N

N

Operational framework based on modeling languages to
support product repository implementation.

Muriel Pinel, Christian Braesch, Laurent Tabourot, Aline Berger

» To cite this version:

Muriel Pinel, Christian Braesch, Laurent Tabourot, Aline Berger. Operational framework based on
modeling languages to support product repository implementation.. 9th International Conference on
Product Lifecycle Management (PLM), Jul 2012, Montreal, QC, Canada. pp.257-266, 10.1007/978-
3-642-35758-9_ 22 . hal-00795398

HAL Id: hal-00795398
https://hal.science/hal-00795398
Submitted on 23 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-00795398
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Operational framework based on modeling language®ot
support product repository implementation

Muriel Pinef, Christian BraeschLaurent Tabourdt and Aline Berger
1SYMME, University of Savoy, Annecy, France
{ruriel . pinel,christian. braesch,|aurent.tabourot}@niv-savoie.fr
2THESAME, Annecy, France

ab@ hesane-i nnovat i on. com

Abstract. Embracing Product Lifecycle Management approacblires in-
tegrating a product repository in the company imation system. From cus-
tomer's needs to disposal stage, several prodpi@sentations exist. The prod-
uct repository purpose is to secure consistencgnef product representation
with the others. This paper presents an operatiomaleling framework that
supports product repository implementation. In otdeensure consistency, this
framework identifies correspondences between estitif languages (“trade”
languages and standard languages). The presemntedpts are illustrated with
correspondences between language entitiegraduct designedand product
planned to be builBills of Materials.

Keywor ds: Product Lifecycle Management (PLM), Bill Of MatesgBOM),
Model Driven Engineering (MDE)

1 Introduction

From customer's requirements to recycling or diapasage, every product gets
through several maturity stages: product and psocesigns, manufacturing, use,
support, retire, etc. Each stage of the produetyifle uses a “trade” product repre-
sentation that meets specific stage objectivesnards.

For example, several Bills Of Materials (BOM) reggat the product structure.
Product design department defirfélse product designed BOM”"This BOM meets
the functional specifications. This BOM is compogddunctional assembliescom-
ponentsand ‘is composed of’relationships. Basing on this BOM, process design
department definethe product planned to be built BOMThis BOM meets the
manufacturing, purchasing and workshop managingsieehis BOM is composed of
purchased components and assembligsmnufactured components and assemblies
and‘is made of” relationships. These two Bills Of Materials ar@gurct structures
but theirs nodes and relationships do not reféhecsame concepts.

Thus, numerous and various product representaggiss throughout the product
lifecycle. This multiplicity can be root of functial inconsistencies among stages.
The purpose of this paper is to present an opeatimodeling framework that sup-
ports product repository implementation. This framgk helps in translating a repre-
sentation described in a language into a reprets@mtdescribed in an other language.
This framework also helps in verifying that seveegiresentations describe the same
product.

Industrial context is described in the first p&2) in order to highlight the impor-
tance of consistency among product representatiimsse representations are man-
aged into information system and are built basingaoftware models. Several meth-
ods exist to define software models. Informatiostssns engineering methods and
enterprise modeling results are first presenteithénsecond part (83). Then, an over-
view of product repository modeling approaches shdhat existing methods are
based on unified languages. These languages éirultiifo implement in an extended
enterprise context. So, a modeling framework isdedeto manage correspondences
between entities of several languages. The thirtl (84) presents the ambivalence
paradigm and a modeling framework. This framewarkllustrated through corre-
spondences between language entitiggrofluct designe@ndproduct planned to be
built BOM.

2 Context and identified problems

Companies are facing a changing environment. PLbhis of the solutions adopted
to meet new requirements and challenges.

2.1 Product Lifecycle Management

Environmental changes lead enterprises to defiReM strategic approach based on
existing PLM ideas, concepts ands tools. The PLkktept is recent and several defi-
nitions exist. According to different authors [1-FILM can be identified as a product
repository with a set of functions used to managermation related to products.
PLM’s goal is to provide relevant information taakeholders in each stage of the
product lifecycle.

Every stage of the lifecycle takes part in the sfarmation of an idea into a physi-
cal product that can be used, maintained and redydlhe product lifecycle can be
divided in two periods. First, the product onlystgias a theoretical concept (product
design, process design, etc.). Then, the produstseas a physical object (manufac-
turing, maintain, etc.). During the first periodioh stage defines a theoretical repre-
sentation of a more and more mature product. Famgle, the process design stage
defines the product planned to be built BOMbased on théproduct designed
BOM". During the second period, one stage uses theremgents of representations
provided by previous stages as input to manufaaut® modify the physical prod-
uct. In order to meet traceability requirementss tage may also record physical
product properties into a representation. For exenpe manufacturing stage builds

a physical product based on therdduct planned to be built BOMThe"product
built BOM” can also beecorded

Thus, the relationship between two lifecycle stages“Supplier - Customer” rela-
tionship. Every stage transforms input represemaitito its own product representa-
tion (theoretical or record). This new representats described in the specific world
of discourse of the stage. We refer to this wofldiscourse as therade languagé
of the stage and we define thgrdduct repository” as the set of product representa-
tions used throughout the product lifecycle.

The following figure illustrates possible distorimamong product representations.

What is requested What is understood What is desig ne(yv r;gtgz %Ijlirllned What is built

Fig. 1. Example of requirements distortions among the pcbcepresentations

This figure identifies two categories of distortson

The first category of distortion is related to ti®upplier - Customer” relationship
between two stages. The “Supplier” provides thestGmer” a representation de-
scribed in its specific “trade language”. Beforey daransformation, the “Customer”
has to translate the representation into requirésnéescribed in its own “trade lan-
guage”. Among the root causes of distortions, s firoblem is identified (illustrated
on the left in Figure 2): how can we ensure that thquirements described in the
“trade language” (world of discourse) of one stage well interpreted by the follow-
ing stage which has another “trade language”?

world of discourse

stage "N+1"
a representation a representation a representation
What is requested What is designed What is planned
interpretation to be built

Customer stage "N+1" /

What is understood
transformer

Supplier
What is requested

world of discourse
stage "N+1"

Fig. 2. Two distortion categories

The second category of distortion is related to“thensformation” of a representa-
tion. When a representation is built, new requiret®@re set out and a specific world

of discourse is used. A second issue is identffiadstrated on the right in Figure 2):
how can we ensure that two product representatiotts specific requirements de-
scribed in two different “trade languages” (worlofsdiscourse) represent the same
finished product? that is to say: how can we ensansistency among product repre-
sentations described in several “trade languages”?

Thus, product repository has to provide mechaniabie to address these two is-
sues.

2.2 Product repository models

A model represents a given aspect of a system (a produeixample) and it is built
with an intended goal [6-7]. Models are writtenngselements of an expressitam-
guage Symbols and syntax (organization of the symbofshis language are repre-
sented in anetamodel[8]. The product repository objective is to prawidsers with
product models suited to their specific needs. Betdrepresentations are defined by
assigning values to model features; we call tiestances

In a company, all products representations of dagesare based on the same
“trade model”. Figure 3 illustrates interactiondvieeen metamodel, language, model
and instance. A product representatiorstance is built with the frade language”
elementsof a product repositorymoder'.

[metamodel]

1 Representation Of

Conformsto [trade language |

I Elements Of
model of the enterpris
roduct repositor
I Conforms to

instance of the model of the
enterprise product repository

Fig. 3. Interactions between metamodel, language, modkiretance (adapted from [8])

As a result, consistency among representationsaines) depends on consistency
among product repository models. The second prolskmbe completed as follows:
how can we ensure consistency among product reppsitodels?

3 Information systems engineering or enterprise moeling?

Product repository models definition is based orthods of information systems

engineering and on results of enterprise modelifigst, existing means to ensure
interoperability among product repository modeks presented. Then, an overview of
existing methods for product repository modelingiigen.

3.1 Information systems engineering and enterprismodeling

Product repository objective is to manage inforomatielated to products (cf. §2).
Thus, product repository is an information systeamponent of the company. Vari-
ous time-tested methods of information systemsregging have been defined [9].
Most of these methods propose models adapted lasa of problems by integrating
functional, structural and behavioral aspects fiéld of study.

Identified problems in this paper relate to comsisy among models, so Model
Driven Engineering (MDE) [8], [10], [11] is partitarly interesting. Models are more
and more numerous and complex. MDE formalizes nwdptl transformation rules.
MDE objectives are to get a better understandinghefinformation system and to
capitalize information system design knowledge.dboso, transformations between
two models are done using model transformationdagg (ATL, ATLAS Transfor-
mation Language, for example) rather than programgnénguage (Java for exam-
ple). Therefore, MDE provide us a well-suited stuwe to address identified prob-
lems.

For each product lifecycle stage, one product rigpysmodel is defined in order
to meet the stakeholder needs. Interactions amumgroduct repository models can
be defined basing on results of enterprise moddli@ Three major trends exist to
ensure interoperability among models [13]. Firs#pecific enterprise architecture
frameworks (for example, GERAM, Zachman, etc.) mefielationships among mod-
els. Secondly, standards (for example, ISA95, ST&®) define precisely concepts
used in different models and ensure their interaipiéty. Thirdly, unified modeling
languages for enterprise as UEML (Unified Enteisodeling Language) represent
a company through different facets.

Standards are appropriate for exchanging data arfengtakeholders involved in
the product lifecycle in an extended enterprisetexn14]. So, taking them into ac-
count in the modeling framework is essential.

3.2 Existing approaches of product repository modéig

Various methods exist to define product repositorgdels of a company. Some
methods use existing enterprise architecture fraorlesv(Zacham [15]) and some
methods adapt existing frameworks to specific PLdéds (adaptation of GERAM
framework [16]). Others define their own modelimgrhework to meet specific PLM
objectives [17] [18]. Only one proposal [16] refépsa standard.

S. Zina [19] identifies two major ways to match el product representations,
multi-views and multi-model approaches. Existingdeis [2], [16], [17], [18], [20],
[21], [22] are multi-views approaches. These mogetsvzide a unified language to
different “trades”. As a result, a “trade languagg’a restriction of the unified lan-
guage. Every stakeholder builds his own productesgntation with symbols and
syntax available for him. However, in an extendategprise context, product repre-
sentations are spread among organizations. Forpggamcompany defines the func-
tional and “as designed” product representatioisssuipplier defines the "as planned
to be built" representation and records propedfgshysical products. In this context,

the adoption of a single unified language by aksholders working on a product is
difficult. Moreover, unification involves the integfion of all particularities in a
"common mold" and this can cause ambiguities. kample, the word “item” can be
used to describe an organ of the product desigmedw material and a spare part.
This can be source of confusion: when someone thsesvord “item”, what is he
talking about?

So, firstly, unified models have limitations andidibacks to support collaboration
among stakeholders from several trades. Secondhpoped unified models do not
use standards that ensure interoperability intcetttended enterprise. Thus, the next
paragraph presents an appropriate framework teeaddhese issues.

4 Modeling framework for the product repository

Product repository aggregates several trade moHeglsting unified languages have
limitations. In this paragraph, a modeling framekvdrased on the ambivalence
paradigm is presented to address the identifiagessécf. § 2). First, the paradigm and
the framework are introduced. Then, their uselistitated through the example of
two trade product Bills Of Materials.

4.1 The ambivalence paradigm and the modeling franveork

Ambivalence is the state of existing in two wayshwiit ambiguity or opposition.
The ambivalence paradigm considers that a representation can have several
interpretations (problem 1). This paradigm congdalso that an object can have
several representations (problem 2).

Identifying correspondences among entities of ‘#radanguages” avoid
interpretation ambiguities (problem 1). These cpomdences prevent also
contradictions among product representations (praii).

Two ways exist to define correspondences betwedtiesnof two languages. In
the first way, an interpreter translates a repradem built in the source language
into a representation built in the target langudgehis case, every stakeholder takes
only into account his own language. The interpraetasters source and target
languages. In the second way, the translationasiged by a common language. In
this case, every stakeholder translates his reptasens into the common language.

Modeling framework must be able to manage these weys. Indeed, the
framework has to ensure transformation between rakvestage models.
Correspondences between entities of two “tradeuagegs” have to be managed. In an
extended enterprise context, common languagessackfor exchanging data. So, the
framework has to be able to manage corresponddigtesen “trade language” and
common language entities.

In order to build this framework, the first stepte identify the entities of the
languages and the “trade” rules of consistencys@<ade” rules are specific to the
company. Rules can be generic, for example: a capmtoof theproduct planned to
be built BOMcan not be in a state “released” if the correspapdomponent into the

product designed BON& not in the state “released”. Rules can be a#s9 specific
to the company’s products. The second step isdatify correspondences between
languages, that is to say correspondences betweenbuwlaries, syntaxes and
semantics. The third step is to formalize metan®ddlthe “trade” and common
languages. The entities of the metamodels musthbesen in order to be able to
implement the identified “trade” rules into the dnfnation System. The fourth step is
to formalize correspondences into transformatiolesrubetween metamodels (cf.
Figure 4). Finally, the framework is done and indze used. The formalization of
transformation rules among metamodels helps inskaéing a “trade model” into
another “trade model”.

« X » : other trade or standard

« Trade A »

transformation

| metamodel A | | metamodel X |
model

| language A | M | language X |

Model A of the enterprise Model X of the enterprise
product repository product repository

Fig. 4. Operational framework based on modeling languages

Using the same approach, formalization of transédion rules between models helps
in translating a “trade representation” into anotlizade representation”. This
formalization also helps in verifying that severapresentations describe the same
product.

The framework is specific to each company. It canirbplemented with a feder-
erated architecture. Relationships between diffeteformation System softwares
(PDM, ERP...) can be done througth a MDE plateforniEeakpse [23]. Eclipse can
be used to transform one product representaticatentewith a software “A” into an
other product representation able to be used loftavare “B” or into a “standard”
STEP representation [23]. On this platform, XML {&nxsible Markup Language) is
the format used for import and export and ATL ie thnguage used to define the
transformation rules.

4.2 An example: correspondences between languagdites of two BOM

In the introduction, two “trade” ways to describ@mduct structure were presented.
The first one was th&product designed BOM”This BOM meets functional needs
and it is composed of functional assemblies, stahdamponents and components.
This product definition is usually managed into RMP (Product Data Management)
software. The second one was tipeoduct planned to be built BOM"This BOM

meets manufacturing, purchasing and workshop magaggeds and it is composed

of purchased components and assemblies, manufdatoraponents and assemblies
(in semi-finished or finished states) and raw mater This product definition is usu-
ally managed into an ERP (Enterprise Resource Righaoftware.

Correspondences to avoid ambiguities (problem 1)lo avoid ambiguity into the
product repository, synonymies and polysemies amgyrgbols of two trade lan-
guages have to be eliminated. Using a specific syifMocabulary) for each specific
concept avoids confusion. For example, a functi@ssembly and a manufactured
assembly do not have the sassmantic Specifying the symbol “assembly” adding
the qualifiers “functional” and “manufactured” adsi confusion. Adapting ERP
software data model is difficult. So specific syrshdifferent from ERP ones have to
be implemented into PDM software data model.

Correspondences to avoid contradictions between regements (problem 2).The
“product designed BOM'and the"product planned to be built BOMhave to repre-
sent the same finish product. Thus, correspondeimaes to be defined between or-
gans, hierarchic relationships and quantities. @hmsrespondences are used in two
ways. The first one is teupport the process design. For example, associations be-
tween generic “product designed” and generic “pse@nd associate product planned
to be built” can be don&his support can be implemented creating speaifigsrinto
tools as MPM (Manufacturing Process Managementivsoé. The second one is to
verify that the new built representation does not hayecantradiction with the exist-
ing product representations. This verification ¢e@ndone reworking and comparing
BOM structures with specific algorithms. The tranafiations rules can be based on
vocabulary, on semantic and on syntax of the laggsiaPossible associations (and
associated cardinalities) between entities of &imgliage describe rules based on syn-
tax. Syntax rules can also be described literally.

Examples of transformation rules.The first example concerns “support” correspon-
dences between organs based on vocabudagyry standard component of thgrtd-
uct designed BOM corresponds to a purchased component into thgroduct
planned to be built BOM. An import program can create BOM into ERP databas
basing on a PDM export file. In such a case, idiedtirule can be implemented into
the import program.

The second example concerns “support” correspordebetween hierarchic rela-
tionships and quantities based on syntax rulesritbestliterally. In this example, the
“product planned to be built BOM is defined using a copy of tHgroduct de-
signed BOM and reworking it. One transformation rule can bethe “product
planned to be built BON if a relationship with a quantityy of componenX is re-
moved, others relationships must be created or figodio ensure that this quantity
of componenK is preservedThis rule can be implemented into a MPM softwiare
example.

The third example concerns “verification” corresgences between hierarchic re-
lationships and quantities based on syntaxic rdescribed literallyif there aren

times the elementary componehin the “product designed BON) there must ben
times this elementary componéhin the “ product planned to be built BOKA

5 Conclusions and future work

Embracing Product Lifecycle Management approaclolires integrating a product
repository in the information system. This repasitonanages consistency among
product representations used during the prodwstyifle. Identifying and implement-
ing consistency «trade» rules ensure this consigtel modeling framework based
on ambivalence paradigm and on model driven engimp€éMDE) has been defined.
Recent works [23-24] show that MDE approach seaniseta key factor to ensure
product representations interoperability.

MDE provides mechanisms to implement consisten@dé” rules for vocabulary
and syntax among several “trade languages”. To t@mgthe framework, our work is
now focused on formalization of semantic relatiopstamong “trade languages” by
using ontologies and conceptual graphs.

Acknowledgements. The authors would like to thank Thesame, the Hrenc
Competitiveness Cluster “Arve Industries Haute-$awdont-Blanc” and the General
Councils of Savoie and Haute-Savoie for suppotttigresearch.

References

1. Stark, J.: Product Lifecycle Management: 21situy paradigm for product realisation.
Springer (2005)

2. Sudarsan, R., Fenves, S. J., Sriram, R. D., WangA product information modeling
framework for product lifecycle management. Computieled Design. 37, 1399-1411
(2005)

3. Ameri, F., Dutta, D.: Product Lifecycle ManagereClosing the Knowledge Loops.
Computer-Aided Design & Applications. 2, 577-590q2D

4. Terzi, S., Ball, P.D., Bouras, A., Dutta, D., Gay&l., Gurumoorthy, B., Han, S., Kiritsis,
D.: A new point of view on Product Lifecycle Managent. In: Proceedings of the 5th In-
ternational Conference on Product Lifecycle Manager@&M'08, pp. 497-528 (2008)

5. Saaksvuori, A., Immonen, A.: Product Lifecycleahhgement, 3rd Edition. Springer
(2008)

6. Bézivin, J., Jouault, F., Rosenthal, P., Valdyre.: Modeling in the Large and Modeling
in the Small. In: ABmann, U., Aksit, M., Rensink, ¢£ds.) MDAFA 2003/2004. LNCS,
vol. 3599, pp. 33—46. Springer, Verlag Berlin Helidzh (2005)

7. Bézivin, J., Gerbé, O.: Towards a Precise Définibf the OMG/MDA Framework. In:
Proceedings of the 16th Annual International Comfeeeon Automated Software Engi-
neering, San Diego, pp. 273-280 (2001)

8. Favre, J.M.: Towards a Basic Theory to Model ®lddriven Engineering. In: Workshop
on Software Model Engineering, joint event with URQI04, Lisboa (2004)

9. Cauvet, C., Rosenthal-Saboux, C.: Ingénierie de®ses d’information. Ed. Hermés
french(2001)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Caplat, G., Sourouille, J.L.: Considerations aladel Mapping. In: Workshop in Soft-
ware Model Engineering, San Francisco (2003)

OMG: MDA Guide Version 1.0.1. Available ahttp://ww ong. org/ cgi -

bi n/ doc?ony/ 03- 06- 01 (2003)

Bernus, P., Nemes, L., Schmidt, G.: Handboolemterprise Architecture, International
Handbooks on Information Systems. Springer (2003)

Vallespir, B., Braesch, C., Chapurlat, V., Cretddi, L'intégration en modélisation
d’entreprise: les chemins d’UEML. In: Proceedinfishe 4th International Conference on
Modeling, Optimization & SIMulation, pp. 140-145¢Ulousein french(2003)

Rachuri, S., Subrahmanian, E., Bouras, A., Ferye Foufou, S., Sriram, R.: Information
sharing and exchange in the context of productyifee management: Role of standards.
Computer-Aided Design. 40(7), 789-800 (2008)

Bacha, R., Yannou, B.: New Approach for Buildimglategrated Information System for
Manufacturing Engineering Departments. In: Procegsliof MIM2000: IFAC Symposium
on Manufacturing, Modeling, Management and Sup&mijsPatras (2000)

Le Duigou, J., Bernard, A., Perry, N.: FramewimkProduct Lifecycle Management inte-
gration in Small and Medium Enterprises Networksmpater-Aided Design and Applica-
tions. 8, 531-544 (2011)

Gzara, L., Rieu, D., Tollenaere, M.: Producbinfation systems engineering: an approach
for building product models by reuse of patternsh®izs and Computer Integrated Manu-
facturing. 19, 239-261 (2003)

Terzi, S., Cassina, J., Panetto, H. : Developmfa metamodel to foster interoperability
along the product lifecycle traceability. In: Predengs of the 1st Conference on Interop-
erability of Enterprise Software and ApplicatioisS@A 2005), Geneva (2005)

Zina, S., Lombard, M., Lossent, L., Henriot, Generic Modeling and Configuration
Management in Product Lifecycle Management. Int@onal Journal of Computers,
Communications & Control. I, 126-138 (2006)

Noél, F., Roucoules, L.: The PPO design model wmispect to digital enterprise technolo-
gies among product life cycle. International JouwwfaComputer Integrated Manufactur-
ing. 21, 139-145 (2008)

Labrousse, M., Bernard, A.: FBS-PPRE, an Entergfisowledge Lifecycle Model. In:
Bernard, A., Tichkiewitch, S.: Methods and tools feffective knowledge life-cycle-
Management. 2, pp. 285-305. Springer (2008)

Matsokis, A., Kiritsis, D.: An ontology-basegpaoach for Product Lifecycle Manage-
ment. Computers in Industry. 61, 787-797 (2010)

Iragi-Houssaini M., Kleiner, M., Roucoules, Model-Based (Mechanical) Product De-
sign. In: Whittle, J., Clark, T., Kilhne T. (eds.) tds 2011. LNCS, vol. 6981, pp. 548—
562. Springer,Verlag Berlin Heidelberg (2011)

Moalla, N., Chettaoui, H., Ouzrout, Y., Noél, Bouras, A.: Model-Driven Architecture to
enhance interoperability between product applicatid®’roceedings of the PLM-SP4, pp.
380-392 (2008)

