Formation control algorithm for a fleet of mobile robots
P. Cartade, R. Lenain, Benoît Thuilot, M. Berducat

To cite this version:
P. Cartade, R. Lenain, Benoît Thuilot, M. Berducat. Formation control algorithm for a fleet of mobile robots. 3rd International Conference on Machine Control & Guidance, Mar 2012, Stuttgart, Germany. p. - p. hal-00795040

HAL Id: hal-00795040
https://hal.archives-ouvertes.fr/hal-00795040
Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Formation control algorithm for a fleet of mobile robots

Pierre Cartade¹, Roland Lenain¹, Benoit Thuilot²,³, Michel Berducat¹
¹Cemagref, 24 avenue des Landais, 63172 Aubière, France
²Clermont université, Université Blaise Pascal, Institut Pascal, BP 10448, 63000 Clermont-Ferrand, France
³CNRS, UMR 6602, Institut Pascal, 63171 Aubière, France

Abstract
The necessity of decreasing the environmental impact of agricultural activities, while preserving the level of production to satisfy growing population demands requires investigation of new production tools. Mobile robots may constitute a promising solution, since autonomous devices may allow increasing production levels, while preserving the environment thanks to their high accuracy. In this paper, the use of several autonomous mobile robots to perform field operation is investigated. In particular, predictive techniques are also proposed to account for delays induced by low-level actuators. Capabilities of the proposed approach are investigated through full scale experiments.

1 INTRODUCTION
The continuous advances in autonomous mobile robot control (concerning both a single robot [4], as well as multi-robots [1], [7]) offer new possibilities in terms of applications for every-day life improvement. For instance, the development of automated multi-robot fleets can benefit to many applications requiring to cover large areas [5], such as surveillance, cleaning, exploration, etc. It is particularly interesting in environmental applications such as farming, where the use of several light robots in the field may permit to reduce environmental impact while preserving the level of production. This constitutes a challenging problem as stated in [2]. Rather than considering numerous small robots, as in swarm robotics [11], a cooperation framework with a limited number of light machines seems preferable when field treatment is addressed: on one hand, some farming operations such as harvesting require quite large machines to achieve tasks properly, and on the other hand, it appears more tractable from a practical point of view (maintenance, monitoring, acceptability, etc). As a consequence, this paper is focused on formation control of several light robots executing operations in field (as illustrated in figure 1), allowing the use of several autonomous entities instead of driving a sole huge vehicle.

Figure 1: Illustration of the application
In the considered applications, a reference path is defined by a leader vehicle, controlled either manually or autonomously. The shape of the formation is not considered as fixed, since the area covering may require a varying formation (tank unload, maneuvers, etc). Several approaches have been proposed for mobile robot formation control [8], [13], but they are mainly dedicated to structured environments. In contrast, the context of the considered tasks requires a high accurate relative positioning of the robots despite the numerous perturbations encountered in natural environment (skidding, terrain irregularities, etc). This is not addressed by classical approaches.

In this paper, an adaptive algorithm for formation control is proposed, relying on a reference trajectory defining a local relative frame. It decouples longitudinal and lateral dynamics with respect to the desired path: the advance of each robot along the reference path can be addressed independently from the regulation of its lateral deviation with respect to this path. Longitudinal control is based on the regulation of curvilinear inter-vehicle distances, while lateral regulation relies on an observer-based adaptive control approach as has been proposed in [14]. The control of the possibly varying formation gathers both control laws, enabling an accurate formation regulation for field operations, independently from the reference path shape and environment properties. In this paper an adaptive and predictive approach is proposed to reduce lateral overshoots occurring along curves and due to delay introduced.

The paper is presented as following. First the model of a robot including bad grip condition is proposed. As soon as sideslip angles are available by observation, this model can be used for control purpose. The adaptive control of each robot is then investigated in section 3. It permits an accurate servoing in steady state but overshoots occur when transient curvature phase due to neglected actuator setting time. To go further a predictive curvature servoing is developed in section 4 constituting the main contribution of this paper. The efficiency of the proposed control law is finally investigated through full scale experiments.

2 MOBILE ROBOT MODELING

The autonomous control of a fleet of mobile robots is considered with respect to a desired path, used as a reference frame for both longitudinal and lateral positioning of each robot. The objective is to ensure an accurate overall motion of the robots in a desired, but potentially varying, configuration along this chosen trajectory.

2.1 Model of a robot formation

The overall control strategy for the robot formation is based on the modeling proposed in Figure 2 (two robots among n are shown). In this representation, each robot is viewed as a bicycle, as in the celebrated Ackermann model, see ([12]). The classical rolling without sliding assumption is not satisfied in a natural environment. As they affect robot dynamics significantly, low grip conditions reduce the path tracking accuracy. In order to account for this specific problem, two sideslip angles are added: β_F and β_R, respectively for front and rear axles. These variables are representative of the difference between the tire orientation and the actual tire speed vector direction. Longitudinal sliding is not here accounted, since in the considered applications, longitudinal guidance accuracy is not as critical as the lateral one.

Based on these assumptions, the notations used in the sequel are depicted in Figure 2 for the ith robot are:

- Γ is the common reference path for each robot defined in an absolute frame (computed
or recorded beforehand).

- \(O_i \) is the center of the \(i \)th mobile robot rear axle. It is the point to be controlled for each robot.
- \(s_i \) is the curvilinear co-ordinate of the closest point from \(O_i \) belonging to \(\Gamma \). It corresponds to the distance covered \(\Gamma \) by robot \(i \).
- \(c(s_i) \) denotes the curvature of path \(\Gamma \) at \(s_i \).
- \(\gamma_i \) is the lateral deviation of robot \(i \) w.r.t. \(\Gamma \).
- \(\delta_i \) is the \(i \)th robot front wheel steering angle.
- \(l \) is the robot wheelbase.
- \(v_i \) is the \(i \)th robot linear velocity at point \(O_i \).
- \(\beta_i^F \) and \(\beta_i^R \) denote the sideslip angles (front and rear) of the \(i \)th robot.

Figure 2: Longitudinal model of a robot fleet

\[\text{Figure 2: Longitudinal model of a robot fleet} \]

2.2 Sideslip angle estimation

As sideslip angles integrated into robot model are hardly measurable directly, their indirect estimation has to be addressed. The observer-based approach detailed in [6] is here implemented. It follows the algorithm described in Figure 3, taking benefit of the duality principle between observation and control.

Figure 3: Observer principle scheme

\[\text{Figure 3: Observer principle scheme} \]

2.3 Model exact linearization for control

Kinematic model has been extended to account for low grip conditions. Nevertheless, it is still consistent with classical kinematic models, such as considered in [12] and [14]. It can consequently be turned into a chained form, enabling then an exact linearization. Both longitudinal and lateral control can then be addressed independently.
MOBILE ROBOT FORMATION CONTROL

To address the control of a fleet of mobile robots in a path tracking context, the relative positioning of each robot with respect to the reference trajectory is achieved and then shared within the fleet via wireless communication. The control of each robot aims then at ensuring convergence to desired set points in terms of curvilinear offset (longitudinal control) and lateral deviation offset (lateral control).

3.1 Longitudinal control law

The objective of longitudinal control is to maintain a desired distance (denoted d) between curvilinear abscissas of successive vehicles. Each robot is controlled with respect to the curvilinear abscissa s_i of the leader. This enables avoidance of an oscillating behavior due to error propagation along the fleet. However, for obvious safety reasons, the distance to the previous vehicle has also to be considered. Therefore, as proposed in [3], a composite error x_i equal to the distance to the leader vehicle e_i^l in the nominal case, and smoothly commuting to the distance to the preceding vehicle e_{i-1}^l when the security distance is approached, is here regulated, see Figure 4. The i^{th} robot linear velocity v_i ensuring that x_i converges to 0, so that each vehicle can be controlled longitudinally, whatever the velocity of the leader.

![Figure 4: Longitudinal control scheme](image)

3.2 Lateral control law

Once longitudinal control has been achieved, the one of the lateral positions can be addressed. In contrast to the classical path tracking problem, where the error is expected to be null, the lateral deviation of each robot in a formation has to converge to a non-null desired set point.

The steering control law of robot i, can be determined using a new variable $y_i^d(s_i)$, representative of its desired lateral deviation. The variable y_i^d permits definition of their lateral positions with respect to the global formation motion. Longitudinal and lateral relative positions of each robot can then be specified in the reference trajectory frame independently.

The set point y_i^d has to be constructed to regulate a desired formation, in order to achieve a multi-robot task. A first mode consists in taking $y_i^d(s_i) = d_i^p$, with d_i^p a constant chosen w.r.t. implement widths. It is completely satisfactory as long as vehicles are never side-by-side.

In contrast, when robots have to work side-by-side we propose the following definition of $y_i^d(s_i)$

$$y_i^d(s_i) = d_i^p + \sigma(y_{i-1})[y_{i-1} - d_{i-1}^p]$$

where σ is the smooth commutation function shown in Figure 5. Thus Robot i reproduces robot $i - 1$ deviation, if the latter exceeds a pre-specified threshold. Such a
behavior permit to keep the formation when an important deviation is recorded while preserving the global formation free oscillating behavior.

![Figure 5 : Shape of commutation function](image)

4 PREDICTIVE CONTROL

When a vehicle enters a curve we observe transient overshoots in lateral deviations. They are mainly due to delays induced by low-level actuators, the delays depending of intrinsic properties of the actuators. To reduce such overshoots, we use predictive techniques. More precisely, assuming that the overshoots are only generated by delays of the actuators in response to fast variations of the curvature, a predictive algorithm is designed, focused on the part of the control law linked to the curvature of the path.

4.1 Splitting the control law

In this purpose the control law of each robot can be split into additive terms:

\[
\delta_i = \delta_{i_{\text{Traj}}} + \delta_{i_{\text{Deviation}}}
\]

with
\[
\begin{align*}
\delta_{i_{\text{Traj}}} &= \arctan(u_i) \\
\delta_{i_{\text{Deviation}}} &= \arctan\left(\frac{\psi_i}{1 + u_i \psi_i + u_i^2}\right) - \beta_i^p
\end{align*}
\]

The first term (\(\delta_{i_{\text{Traj}}}\)) ensure the convergence of robots curvature to the reference path curvature. As the reference path curvature (or leader path) is known, the curvature variable can be anticipated. The second term (\(\delta_{i_{\text{Deviation}}}\)) cannot be used in the predictive algorithm since the sliding and the resulting deviations are unpredictable phenomena.

4.2 Identification of the low-level dynamics

We propose a simplified model omitting the inertial phenomena. In this case, the low-level process that controls the orientation of the wheels can be considered as a second order process. Its properties can be defined by identifying the response to a step function of the steering angle. The instruction sent to the front wheel at instant \(n\) denoted by \(\delta_{i[n]}^C\) and the real steering angle denoted \(\delta_{i[n]}^R\) are linked by the following state equations

\[
\begin{cases}
X_{[n]}^\delta = FX_{[n-1]}^\delta + K\delta_{[n-1]}^C \\
y_{[n]}^\delta = CY_{[n]}^\delta
\end{cases}
\]

with \(X_{[n]}^\delta = \left[\begin{array}{c} \delta_{[n]}^R \\ \delta_{[n-1]}^R \\ \delta_{[n]}^C \\ \delta_{[n-1]}^C \end{array} \right], C=\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, F\) is a 3×3 matrix and \(K\) is a 3×1 matrix.
The matrices F and K depend on the sample time and the response of the low-level to the step function of the steering angle.

4.3 Servoing of the curvature by model predictive control

We will use the following notations. For each instant n we choose a predictive horizon that in our case is an integer n_H corresponding to the total number of iterations needing to be performed in the future (corresponding to low level settling time). We denote by δ^{Obj} the future instruction we want to reach, which is defined by

$$\delta^{Obj}_{[n+j]} = \arctan(Lc(s(n + j))) \quad (\text{for each } j \in [0, n_H])$$

Where $s(n + j)$ is the predicted curvilinear abscissa deducted from the robot velocity and

$$\delta^{ref}_{[n+j]} = \delta^{Obj}_{[n+j]} - \gamma \left[\delta^{Obj}_{[n]} - \delta^{ref}_{[n]} \right].$$

which is the desired behaviour for the steering angle. $\gamma \in [0,1]$ determine the shape of this desired behaviour.

4.3.1 Design of the predictive control law

In order to build a predictive control, the future control law at the instant $n+j$ ($0 \leq j \leq n_H$) is defined as a linear combination of basis functions. They are denoted by

$$\left(\delta^{C}_{B_k} \right) \quad (1 \leq k \leq n_B)$$

In this paper we choose a basis of polynomial function:

$$\delta^{C}_{B_k}(j) = j^{k-1}$$

with the convention $0^0=1$.

The generic control is then a linear combination of the basis function $\delta^{C}_j = \sum_{k=1}^{n_H} \gamma_k \delta^{C}_{B_k}(j)$. The objective is then to find coefficients γ_k which minimizes the difference between desired behaviour and predicted evolution of steering angle.

4.3.2 Final control law

The result of the minimization process constitute the predictive term of the control law:

$$\delta^{pred}_{Traj} = \left[\sum_{j=0}^{n_H} \left(\delta^{C}_{B_k}(j) \delta^{B}_{R}(j)^T \right) \right]^{-1} \left[\sum_{j=0}^{n_H} \left(d(n + j) \delta^{B}_{R}(j) \right) \right]^T \delta^{C}_{B}(0)$$

where

$$d(n + j) = \delta^{ref}_{[n+j]} - C F^j X^{\gamma}_{[n]}.$$

This control low attached to curvature servoing is computed from the minimization of the quadratic function

$$D(n) = \sum_{j=0}^{n_H} \left(\mu(n)^T \delta^{B}_{R}(j) - d(n + j) \right)^2.$$

Finally the control to be applied is the sum of the reactive term (unchanged) and the predictive curvature servoing such as:

$$\delta_{t=\delta^{pred}_{Traj} + \delta_{lDeviation}}$$
5 EXPERIMENTAL RESULTS

5.1 Experimental setup
The electric off-road vehicles depicted in figure 7 are used as an experimental platform. On this picture the leader is RobuFAST and the follower is named Arocco, they are designed for mobility and they can climb slopes up to 45°.

<table>
<thead>
<tr>
<th>Robots</th>
<th>RobuFAST</th>
<th>Arocco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass</td>
<td>(m = 350 , \text{kg})</td>
<td>(m = 620 , \text{kg})</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>(L = 1.2 , \text{m})</td>
<td>(L = 1.2 , \text{m})</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>(8 , \text{m s}^{-1})</td>
<td>(4 , \text{m s}^{-1})</td>
</tr>
</tbody>
</table>

Table 1: Main parameters of experimental robots

The main exteroceptive sensor on-board on the two robots is a RTK-GPS receiver, which supplies absolute position measurement with an accuracy of 2 cm at a 10 Hz sampling frequency. The communications between vehicles are made by WiFi communication.

Figure 7: Experimental platform

5.2 Path tracking results
The experiments for the algorithm’s validation consist in following the path depicted on figure 8. This path has been recorded beforehand, when the robot was steered manually at 1 m s\(^{-1}\). It is composed of two straight lines and a turn; half the trajectory is on a sloping ground and the other on a level ground. On figure 9 and 10 one iteration corresponds to 0.1 s.
The leader moves at 2 m s\(^{-1}\), and has to follow the reference trajectory. The follower has to maintain a lateral distance of 1 m and a longitudinal distance of 10 m with the leader. As regards the lateral error on figure 9 we can consider the objective is achieved, as it can be seen that after an initializing phase (after iteration 250) the lateral error does not exceed 20 cm with respect to desired deviations: 0 m for the leader and 1 m for the follower. An overshoot can be observed at iterations 400 and 450 (resp. for the leader and the follower) corresponding to a motion through a bump (slope to flat ground part). This indeed generates a roll motion explaining the variation in lateral error (GPS antennas are placed in the top of robots, see figure 7), which does not correspond to an actual robot motion. Despite this perturbation, the control algorithm stays stable, and provides a level accuracy compatible with actual field operations.
Figure 10: Longitudinal distance and velocity of robots

Figure 10 shows a comparison plot of velocity of robots and longitudinal distance. It can be seen at the start a 2m longitudinal error and at the end another one of more than 3 m. It can be explained by the long time the follower requires to accelerate at the beginning and decelerate at the end. Moreover we note that the longitudinal distance oscillates when robots take the turn and when they reach the flat ground. These inaccuracies occur when fast speed variations are required. Nevertheless, during steady state period, the curvilinear distance between robots is well regulated on the desired value of 10m.

6 CONCLUSION AND FUTURE WORKS

This paper proposes an algorithm for the accurate control of a mobile robot formation moving off-road. This approach considers the formation control as the combination of (i) a platooning control and (ii) an extension of the path tracking problem to a non-null lateral deviation regulation. As a result, the control of each vehicle is decomposed into longitudinal and lateral control with respect to a reference path. An adaptive control strategy is designed. It allows to take into account for low grip conditions, as well as other phenomena encountered off-road and depreciating the accuracy when using classical algorithms. In addition, a predictive curvature servoing has been designed in order to anticipate for overshoots, due to steering actuator settling time. The relative positioning of each robot with respect to a possibly varying formation can then be regulated, with a few centimeter accuracy, whatever the shape of the reference trajectory and the grip conditions. The efficiency of the approach has been tested through actual experiments with two off-road mobile robots.

In addition, the proposed strategy is focused on the regulation of a formation with respect to a reference trajectory supplied beforehand. Such an algorithm has now to be extended in order to manage automatically the formation (modification of the formation at the end of the field in order to operate an U-turn, mobile robot entering/leaving the fleet, leader manually controlled, obstacle avoidance, etc). In order to improve longitudinal regulation with respect to follower acceleration performances, a predictive step is under development to anticipate for leader fast speed variation.
References

