 belongs to Θ, and let {rn}n∈N

⊂]0, 1[ be a sequence such that

lim
n

rn = 0. (2.1)

For every n ∈ N, let Ωa
n := rnΘ × [0, 1[, Ωb

n :=
]
−1

2
, 1

2

[
× rn

(]
−1

2
, 1

2

[
×] − 1, 0[

)
and Ωn :=

Ωa
n ∪ Ωb

n (see Figure 1).
For every n ∈ N, let Fn ∈ L2(Ωn, R

3) and

Jn : U ∈ H1(Ωn, S
2) −→

∫

Ωn

|DU(x)|2dx − 2

∫

Ωn

U(x)Fn(x)dx, (2.2)

where S2 = {x ∈ R
3 : |x| = 1}. By applying the Direct Method of Calculus of Variations,

for every n ∈ N there exists a solution Un ∈ H1(Ωn, S
2) of the following problem:

Jn(Un) = min {Jn(U) : U ∈ H1(Ωn, S
2)} . (2.3)

Remark that energy (2.2) is more general of that considered in the Introduction. In partic-
ular, if Fn = λGn, with Gn ∈ L2(Ωn, S2), problem (2.3) is equal to problem (1.1), up the
additive constant 2λ|Ωn|.

As it is usual (see [5]), problem (2.3) can be reformulated on a fixed domain through
appropriate rescalings mapping the interior of Ωa

n into Ωa := Θ×]0, 1[ and Ωb
n into Ωb :=]

−1
2
, 1

2

[
×

]
−1

2
, 1

2

[
×] − 1, 0[. Namely, for every n ∈ N by setting

un(x) :=





ua
n(x) = Un(rnx1, rnx2, x3), x a.e. in Ωa,

ub
n(x) = Un(x1, rnx2, rnx3), x a.e. in Ωb,

(2.4)

fn(x) :=





fa
n(x) = Fn(rnx1, rnx2, x3), x a.e. in Ωa,

f b
n(x) = Fn(x1, rnx2, rnx3), x a.e. in Ωb,

(2.5)

Vn :=
{

(va, vb) ∈ H1(Ωa, S2) × H1(Ωb, S2) :

va(x1, x2, 0) = vb(rnx1, x2, 0), for (x1, x2) a.e. in Θ
}
,

(2.6)

jn : v = (va, vb) ∈ Vn −→
∫

Ωa

(∣∣∣∣
(

1

rn

Dx1v
a| 1

rn

Dx2v
a|Dx3v

a

)∣∣∣∣
2

− 2vafa
n

)
dx+

+

∫

Ωb

(∣∣∣∣
(

Dx1v
b| 1

rn

Dx2v
b| 1

rn

Dx3v
b

)∣∣∣∣
2

− 2vbf b
n

)
dx,

(2.7)

it results that un ∈ Vn solves the following problem:

jn(un) = min {jn(v) : v ∈ Vn} . (2.8)
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Remark that we have also multiplied the rescaled functional by
1

r2
n

.

For studying the asymptotic behavior of problem (2.8), as n → +∞, assume that

fa
n ⇀ fa weakly in L2(Ωa, R3), f b

n ⇀ f b weakly in L2(Ωb, R3). (2.9)

Moreover, set

V := {(w, ζ) ∈ H1(Ωa, S2) × H1(Ωb, S2) :

w is independent of (x1, x2), ζ is independent of (x2, x3), w(0) = ζ(0)}

≃
{
(w, ζ) ∈ H1(]0, 1[, S2) × H1

(]
−1

2
, 1

2

[
, S2

)
: w(0) = ζ(0)

}
,

(2.10)

ja : w ∈ H1(]0, 1[, S2) −→

|Θ|
∫ 1

0

|w′(x3)|2 dx3 − 2

∫ 1

0

w(x3)

(∫

Θ

fa(x1, x2, x3)d(x1, x2)

)
dx3

(2.11)

and

jb : ζ ∈ H1

(]
−1

2
,
1

2

[
, S2

)
−→

∫ 1
2

− 1
2

|ζ ′(x1)|2 dx1 − 2

∫ 1
2

− 1
2

ζ(x1)

(∫

]− 1
2
, 1
2
[×]−1,0[

f b(x1, x2, x3)d(x2, x3)

)
dx1,

(2.12)

where w′ and ζ ′ stand for the derivative of w and ζ, respectively.

2.1 Convergence results when n → +∞
The following result describes the asymptotic behavior of problem (2.8) when n → +∞.

Theorem 2.1. For every n ∈ N, let un = (ua
n, u

b
n) be a solution of problem (2.6)-(2.7)-(2.8),

under assumptions (2.1) and (2.9).
Then, there exist an increasing sequence of positive integer numbers {ni}i∈N and (ua, ub) ∈

V (depending on the selected subsequence) such that

ua
ni

→ ua strongly in H1(Ωa, S2), ub
ni

→ ub strongly in H1(Ωb, S2), (2.13)

as i → +∞, and (ua, ub) solves the following problem:

ja(ua) + jb(ub) = min
{
ja(w) + jb(ζ) : (w, ζ) ∈ V

}
, (2.14)

where V , ja and jb are defined in (2.10), (2.11) and (2.12), respectively. Moreover,




1

rn

Dx1u
a
n → 0,

1

rn

Dx2u
a
n → 0 strongly in L2(Ωa, R3),

1

rn

Dx2u
b
n → 0,

1

rn

Dx3u
b
n → 0 strongly in L2(Ωb, R3),

(2.15)
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as n → +∞. Furthermore, the energies converge in the sense that

lim
n

jn(un) = ja(ua) + jb(ub). (2.16)

As regard as the asymptotic behavior of original problem (2.3), as n → +∞, from the
rescaling (2.4)-(2.5) and Theorem 2.1, the result below follows immediately.

Corollary 2.2. For every n ∈ N, let Un be a solution of problem (2.2)-(2.3), under assump-
tions (2.1) and (2.9) with {fn}n∈N defined by (2.5).

Then, there exist an increasing sequence of positive integer numbers {ni}i∈N and (ua, ub) ∈
V (depending on the selected subsequence) such that

lim
i

[
1

r2
ni

∫

rni
Θ×]0,1[

(
|Uni

− ua|2 + |Dx1Uni
|2 + |Dx2Uni

|2 + |Dx3Uni
− Dx3u

a|2
)
dx

]
= 0,

lim
i

[
1

r2
ni

∫

]− 1
2
, 1
2
[×]− rni

2
,
rni
2

[×]−rni
,0[

(∣∣Uni
− ub

∣∣2 +
∣∣Dx1Uni

− Dx1u
b
∣∣2 + |Dx2Uni

|2 + |Dx3Uni
|2

)
dx

]
= 0,

lim
n

Jn(Un)

r2
n

= ja(ua) + jb(ub),

and (ua, ub) solves problem (2.14).

Remark 2.3. If problem (2.14) admits a unique solution, then all previous convergences
hold true for the whole sequence.

Remark 2.4. We have assumed that the small cross sections of the two cylinders scale down
with same rate rn. Well, if one scales down the cross section of the second cylinder with a
different parameter hn, i.e. Ωb

n :=
]
−1

2
, 1

2

[
×hn

(]
−1

2
, 1

2

[
×] − 1, 0[

)
, then it is not difficult to

show that (compare Theorem 2.2 and Theorem 2.3 in [9])





lim
n

Jn(Un)

h2
n

= min

{
jb(ζ) : ζ ∈ H1

(]
−1

2
,
1

2

[
, S2

)}
, if lim

n

hn

rn

= +∞,

lim
n

Jn(Un)

r2
n

= min
{
ja(w) : w ∈ H1(]0, 1[, S2)

}
, if lim

n

hn

rn

= 0.

Proof of Theorem 2.1. The proof of Theorem 2.1 will be performed in several steps.
1) A priori estimates. Being ((0, 0, 1), (0, 0, 1)) ∈ Vn for every n ∈ N, by virtue of (2.9),

there exists a constant c, independent of n, such that

jn(un) ≤ −2

∫

Ωa

(0, 0, 1)fa
ndx − 2

∫

Ωb

(0, 0, 1)f b
ndx ≤ c, ∀n ∈ N. (2.17)

Consequently, by taking into account that |un| = 1 a.e. in Ωa
⋃

Ωb for every n ∈ N and
(2.9), there exist an increasing sequence of positive integer numbers {ni}i∈N, ua ∈ H1(Ωa, S2)
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independent of (x1, x2), ub ∈ H1(Ωb, S2) independent of (x2, x3), ξa = (ξa
1 , ξ

a
2) ∈ (L2(Ωa, R3))2

and ξb = (ξb
2, ξ

b
3) ∈ (L2(Ωb, R3))2 such that

ua
ni

⇀ ua weakly in H1(Ωa, S2), ub
ni

⇀ ub weakly in H1(Ωb, S2), (2.18)





1

rni

Dx1u
a
ni

⇀ ξa
1 ,

1

rni

Dx2u
a
ni

⇀ ξa
2 weakly in L2(Ωa, R3),

1

rni

Dx2u
b
ni

⇀ ξb
2,

1

rni

Dx3u
b
ni

⇀ ξb
3 weakly in L2(Ωb, R3),

(2.19)

as i → +∞. Remark that ua ∈ H1(]0, 1[, S2) and ub ∈ H1(] − 1
2
, 1

2
[, S2).

2) Limit junction condition. For asserting that (ua, ub) ∈ V , it remains to prove that

ua(0) = ub(0). (2.20)

The proof of (2.20) will be performed in three steps. The first step is devoted to prove the
existence of three constants c ∈]0, +∞[, x3 ∈] − 1, 0[ and x2 ∈] − 1

2
, 1

2
[, and of an increasing

sequence of positive integer numbers {ik}k∈N such that

∫

]− 1
2
, 1
2
[2

∣∣∣∣∣
1

rnik

Dx2u
b
nik

(x1, x2, x3)

∣∣∣∣∣

2

d(x1, x2) ≤ c, ∀k ∈ N, (2.21)

and

ub
nik

(·, x2, x3) → ub strongly in C0

([
−1

2
,
1

2

]
, S2

)
, (2.22)

as k → +∞. To this aim, for every i ∈ N, set

ρi : x3 ∈] − 1, 0[−→

∫

]− 1
2
, 1
2
[2

(
∣∣Dx1u

b
ni

(x1, x2, x3)
∣∣2 +

∣∣∣∣
1

rni

Dx2u
b
ni

(x1, x2, x3)

∣∣∣∣
2

+
∣∣ub

ni
(x1, x2, x3)

∣∣2
)

d(x1, x2).

From Fatou Lemma and (2.18)-(2.19), it follows that

∫ 0

−1

lim inf
i

ρi(x3)dx3 ≤ lim inf
i

∫ 0

−1

ρi(x3)dx3 < +∞.

Consequently, there exist two constants c ∈]0, +∞[ and x3 ∈] − 1, 0[, and an increasing
sequence of positive integer numbers {ik}k∈N such that

ρik(x3) < c ∀k ∈ N,

i,e., estimate (2.21) holds true and, by virtue of the second convergence in (2.18), it results
that

ub
nik

(·, ·, x3) ⇀ ub weakly in H1

(]
−1

2
,
1

2

[2

, S2

)
, (2.23)
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as k → +∞.
Now, for every k ∈ N, let

σk : x2 ∈
]
−1

2
,
1

2

[
→

∫ 1
2

− 1
2

(∣∣∣Dx1u
b
nik

(x1, x2, x3)
∣∣∣
2

+
∣∣∣ub

nik
(x1, x2, x3)

∣∣∣
2
)

dx1.

From Fatou Lemma and (2.23), it follows that

∫ 1
2

− 1
2

lim inf
k

σk(x2)dx2 ≤ lim inf
k

∫ 1
2

− 1
2

σk(x2)dx2 < +∞.

Consequently, there exist two constants c ∈]0, +∞[ and x2 ∈] − 1
2
, 1

2
[, and a subsequence of

{ik}k∈N (not relabelled) such that

σik(x2) < c ∀k ∈ N.

Hence, taking into account (2.23), one derives that

ub
nik

(·, x2, x3) ⇀ ub weakly in H1

(]
−1

2
,
1

2

[
, S2

)
,

as k → +∞, which provides (2.22).
The second step is devoted to prove that

lim
k

∫

Θ

ub
nik

(rnik
x1, x2, 0)d(x1, x2) = |Θ|ub(0). (2.24)

To this aim, the integral in (2.24) will be split in the following way:

∫

Θ

ub
nik

(rnik
x1, x2, 0)d(x1, x2) =

∫

Θ

(
ub

nik
(rnik

x1, x2, 0) − ub
nik

(rnik
x1, x2, x3)

)
d(x1, x2)+

∫

Θ

(
ub

nik
(rnik

x1, x2, x3) − ub
nik

(rnik
x1, x2, x3)

)
d(x1, x2)+

∫

Θ

(
ub

nik
(rnik

x1, x2, x3) − ub(rnik
x1)

)
d(x1, x2)+

∫

Θ

ub(rnik
x1)d(x1, x2), ∀k ∈ N,

(2.25)

and one will pass to the limit, as k diverges, in each term of this decomposition.
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By virtue of the last convergence in (2.19), there exists a constant c ∈]0, +∞[ such that

lim sup
k

∣∣∣∣
∫

Θ

(
ub

nik
(rnik

x1, x2, 0) − ub
nik

(rnik
x1, x2, x3)

)
d(x1, x2)

∣∣∣∣ =

lim sup
k

∣∣∣∣
∫

Θ

(∫ 0

x3

Dx3u
b
nik

(rnik
x1, x2, x3)dx3

)
d(x1, x2)

∣∣∣∣ ≤

|Ωb| 12 lim sup
k

(∫

Ωb

|Dx3u
b
nik

(rnik
x1, x2, x3)|2dx

) 1
2

≤

|Ωb| 12 lim sup
k

(
1

rnik

∫

Ωb

|Dx3u
b
nik

(x1, x2, x3)|2dx

) 1
2

≤

|Ωb| 12 c lim
k

r
1
2
nik

= 0.

(2.26)

By virtue of (2.21), there exists a constant c ∈]0, +∞[ such that

lim sup
k

∣∣∣∣
∫

Θ

(
ub

nik
(rnik

x1, x2, x3) − ub
nik

(rnik
x1, x2, x3)

)
d(x1, x2)

∣∣∣∣ =

lim sup
k

∣∣∣∣
∫

Θ

(∫ t

x2

Dx2u
b
nik

(rnik
x1, x2, x3)dx2

)
d(x1, t)

∣∣∣∣ ≤

lim sup
k

(∫

]− 1
2
, 1
2
[2

∣∣∣Dx2u
b
nik

(rnik
x1, x2, x3)

∣∣∣
2

d(x1, x2)

) 1
2

≤

lim sup
k

(
1

rnik

∫

]− 1
2
, 1
2
[2

∣∣∣Dx2u
b
nik

(x1, x2, x3)
∣∣∣
2

d(x1, x2)

) 1
2

≤

clim
k

r
1
2
nik

= 0.

(2.27)
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By virtue of (2.22), it results that

lim sup
k

∣∣∣∣
∫

Θ

(
ub

nik
(rnik

x1, x2, x3) − ub(rnik
x1)

)
d(x1, x2)

∣∣∣∣ ≤

lim sup
k

∫

]− 1
2
, 1
2
[2

∣∣∣
(
ub

nik
(rnik

x1, x2, x3) − ub(rnik
x1)

)∣∣∣ d(x1, x2) =

lim sup
k

(
1

rnik

∫

]−
rnik

2
,
rnik

2
[×]− 1

2
, 1
2
[

∣∣∣
(
ub

nik
(x1, x2, x3) − ub(x1)

)∣∣∣ d(x1, x2)

)
≤

lim
k

‖ub
nik

(·, x2, x3) − ub(·)‖L∞(]− 1
2
, 1
2
[2) = 0.

(2.28)

Since ub ∈ C0
([
−1

2
, 1

2

]
, S2

)
, it results that

lim
k

∫

Θ

ub(rnik
x1)d(x1, x2) = |Θ|ub(0). (2.29)

By passing to the limit in (2.25), as k diverges, and taking into account (2.26)-(2.29),
one obtains (2.24).

Finally, junction condition (2.20) is obtained by passing to the limit, as k diverges, in

∫

Θ

ua(x1, x2, 0)d(x1, x2) =

∫

Θ

ub(rnx1, x2, 0)d(x1, x2),

and using the first convergence in (2.18) and (2.24).
3) Recovery sequence. Let (w, ζ) ∈ C1([0, 1], S2)×C1([−1

2
, 1

2
], S2) such that w(0) = ζ(0).

This step is devoted to prove the existence of a sequence {vn}n∈N with vn ∈ Vn such that

lim
n

jn(vn) = ja(w) + jb(ζ). (2.30)

Since the proof of (2.30) is very similar to the proof of (2.31) in [9], we recall its framework
for the sake of clarity, and we refer the reader to [9] for the details.

For every n ∈ N, let

gn(x) =





w(x3), if x ∈ Θ×]rn, 1[,

w(rn)
x3

rn

+ ζ(rnx1)
rn − x3

rn

, if x ∈ Θ × [0, rn],

ζ(x1), if x ∈ Ωb.

(2.31)

Of course, ga
n ∈ H1(Ωa), gb

n ∈ H1(Ωb), and ga
n(x1, x2, 0) = gb

n(rnx1, x2, 0) a.e. in Θ; but
|gn(x)| < 1 in Θ×]0, rn[. Then, gn is not an admissible test function for problem (2.6)-(2.8).
To overcome this difficulty, for y ∈ B 1

2
(0) = {x ∈ R

3 : |x| ≤ 1
2
}, introduce the function

πy : x ∈ B1(0)\{y} → y +
y(y − x) +

√
(y(x − y))2 + |x − y|2(1 − |y|2)

|x − y|2 (x− y) ∈ S2 (2.32)
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projecting x ∈ B1(0) \ {y} = {x ∈ R
3 : |x| ≤ 1} \ {y} on S2 along the direction x − y (see

[3] and [1]). The idea is to choose y ∈ B 1
2
(0) opportunely, and to define vn = πy ◦ gn. To

do that, one has to be careful that the set {x : gn(x) = y} is ”sufficiently small”. By set-

ting G =
⋃

n∈N

{
y ∈ B 1

2
(0) : ∃x ∈ Θ×]0, rn[ with gn(x) = y and rank((Dgn)(x)) < 3

}
, Sard’s

Lemma assures that meas(G) = 0. Moreover, for every n ∈ N and for every y ∈ B 1
2
(0) \ G,

the set Gn,y = {x ∈ Θ×]0, rn[: gn(x) = y} has dimension 0. Consequently, for every n ∈ N

and for every y ∈ B 1
2
(0)\G, the function πy ◦ (gn|Ω\Gn,y

) is well defined. By arguing as in the

proof of (2.36) in [9], one can prove the existence of a sequence {yn}n∈N ⊂ B 1
2
(0) \ G such

that (crucial point!)

lim
n

∫

(Θ×]0,rn[)\Gn,yn

∣∣∣∣
(

1

rn

Dx1 (πyn
(gn(x))) |0|Dx3 (πyn

(gn(x)))

)∣∣∣∣
2

dx = 0. (2.33)

Now, for every n ∈ N set vn = πyn
◦ (gn|Ω\Gn,yn

). Then, by virtue of (2.31) and of the fact

that πy(x) = x, ∀x ∈ S2, it results that

vn(x) =





w(x3), if x ∈ Θ×]rn, 1[,

πyn

(
w(rn)

x3

rn

+ ζ(rnx1)
rn − x3

rn

)
if x ∈ (Θ × [0, rn]) \ Gn,yn

ζ(x1), if x ∈ Ωb.

(2.34)

It is easy to see that vn ∈ Vn. Moreover, jn(vn) can be split in the following way:

jn(vn) =

∫

Ωa

(
|Dx3w|2 − 2wfa

n

)
dx −

∫

Θ×]0,rn[

(
|Dx3w|2 − 2wfa

n

)
dx+

∫

(Θ×]0,rn[)\Gn,yn

(∣∣∣∣
(

1

rn

Dx1 (πyn
◦ gn) |0|Dx3 (πyn

◦ gn)

)∣∣∣∣
2

− 2(πyn
◦ gn)fa

n

)
dx+

∫

Ωb

(
|Dx1ζ|2 − 2ζf b

n

)
dx, ∀n ∈ N.

(2.35)

Finally, passing to the limit, as n diverges, in (2.35) and using (2.9) and (2.33), one
obtains (2.30).

4) Density result. Let (w, ζ) ∈ V . This step is devoted to prove the existence of a

sequence {(wk, ζk)}k∈N ⊂ C1([0, 1], S2)×C1([−1
2
, 1

2
], S2), with wk(0) = ζk(0) for every k ∈ N,

such that

(wk, ζk) → (w, ζ) strongly in H1(]0, 1[, S2) × H1

(]
−1

2
,
1

2

[
, S2

)
. (2.36)

Let {(w̃k, ζ̃k)}k∈N ⊂ C1([0, 1], R3) × C1([−1
2
, 1

2
], R3) be a sequence such that

(w̃k, ζ̃k) → (w, ζ) strongly in H1(]0, 1[, R3) × H1

(]
−1

2
,
1

2

[
, R3

)
, (2.37)
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and, for every k ∈ N, set wk = w̃k−w̃k(0)+w(0) ∈ C1([0, 1], R3) and ζk = ζ̃k− ζ̃k(0)+ζ(0) ∈
C1([−1

2
, 1

2
], R3). Then, convergence (2.37) provides that

(wk, ζk) → (w, ζ) strongly in H1(]0, 1[, R3) × H1

(]
−1

2
,
1

2

[
, R3

)
, (2.38)

and consequently, since |w(x3)| = 1 for every x3 ∈ [0, 1] and |ζ(x1)| = 1 for every x1 ∈ [−1
2
, 1

2
],

it follows that
lim

k
‖wk‖L∞[0,1] = 1 lim

k
‖ζk‖L∞[− 1

2
, 1
2
] = 1. (2.39)

Then, by setting π : x ∈ R
3 − {0} → x

|x| ∈ R
3 − {0}, it is evident that, for k ∈ N

sufficiently large, the functions wk = π ◦ wk and ζk = π ◦ ζk are well defined, (wk, ζk) ∈
C1([0, 1], S2) × C1([−1

2
, 1

2
], S2) and wk(0) = ζk(0). Moreover, it is obvious that

(wk, ζk) → (w, ζ) strongly in L2(]0, 1[, S2) × L2

(]
−1

2
,
1

2

[
, S2

)
.

For obtaining (2.36), it remains to prove that

(w′
k, ζ

′
k) → (w′, ζ ′) strongly in L2(]0, 1[, R3) × L2

(]
−1

2
,
1

2

[
, R3

)
. (2.40)

By virtue of (2.38) and (2.39), there exist c ∈]0, +∞[, g1 ∈ L1]0, 1[ and g2 ∈ L1]− 1
2
, 1

2
[ such

that, passing eventually to a subsequence, it results that




lim
k

w′
k(x3) = lim

k
(Dπ(wk) · w′

k) (x3) = (Dπ(w) · w′)(x3) = w′(x3), a.e. in ]0, 1[,

|w′
k(x3)|2 = |(Dπ(wk) · w′

k)(x3)|2 ≤ c|w′
k(x3)|2 ≤ cg1(x3), a.e. in ]0, 1[

and for k ∈ N sufficiently large,

lim
k

ζ ′
k(x1) = lim

k

(
Dπ(ζk) · ζ

′
k

)
(x1) = (Dπ(ζ) · ζ ′)(x1) = ζ ′(x1) a.e. in

]
−1

2
,
1

2

[
,

|ζ ′
k(x1)|2 =

∣∣∣(Dπ(ζk) · ζ
′
k)(x1)

∣∣∣
2

≤ c|ζ ′
k(x1)|2 ≤ cg2(x1), a.e. in

]
−1

2
,
1

2

[

and for k ∈ N sufficiently large.

Consequently, using the dominated convergence Theorem, one obtains (2.40).
5) Conclusion. By using a l.s.c argument, from (2.9), (2.18) and (2.19) it follows that

∫

Ωa

(
|ξa

1 |2 + |ξa
2 |2

)
dx + ja(ua) + jb(ub) +

∫

Ωb

(
|ξb

2|2 + |ξb
3|2

)
dx ≤ lim inf

i
jni

(uni
). (2.41)

On the other hand, by virtue of step 3, for every (w, ζ) ∈ C1([0, 1], S2) × C1([−1
2
, 1

2
], S2)

with w(0) = ζ(0), there exists a sequence {vn}n∈N with vn ∈ Vn such that

lim sup
i

jni
(uni

) ≤ lim sup
i

jni
(vni

) = lim
n

jn(vn) = ja(w) + jb(ζ). (2.42)
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Then, by combining (2.41) with (2.42), one obtains that

∫

Ωa

(
|ξa

1 |2 + |ξa
2 |2

)
dx + ja(ua) + jb(ub) +

∫

Ωb

(
|ξb

2|2 + |ξb
3|2

)
dx ≤ lim inf

i
jni

(uni
) ≤

lim sup
i

jni
(uni

) ≤ ja(w) + qjb(ζ),

(2.43)

for every (w, ζ) ∈ C1([0, 1], S2) × C1([−1
2
, 1

2
], S2)) such that w(0) = ζ(0).

Step 4 provides that inequality (2.43) holds true for every (w, ζ) ∈ V . Consequently, it
results that

ξa = 0, ξb = 0, (2.44)

(ua, ub) solves problem (2.14) and

lim
i

jni
(uni

) = ja(ua) + jb(ub). (2.45)

Really, convergence (2.45) holds true for the whole sequence (so (2.16) is proved), since
ja(ua) + jb(ub) is independent of the selected subsequence, being the minimum of problem
(2.14).

Finally, by combining (2.9), (2.18), (2.19) and (2.44) with (2.45), and by using the Rellich-
Kondrachov compact embedding Theorem and the uniform convexity of the space L2, it is
easy to see that convergences (2.18) and (2.19) occur in the strong sense, i.e., (2.13) and
(2.15) hold true.

3 Second part: analysis of the limit model

For every n ∈ N and λ ∈ [0, +∞[, consider the following problem:

Jn,λ : U ∈ H1(Ωn, S2) −→
∫

Ωn

|DU(x)|2dx + λ

∫

Ωn

|U(x) − Fn(x)|2dx, (3.1)

where Fn : Ωn → S2 is a measurable function.
Remark that Jn,λ has the same minimum points of the functional:

J̃n,λ : U ∈ H1(Ωn, S
2) −→

∫

Ωn

|DU(x)|2dx − 2λ

∫

Ωn

U(x)Fn(x)dx,

since Jn,λ(U) = J̃n,λ(U) + 2λ|Ωn|, for every U ∈ H1(Ωn, S
2). Consequently, after a rescaling

as in Section 2, by passing to the limit as n → +∞, one obtains all the results of Subsection
2.1 with

ja
λ(w) = |Θ|

∫ 1

0

|w′(x3)|2 dx3 − 2λ

∫ 1

0

w(x3)

(∫

Θ

fa(x1x2, x3)d(x1, x2)

)
dx3+

+2λ|Θ|, ∀w ∈ H1(]0, 1[, S2),

(3.2)
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jb
λ(ζ) =

∫ 1
2

− 1
2

|ζ ′(x1)|2 dx1 − 2λ

∫ 1
2

− 1
2

ζ(x1)

(∫

]− 1
2
, 1
2
[×]−1,0[

f b(x1, x2, x3)d(x2, x3)

)
dx1+

+2λ, ∀ζ ∈ H1

(]
−1

2
,
1

2

[
, S2

)
,

(3.3)
where fa and f b are given by (2.5) and (2.9). Remark that, since |fa

n(x)| = 1 a.e. in Ωa and
|f b

n(x)| = 1 a.e. in Ωb for every n ∈ N, weak convergences in (2.9) are always satisfied by a
subsequence.

If |fa(x)| = 1 a.e. in Ωa, fa is independent of (x1, x2), |f b(x)| = 1 a.e. in Ωb and f b is
independent of (x2, x3), then functionals (3.2) an (3.3) can be rewritten as follows:

ja
λ(w) = |Θ|

∫ 1

0

(
|w′(x3)|2 + λ |w(x3) − fa(x3)|2

)
dx3, ∀w ∈ H1(]0, 1[, S2), (3.4)

jb
λ(ζ) =

∫ 1
2

− 1
2

(
|ζ ′(x1)|2 + λ

∣∣ζ(x1) − f b(x1)
∣∣2

)
dx1, ∀ζ ∈ H1

(]
−1

2
,
1

2

[
, S2

)
. (3.5)

In the sequel, (wλ, ζλ) ∈ V denotes a solution of the following problem:

ja
λ(wλ) + jb

λ(ζλ) = min

{
|Θ|

∫ 1

0

(
|w′(x3)|2 + λ |w(x3) − fa(x3)|2

)
dx3+

+

∫ 1
2

− 1
2

(
|ζ ′(x1)|2 + λ

∣∣ζ(x1) − f b(x1)
∣∣2

)
dx1 : (w, ζ) ∈ V

}
,

(3.6)

where V is the space defined in (2.10).
Remark that, if λ = 0, the solutions of problem (3.6) are the constants (c, c) ∈ R

3 × R
3

such that |c| = 1 and ja
0 (w0) + jb

0(ζ0) = 0. Moreover (compare the proof of (3.16) in [9]) the
function λ ∈ [0, +∞[→ ja

λ(wλ) + jb
λ(ζλ) is increasing and

d (ja
λ(wλ) + jb

λ(ζλ))

dλ
= |Θ|

∫ 1

0

|wλ(x3) − fa(x3)|2 dx3 +

∫ 1
2

− 1
2

∣∣ζλ(x1) − f b(x1)
∣∣2 dx1,

for λ a.e. in ]0, +∞[. Then, it remains to study the asymptotic behavior, as λ → +∞, of
problem (3.6).

3.1 Convergence results when λ → +∞
If (fa, f b) ∈ V , choosing (w, ζ) = (fa, f b) as test function in (3.6), it is easy to see that

(wλι
, ζλι

) ⇀ (fa, f b) weakly in H1(]0, 1[, S2) × H1

(]
−1

2
,
1

2

[
, S2

)
,

for any diverging sequence of positive numbers {λι}ι∈N. Consequently, using a l.s.c. argu-
ment, it follows that (compare Subsection 3.1 in [9])

lim
λ→+∞

(
ja
λ(wλ) + jb

λ(ζλ)
)

= |Θ| ‖(fa)′‖2
(L2(]0,1[))3 +

∥∥(f b)′
∥∥2

(L2(− 1
2
, 1
2
[))

3 .
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Interesting situations occur when (fa, f b) /∈ V , since in this case it results that

lim
λ→+∞

(
ja
λ(wλ) + jb

λ(ζλ)
)

= +∞. (3.7)

In fact, by arguing by contradiction, if (3.7) does not hold true, then there exists c ∈]0, +∞[
and a diverging sequence of positive numbers {λk}k∈N such that

ja
λk

(wλk
) + jb

λk
(ζλk

) ≤ c, ∀k.

Consequently, it follows that

(wλk
, ζλk

) ⇀ (fa, f b) weakly in H1(]0, 1[, S2) × H1

(]
−1

2
,
1

2

[
, S2

)
,

as λ diverges, and, in particular, one obtains that (fa, f b) ∈ H1(]0, 1[, S2)×H1
(]
−1

2
, 1

2

[
, S2

)

and, by virtue of the Rellich Theorem, fa(0) = f b(0). But this statement is false, since
(fa, f b) /∈ V .

Now, we examine some particular, but significant cases. At first, consider the case
fa = (1, 0, 0) and f b = (0, 1, 0). Remark that (fa, f b) ∈ H1(]0, 1[, S2) × H1

(]
−1

2
, 1

2

[
, S2

)
,

but (fa, f b) /∈ V since fa(0) 6= f b(0). In this case, the following a priori estimates hold true:

Proposition 3.1. For every λ ∈ [0, +∞[, let (wλ, ζλ) be a solution of problem (3.6) with
fa = (1, 0, 0) and f b = (0, 1, 0).

Then, there exist two constants c1, c2 ∈]0, +∞[ such that

c1

√
λ ≤ ja

λ(wλ) + jb
λ(ζλ) ≤ c2

√
λ, for λ sufficiently large. (3.8)

Proof. We adapt, to our coupled problem, a technique we introduced in [9].
For every t ∈]0, +∞[, let (wt, ζt) be the couple of functions defined by

wt : x3 ∈]0, 1[→ 1√
x2

3 + t2
(x3, t, 0) ∈ S2, ζt : x1 ∈

]
−1

2
,
1

2

[
→ (0, 1, 0) ∈ S2.

Since (wt, ζt) ∈ V , it results that

ja
λ(wλ) + jb

λ(ζλ) ≤ ja
λ(wt) + jb

λ(ζt) = ja
λ(wt) ∀t ∈]0, +∞[, ∀λ ∈]0, +∞[. (3.9)

Consequently, being

ja
λ(wt) = |Θ|

[
1

t

(
t

2(t2 + 1)
+

arctan(t)

2

)
+ λt

(
2

t
− 2

√
1 + t2

t
+ 2

)]
,

∀t ∈]0, +∞[, ∀λ ∈]0, +∞[,

lim
t→0+

(
t

2(t2 + 1)
+

arctan(t)

2

)
=

π

4
, lim

t→0+

(
2

t
− 2

√
1 + t2

t
+ 2

)
= 2,
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d

dt

(
t

2(t2 + 1)
+

arctan(t)

2

)
< 0,

d

dt

(
2

t
− 2

√
1 + t2

t
+ 2

)
< 0, ∀t ∈]0, +∞[,

one derives that

ja
λ(wλ) + jb

λ(ζλ) ≤ |Θ|
(

π

4

1

t
+ 2λt

)
, ∀t ∈]0, +∞[, ∀λ ∈]0, +∞[,

which provides the upper bound in (3.8).
To prove the lower bound in (3.8), at first remark that

ja
λ(wλ) + jb

λ(ζλ) ≥ min

{
|Θ|

∫ 1

0

(
(v′(x3))

2
+ λ (v(x3) − 1)2

)
dx3+

+

∫ 1
2

− 1
2

(
(z′(x1))

2
+ λ (z(x1))

2
)

dx1 :

(v, z) ∈ H1(]0, 1[, R) × H1

(]
−1

2
,
1

2

[
, R

)
, v(0) = z(0)

}
.

(3.10)

For every λ ∈]0, +∞[, the last minimum is attained in the solution (vλ, ζλ) ∈ H1(]0, 1[, R)×
H1

(]
−1

2
, 1

2

[
, R

)
of the following problem:





v′′
λ − λvλ = −λ, in ]0, 1[,

z′′λ − λzλ = 0, in

]
−1

2
, 0

[
,

z′′λ − λzλ = 0, in

]
0,

1

2

[
,

v′
λ(1) = z′λ

(
−1

2

)
= z′λ

(
1

2

)
= 0,

vλ(0) = zλ (0) ,

|Θ|v′
λ(0) = z′λ(0

−) − z′λ(0
+),

(3.11)

i.e., in (vλ, ζλ) given by

vλ(x3) = − 2

|Θ|
(
1 + e

√
λ

)2

+ 2(1 + e2
√

λ)
(e2

√
λe−x3

√
λ + ex3

√
λ) + 1, in ]0, 1[, (3.12)
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zλ(x1) =





|Θ|
(
1 + e

√
λ
)

|Θ|
(
1 + e

√
λ

)2

+ 2(1 + e2
√

λ)
(e−x1

√
λ + e

√
λex1

√
λ), in

]
−1

2
, 0

[
,

|Θ|
(
1 + e

√
λ
)

|Θ|
(
1 + e

√
λ

)2

+ 2(1 + e2
√

λ)
(e

√
λe−x1

√
λ + ex1

√
λ), in

]
0,

1

2

[
.

Then, combining (3.10) with (3.11) and (3.12), it follows that

ja
λ(wλ) + jb

λ(ζλ) ≥ min

{
|Θ|

∫ 1

0

(
(v′(x3))

2
+ λ (v(x3) − 1)2

)
dx3+

+

∫ 1
2

− 1
2

(
(z′(x1))

2
+ λ (z(x1))

2
)

dx1 :

(v, z) ∈ H1(]0, 1[, R) × H1

(]
−1

2
,
1

2

[
, R

)
, v(0) = z(0)

}
=

−|Θ|λ
∫ 1

0

vλdx3 + |Θ|λ =
2|Θ|(e2

√
λ − 1)

|Θ|
(
1 + e

√
λ

)2

+ 2(1 + e2
√

λ)

√
λ.

Consequently, taking into account that

lim
λ→+∞

2|Θ|(e2
√

λ − 1)

|Θ|
(
1 + e

√
λ

)2

+ 2(1 + e2
√

λ)
=

2|Θ|
|Θ| + 2

,

one derives the lower bound in (3.8).

Remark 3.2. The proof of Proposition 3.1 gives also an estimate of c1 and c2.
Proposition 3.1 holds again true if one assumes that fa and f b have the unit on the same

component. For instance, if one assumes fa = (1, 0, 0) and f b = (−1, 0, 0), one obtains the
upper bound by performing previous proof with

wt : x3 ∈]0, 1[→ 1√
x2

3 + t2
(x3, t, 0) ∈ S2, ζt : x1 ∈

]
−1

2
,
1

2

[
→ 1√

x2
1 + t2

(−|x1|, t, 0) ∈ S2.

While the estimate of the lower bound is obtained by performing previous computations with
λ(z1(x1))

2 replaced by λ(z1(x1) + 1)2 in (3.10), and the second line and third line of (3.11)
replaced by z′′λ − λzλ = λ.

Consider, now, the case: fa =

(
x3 − γ

|x3 − γ| , 0, 0
)

and f b =

(
x1 − δ

|x1 − δ| , 0, 0
)

, where γ ∈]0, 1[

and δ ∈] − 1
2
, 1

2
[.
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Proposition 3.3. For every λ ∈]0, +∞[, let (wλ, ζλ) be a solution of problem (3.6) with

fa =

(
x3 − γ

|x3 − γ| , 0, 0
)

and f b =

(
x1 − δ

|x1 − δ| , 0, 0
)

, where γ ∈]0, 1[ and δ ∈] − 1
2
, 1

2
[.

Then, there exist two constants c1, c2 ∈]0, +∞[ such that

c1

√
λ ≤ ja

λ(wλ) + jb
λ(ζλ) ≤ c2

√
λ, for λ sufficiently large. (3.13)

Proof. To prove the lower bound in (3.13), it is enough to remark that

ja
λ(wλ) + jb

λ(ζλ) ≥ |Θ|min

{∫ 1

0

|v′(x3)|2dx3 + λ

∫ 1

0

∣∣∣∣v(x3) −
x3 − γ

|x3 − γ|

∣∣∣∣
2

dx3 :

v ∈ H1(]0, 1[, R)

}
, ∀λ ∈]0, +∞[.

(3.14)

and to use the estimate of the lower bound of the right hand side of (3.29) given in [9].
To prove the upper bound in (3.13), first we consider the case δ > 0 and then the general

case.
If δ > 0, for every t ∈]0, +∞[, let (wt, ζt) be the couple of functions defined by





wt : x3 ∈]0, 1[→ 1√
(x3 − γ)2 + t2

(x3 − γ, 0, t) ∈ S2,

ζt : x1 ∈
]
−1

2
,
1

2

[
→ 1√

γ2(x1 − δ)2 + (tδ)2
(γ(x1 − δ), 0, tδ) ∈ S2.

(3.15)

Since (wt, ζt) ∈ V , it results that

ja
λ(wλ) + jb

λ(ζλ) ≤ ja
λ(wt) + jb

λ(ζt) ∀t ∈]0, +∞[, ∀λ ∈]0, +∞[. (3.16)

Then, arguing as in the proof of (3.13) in [9], one obtains an upper bound of ja
λ(wt) and

jb
λ(ζt) which provide the upper bound in (3.13).

If δ ∈] − 1
2
, 0], it is not possible to use test function (3.15), since it does not satisfy the

junction condition. Then we have to use a more sophisticated argument whic works also for
δ positive.

Let λ ∈]0, +∞[ be sufficiently large (it is enough to choose λ > 1
γ2 ), and set

vλ(x3) =





1√
(x3 − γ)2 + λ−1

(
x3 − γ, 0, λ− 1

2

)
, if x3 ∈

]
λ− 1

2 , 1
[
,

x3

λ− 1
2

1√
(λ− 1

2 − γ)2 + λ−1

(
λ− 1

2 − γ, 0, λ− 1
2

)
+

+

(
1 − x3

λ− 1
2

)
1√

δ2 + λ−1
(−δ, λ− 1

2 , 0), if x3 ∈
]
0, λ− 1

2

[
,
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zλ(x1) =
1√

(x1 − δ)2 + λ−1
(x1 − δ, λ− 1

2 , 0), if x1 ∈
]
−1

2
,
1

2

[
.

At first, remark that
∫ λ− 1

2

0

|v′
λ(x3)|2 dx3 ≤ 4λ

1
2 . (3.17)

Of course, vλ ∈ H1(]0, 1[, R3), zλ ∈ H1(] − 1
2
, 1

2
[, S2), and vλ(0) = zλ(0); but |vλ(x3)| < 1

for every x3 ∈]0, λ− 1
2 [. Then, (vλ, zλ) is not an admissible test function for problem (3.6).

To overcome this difficulty, for y ∈ B 1
2
(0) = {x ∈ R

3 : |x| ≤ 1
2
}, let πy be the function

introduced in (2.32) projecting x ∈ B1(0) \ {y} = {x ∈ R
3 : |x| ≤ 1} \ {y} on S2 along the

direction x − y. Since

∃c ∈]0, +∞[ : |Dπy(x)|2 ≤ c

|x − y|2 , ∀y ∈ B 1
2
(0), ∀x ∈ B1(0) \ {y},

from (3.17) it follows that

∫

B 1
2
(0)\vλ(]0,λ− 1

2 [)

∫ λ− 1
2

0

∣∣(πy(vλ(x3)))
′∣∣2 dx3dy ≤

c

∫ λ− 1
2

0




∫

B 1
2
(0)\vλ(]0,λ− 1

2 [)

1

|vλ(x3) − y|2
dy


 |v′

λ(x3)|2 dx3 ≤c




∫

B 3
2
(0)

1

|z|2
dz


 4λ

1
2 ,

where

∫

B 3
2
(0)

|z|−2dz < +∞. Consequently, there exist a constant C > 0 and yλ ∈ B 1
2
(0) \

vλ(]0, λ
− 1

2 [) such that
∫ λ− 1

2

0

∣∣∣
(
πy

λ
(vλ(x3))

)′∣∣∣
2

dx3 ≤ Cλ
1
2 . (3.18)

Point out that C is independent of λ! For instance, since |vλ(]0, λ
− 1

2 [)| = 0, one can choose

C =
1+c4

∫
B3\2(0)

1

|z|2
dz

|B1\2(0)| .

Finally, set uλ = πy
λ
◦ vλ. That is, being πy

λ
(x) = x for every x ∈ S2,

uλ(x3) =





1√
(x3 − γ)2 + λ−1

(
x3 − γ, 0, λ− 1

2

)
, if x3 ∈

]
λ− 1

2 , 1
[
,

πy
λ

(
x3

λ− 1
2

1√
(λ− 1

2 − γ)2 + λ−1

(
λ− 1

2 − γ, 0, λ− 1
2

)
+

+

(
1 − x3

λ− 1
2

)
1√

δ2 + λ−1
(−δ, λ− 1

2 , 0)

)
, if x3 ∈

]
0, λ− 1

2

[
.
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Since, now, (uλ, zλ) ∈ V it results that

ja
λ(wλ) + jb

λ(ζλ) ≤ ja
λ(uλ) + jb

λ(zλ) =

|Θ|
∫ λ− 1

2

0

|u′
λ(x3)|2 dx3 + |Θ|λ

∫ λ− 1
2

0

|uλ(x3) + 1|2 dx3+

|Θ|
∫ 1

λ− 1
2

|u′
λ(x3)|2 dx3 + |Θ|λ

∫ 1

λ− 1
2

|uλ(x3) − fa(x3)|2 dx3 + jb
λ(zλ).

(3.19)

By virtue of (3.18) and of the fact that |uλ(x3)| = 1, one has that

∫ λ− 1
2

0

|u′
λ(x3)|2 dx3 + λ

∫ λ− 1
2

0

|uλ(x3) + 1|2 dx3 ≤ Cλ
1
2 + 4λ

1
2 (3.20)

Moreover, in [9] we proved the existence of a positive constant c, independent of λ, such that
∫ 1

λ− 1
2

|u′
λ(x3)|2 dx3 + λ

∫ 1

λ− 1
2

|uλ(x3) − fa(x3)|2 dx3 + jb
λ(zλ) ≤ cλ

1
2 . (3.21)

By combining (3.19) with (3.20) and (3.21), one obtains the upper bound in (3.13).

Remark 3.4. The proof of Proposition 3.3 gives also an estimate of c1 and c2.
Proposition 3.3 holds again true if one assumes that fa and f b have the singularity on dif-

ferent components. For instance, if one assumes fa =

(
x3 − γ

|x3 − γ| , 0, 0
)

and f b =

(
0,

x1 − δ

|x1 − δ| , 0
)

,

one obtains the lower bound as before. While the estimate of the upper bound is obtained by
performing previous computations with

vλ(x3) =





1√
(x3 − γ)2 + λ−1

(
x3 − γ, 0, λ− 1

2

)
, if x3 ∈

]
λ− 1

2 , 1
[
,

x3

λ− 1
2

1√
(λ− 1

2 − γ)2 + λ−1

(
λ− 1

2 − γ, 0, λ− 1
2

)
+

+

(
1 − x3

λ− 1
2

)
1√

δ2 + λ−1
(λ− 1

2 ,−δ, 0), if x3 ∈
]
0, λ− 1

2

[
,

zλ(x1) =
1√

(x1 − δ)2 + λ−1
(λ− 1

2 , x1 − δ, 0), if x1 ∈
]
−1

2
,
1

2

[
.

The last results immediately provide the following convergence result:

Corollary 3.5. For every λ ∈ [0, +∞[, let (wλ, ζλ) be a solution of problem (3.6) with fa

and f b satisfying the assumptions in Proposition 3.1 (see also Remark 3.2) or Proposition
3.3 (see also Remark 3.4).

Then, it results that
∫ 1

0

|wλ(x3) − fa(x3)|2 dx3 ≤
c2

|Θ|
√

λ
,

∫ 1
2

− 1
2

∣∣ζ(x1) − f b(x1)
∣∣2 dx1 ≤

c2√
λ

,

for λ sufficiently large.
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Obviously, if {λι}ι∈N is a diverging sequence of positive numbers, {wλι
, ζλι

}ι∈N does not
converge weakly in H1(]0, 1[, S2) × H1((−1

2
, 1

2
), S2), since (fa, f b) /∈ V .
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