Hybrid finite volume discretization of linear elasticity models on general meshes

Abstract : This paper presents a new discretization scheme for linear elasticity models using only one degree of freedom per face corresponding to the normal component of the displacement. The scheme is based on a piecewise constant gradient construction and a discrete variational formulation for the displacement field. The tangential components of the displacement field are eliminated using a second order linear interpolation. Our main motivation is the coupling of geomechanical models and porous media flows arising in reservoir or CO2 storage simulations. Our scheme guarantees by construction the compatibility condition between the displacement discretization and the usual cell-centered finite volume discretization of the Darcy flow model. In addition it applies on general meshes, possibly non conforming such as Corner Point Geometries commonly used in reservoir and CO2 storage simulations.
Type de document :
Communication dans un congrès
J. Fořt, J. Fürst, J. Halama, R. Herbin, F. Hubert Eds. Finite Volumes for Complex Applications VI Problems & Perspectives, Jun 2011, Prague, Czech Republic. 4, pp.331-339, 2011, Springer Proceedings in Mathematics. 〈10.1007/978-3-642-20671-9_35〉
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00795201
Contributeur : Simon Lemaire <>
Soumis le : mercredi 27 février 2013 - 15:35:59
Dernière modification le : jeudi 20 décembre 2018 - 18:30:11
Document(s) archivé(s) le : dimanche 2 avril 2017 - 06:10:16

Fichier

fvca6_proceeding.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniele Antonio Di Pietro, Robert Eymard, Simon Lemaire, Roland Masson. Hybrid finite volume discretization of linear elasticity models on general meshes. J. Fořt, J. Fürst, J. Halama, R. Herbin, F. Hubert Eds. Finite Volumes for Complex Applications VI Problems & Perspectives, Jun 2011, Prague, Czech Republic. 4, pp.331-339, 2011, Springer Proceedings in Mathematics. 〈10.1007/978-3-642-20671-9_35〉. 〈hal-00795201〉

Partager

Métriques

Consultations de la notice

894

Téléchargements de fichiers

242