Hörmander Functional Calculus for Poisson Estimates

Abstract : The aim of the article is to show a Hörmander spectral multiplier theorem for an operator $A$ whose kernel of the semigroup $\exp(-zA)$ satisfies certain Poisson estimates for complex times $z.$ Here $\exp(-zA)$ acts on $L^p(\Omega),\,1 < p < \infty,$ where $\Omega$ is a space of homogeneous type with the additional condition that the measure of annuli is controlled. In most of the known Hörmander type theorems in the literature, Gaussian bounds and self-adjointness for the semigroup are needed, whereas here the new feature is that the assumptions are the to some extend weaker Poisson bounds, and $\HI$ calculus in place of self-adjointness. The order of derivation in our Hörmander multiplier result is typically $\frac{d}{2},$ $d$ being the dimension of the space $\Omega.$ Moreover the functional calculus resulting from our Hörmander theorem is shown to be $R$-bounded. Finally, the result is applied to some examples.
Type de document :
Pré-publication, Document de travail
The manuscript has undergone several substantial improvements. The main result (Theorem 3.2 and C.. 2014
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00794258
Contributeur : Christoph Kriegler <>
Soumis le : mercredi 9 avril 2014 - 13:02:37
Dernière modification le : mercredi 9 avril 2014 - 19:17:22
Document(s) archivé(s) le : mercredi 9 juillet 2014 - 11:35:14

Fichiers

Poisson.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00794258, version 2
  • ARXIV : 1302.6104

Collections

Citation

Christoph Kriegler. Hörmander Functional Calculus for Poisson Estimates. The manuscript has undergone several substantial improvements. The main result (Theorem 3.2 and C.. 2014. <hal-00794258v2>

Partager

Métriques

Consultations de
la notice

182

Téléchargements du document

132