Dynkin games in a general framework

Magdalena Kobylanski 1 Marie-Claire Quenez 2, 3 Marc Roger de Campagnolle 2
3 MATHFI - Financial mathematics
Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech, UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12
Abstract : We revisit the Dynkin game problem in a general framework and relax some assumptions. The payoffs and the criterion are expressed in terms of families of random variables indexed by stopping times. We construct two nonnegative supermartingales families $J$ and $J'$ whose finitness is equivalent to the Mokobodski's condition. Under some weak right-regularity assumption on the payoff families, the game is shown to be fair and $J-J'$ is shown to be the common value function. Existence of saddle points is derived under some weak additional assumptions. All the results are written in terms of random variables and are proven by using only classical results of probability theory.
Type de document :
Pré-publication, Document de travail
2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00795370
Contributeur : Magdalena Kobylanski <>
Soumis le : mercredi 14 août 2013 - 13:47:57
Dernière modification le : mardi 11 octobre 2016 - 15:20:33
Document(s) archivé(s) le : mercredi 5 avril 2017 - 20:45:46

Fichiers

jeuxDynkin140813.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00795370, version 2

Citation

Magdalena Kobylanski, Marie-Claire Quenez, Marc Roger de Campagnolle. Dynkin games in a general framework. 2011. <hal-00795370v2>

Partager

Métriques

Consultations de
la notice

311

Téléchargements du document

97