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Abstract

The Bending-Gradient plate theory originally presented in [1] is applied to cellular sandwich panels. This theory
is the extension of Reissner-Mindlin theory to heterogeneous plates. Its application clarifies common assumptions
made in sandwich theory. It also enables to define a direct homogenization scheme for deriving the shear forces
stiffness of sandwich panels. Finally, the conventional bounds used for estimating sandwich panels stiffnesses are
justified. To cite this article: Arthur Lebée, Karam Sab, C. R. Mecanique ?? (201?).

Key words: Plate theory; Sandwich panels ; Homogenization ; Periodic plates ; Higher-order models ; Periodic plates

1. Introduction

Sandwich panels are well known for their structural efficiency. They are made of a light and thick
core which is glued between two stiff skins. Usually the skins are quite dense and made of material with
high mechanical properties whereas the core is lighter and achieves a compromise between weight and
mechanical properties. Many types of core are currently used and the field is still innovative today. One
can distinguish two main categories: homogeneous cores (including foams) and cellular cores such as
honeycomb, truss cores [2] and folded cores [3]. It is commonly accepted that mainly the skins contribute
to the flexural stiffness and that the core mostly affects the shear forces stiffness of the sandwich panel.
This is because the skins are put under traction and compression and the core is not really loaded when
bending the sandwich panel; whereas most of the transverse shear related to shear forces is carried by the
core since the skins are thin. In this very simple analysis, two assumptions lie: a contrast assumption (the
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skins are “much stiffer” than the core) and a “thin skins” assumption. It turns out that going further than
this very intuitive description raised a certain amount of difficulties especially regarding the transverse
shear behavior of cellular sandwich panels. Though, the shear deflection cannot be neglected in sandwich
panel design because the core is rather soft and an accurate knowledge of the shear forces stiffness is
necessary.
Thorough reviews of the mechanical behavior of sandwich panels already exist [4, 5, 6]. A large variety

of models was suggested in order to provide satisfying description of their complex behavior. The simplest
one is Reissner-Mindlin model [7, 8] which simply takes into account deflection related to transverse shear.
This model requires the derivation of the shear forces stiffness tensor 1 F

∼

= (Fαβ) which links the shear
forces Q

−

= (Qα) to the shear strain γ
−

= (γα) through the constitutive equation: Q
−

= F
∼

· γ
−

. Because

the derivation of the shear forces stiffness tensor in terms of the local constitutive elastic properties
is not fully consensual, Reissner-Mindlin model applied to sandwich panels is not completely accepted.
Recently Lebée and Sab [1] and [9] derived a new plate model, the Bending-Gradient plate model. It is
the extension of the classical Reissner-Mindlin model to heterogeneous plates. In this paper, we apply the
Bending-Gradient plate theory to a sandwich panel in order to put into perspective previous work and
provide efficient tools for estimating the shear forces stiffness of cellular sandwich panels.
The paper is organized as follows. First, a non-exhaustive bibliography is provided in order to point out

several difficulties encountered when deriving sandwich panels shear forces stiffness (Section 2). Then, the
Bending-Gradient plate theory and its homogenization scheme are briefly summarized in Section 3. This
scheme is separated in two steps. First the Kirchhoff-Love stiffnesses are derived and then the transverse
shear behavior of the plate is determined. Thus, in Section 4, the in-plane behavior of sandwich panels is
derived and the contrast assumption is introduced. Then, in Section 5, the application of the transverse
shear auxiliary problem reveals that the actual shear behavior of a sandwich panel under the contrast
assumption is a Reissner-Mindlin one. This enables the justification of already known bounds for the
shear forces stiffness. Finally, a discussion on the assumptions commonly made with sandwich panels is
provided in Section 6.

2. Questions raised by sandwich panels shear forces stiffness

We consider sandwich panels made of two identical and homogeneous skins of thickness ts and a core
of thickness tc which can be either homogeneous or periodically heterogeneous (Figure 1). The overall
thickness of the sandwich panel is h = tc+2ts. The present analysis is done in the framework of linearized
elasticity. The sandwich panel reference frame is (ê

−1
, ê
−2

, ê
−3

) where ê
−3

is the out-of-plane direction and
ŷ
−

= (y1, y2, y3) denotes the local coordinates of the unit-cell. The skins 3D elasticity stiffness tensor is

Ĉ
∼
∼

s
=
(

Csijkl

)

and the core stiffness is Ĉ
∼
∼

c
(ŷ
−

). We assume also that the skins and the core constitutive

material (when the latter is homogeneous) follows a local symmetry with respect to (y1, y2) plane (Cα333 =

Cαβγ3 = 0, monoclinic symmetry). The transverse shear stiffness tensor writes then as: G
∼

s =
(

Gsαβ

)

=
(

Csα3β3

)

and G
∼

c =
(

Gcαβ

)

=
(

Ccα3β3

)

.

Two additional assumptions are commonly made when considering sandwich panels. First, a contrast
assumption enables to neglect the contribution of the core to the bending stiffness. It is often formulated
as: tcG

c ≪ tsE
s (E denotes Young modulus) in the case of homogeneous core and isotropic materials

1. Greek indices α, β, γ = 1, 2 denote 2D tensors and Latin indices i, j, k = 1, 2, 3 denote 3D tensors. Einstein convention
on indices summation is used. When tensor notation is used, the character is bold and •̂ is added when it is a 3D tensor
otherwise it is a 2D tensor.
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Figure 1. Cellular sandwich panel unit-cell

(i.e. Gcαβ = Gcδαβ where δαβ is Kronecker’s symbol). The second assumption is that the thickness of
the skins is very small with respect to the thickness of the core so that the contribution of the skins
to the overall shear forces stiffness can be neglected: ts ≪ tc. Actually, this may be antagonistic with
the contrast assumption and many authors tried to relax this assumption as will be illustrated in the
following.

2.1. The case of homogeneous cores

The concept of sandwich panel is rather old but most of the theoretical work started with the sandwich
panel including balsa core used in the De Havilland Mosquito. Several contributions emerged just after
the second world war (see [4] for details) but the simplest suggestion came from Reissner [10] for isotropic
sandwich panel who assumed both tcG

c ≪ tsE
s and ts ≪ tc:

Fαβ = tcG
cδαβ

Later, Reissner [11] assumed uniform shear strain in the core and rigid skins. He also chose ad hoc bounds
for integration through the thickness and obtained:

F
∼

= (tc + ts)G
∼

c =

(

1 +
ts
tc

)

tcG
∼

c

This formula is still used in practice today [12]. Allen [4] based on previous work used the same kinematic
assumptions without changing the integration through the thickness and suggested:

F
∼

=
(tc + ts)

2

tc
G
∼

c ≈

(

1 + 2
ts
tc

)

tcG
∼

c

Additionally, Kelsey et al. [13] suggested, with neither justification nor reference found by the authors,
the following shear forces stiffness:

F
∼

=
tc
k2s

G
∼

c ≈

(

1 + 2
ts
tc

)

tcG
∼

c, where ks =
3

2

tc(h
2 − t2c)

h3 − t3c
(1)

All these suggestions can be written as F
∼

= ASG
∼

c where AS is similar to the shear area for beams.
When ts = 0, AS = tc in all cases. It seems that when ts is not negligible the authors tried to take into
account the larger “lever effect” of the skins on the core (the centroids distance between skins is tc + ts).
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However, the formulas are not fully consistent at first order.
Since only G

∼

c is involved in these formulas, the denomination “transverse shear stiffness” for F
∼

is
rather common with sandwich panels. Because sandwich panels are heterogeneous, this simplification is
actually meaningless and even sometimes misleading. In the present work, a clear distinction is made
between the transverse shear stiffness G

∼

which refers to a local property of the constitutive material and
the shear forces stiffness F

∼

which refers to the structural stiffness: Q
−

= F
∼

· γ
−

. This remark leads to the

question of the contribution of the skins to the shear forces stiffness. Is it only the geometrical effect of
the centroid or should G

∼

s be part of the definition of F
∼

?
Actually, sandwich panels with homogeneous core can be considered as a simpler case of laminated

plates. These plates are usually made of highly anisotropic layers and a large literature is dedicated to
their complex transverse shear behavior [14, 15, 16, 17]. Consequently, some apply directly the simplest
related theory (First Order Shear Deformation Theory) and assume uniform shear strain in both core
and skins with a shear correction factor taken as 1. This leads to: F

∼

= tcG
∼

c + 2tsG
∼

s [18, 19]. Here, the
stiffness of the skins affects the shear forces stiffness. Clearly this suggestion is not satisfying because when
G
∼

c becomes really small, one would expect the shear forces stiffness going to 0 since a sandwich panel
without core is not a structure. Rigorously, applying FOSDT necessitates the derivation of shear correction
factors. However the derivation of such factors seems still under question. For instance Birman and Bert
[20] compared several approaches which give almost incompatible results especially when considering limit
cases. Thus, if one wants to apply FOSDT, some clarifications are needed.
We conclude that, the contribution of the skins to the shear forces stiffness is controversial in the case

of homogeneous cores.

2.2. The case of cellular cores

When dealing with cellular sandwich panels, the most common approach consists in finding a homog-
enized behavior for the core and using it in the formulas discussed in the previous section. Forgetting
about the difficulties already pointed out, the question is now to find G

∼

c,eff the effective transverse shear
stiffness of the core. A first guess is to use classical results from 3D homogenization of a periodic medium
([21] among others). This may be possible for honeycomb cores but more complex geometries such as
truss or folded cores are not periodic in Direction 3. Thus, alternative approaches are needed.
Based on the intuition that the skins put the core into transverse shear because of their relative in-

plane displacement Kelsey et al. [13] suggested to apply uniform displacement (resp. force) on the core
replacing the action of the skins, in order to derive an upper (resp. lower) bound of the transverse shear
stiffness of the core. This effective stiffness for the core, combined with Equation 1 leads to the shear
forces stiffness. Although it is not fully justified (or lacking references), this method was broadly applied
on honeycomb-like geometries ([22, 23, 24] among others). It was found rather efficient and even enabled
the derivation of exact solutions in some configurations. However, for other core geometries, this approach
yields loose bounds because it precludes any possible interaction between the skins and the core.
Two phenomena were identified and often mixed under the name of “skin effect”. First, there is a

kinematic incompatibility between the rigid skins and the strain in the core. Second, the skins can be
distorted by the core.
The kinematic incompatibility was first considered by Penzien and Didriksson [25]. Later, Grediac [26]

derived the bounds using finite elements releasing the assumption of piecewise uniform fields in the cellular
core. It was also followed by several authors who gave a more detailed analysis of the incompatibility
[27, 28, 29]. However, these works are specifically tailored for honeycomb geometries and assume fully
rigid skins. Hence, they do not consider the out-of-plane skins distortion.
The skins distortion was pointed out in several works [30, 31, 32, 33] and is the main cause of a poor
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estimation of shear forces stiffness even when refining the bounds from Kelsey et al. [13]. In order to take
into account this effect, two suggestions were made.
First, comparison with the full 3D model of the sandwich panel under cylindrical bending were per-

formed [31, 34] and shear force stiffness was chosen to fit the plate model to the full simulation. The
merit of such an approach is that it takes the problem as a whole and there is no surrogate for the core.
However, it presents several limitations, the first being the high computational cost. There is also an
arbitrary choice for the plate boundary problem to be solved (here a cylindrical bending).
Second, homogenization approaches were suggested. First, Shi and Tong [30] suggested to apply a

uniform transverse shear strain on average in the core (as done in periodic homogenization schemes) to
which are welded the skins. This enabled them to bring out the skins own flexural stiffness influence
on the actual shear forces stiffness of honeycombs. Their approach was applied to several honeycomb
geometries by Hohe [35] who calls it the direct homogenization method. Even if this approach is based on
an acute intuition of the influence of the skins on the core, it remains limited to sandwich panel with thin
skins and no theoretical justification was provided. Finally, Cecchi and Sab [36] suggested an extension to
periodic plates of the method from Whitney [37] for deriving transverse shear distribution for laminated
plates. This method is valid for any type of periodic plate (not only sandwich panels) and assumes that
the plate is in cylindrical bending configuration when identifying shear forces stiffness. In a recent work
from Lebée and Sab [1], it was demonstrated that this last assumption is too restrictive when dealing
with heterogeneous plates such as laminated plates and that it is necessary to use a new general plate
model: the Bending-Gradient model.
The Bending-Gradient theory was applied to a sandwich panel including a folded core in Lebée and Sab

[33]. It turned out that the transverse shear behavior of the plate was mostly of Reissner-Mindlin type
for a wide variety of configurations. The Bending-Gradient theory is a rather complex homogenization
scheme to implement (see next section). Hence, starting from this theory, it is interesting to look for
a simpler and direct homogenization scheme dedicated to sandwich panel which leads to the classical
Reissner-Mindlin model.

3. The Bending-Gradient model and its homogenization scheme

Full details about the Bending-Gradient plate theory are provided in [1, 33, 38]. In this section we
recall the main features of this plate theory and the related homogenization scheme.

3.1. Summary of the Bending-Gradient plate model

We consider a linear elastic plate which mid-plane is the 2D domain ω ⊂ R
2. Cartesian coordinates

(x1, x2, x3) in the reference frame (ê
−1

, ê
−2

, ê
−3

) are used to describe macroscopic fields. At this stage, the
microstructure of the plate is not specified.
The membrane stress Nαβ, the bending moment Mαβ , and shear forces Qα are the usual generalized

stresses for plates. Both N
∼

and M
∼

follow the classical symmetry of stress tensors: Nαβ = Nβα. Moreover,
we introduce an additional static unknown: the gradient of the bending moment Rαβγ = Mαβ,γ. The 2D
third-order tensor R

⌢
complies with the following symmetry: Rαβγ = Rβαγ . It is possible to derive shear

forces Q
−

from R
⌢

with: Qα = Rαββ . This rewrites Q
−

= i
∼
∼

∴R
⌢

where the triple contraction product ∴ is

defined as iαβγδRδγβ and i
∼
∼

is the identity for in-plane elasticity tensors (iαβγδ =
1
2 (δαγδβδ + δαδδβγ)).

The main difference between Reissner-Mindlin and Bending-Gradient plate theories is that the Bending-
Gradient plate theory enables the distinction between each component of the gradient of the bending
moment whereas they are mixed into the shear forces with Reissner-Mindlin theory. In the case of highly

5



anisotropic laminated plates this distinction is critical for deriving good estimate of the deflection and
local transverse shear distribution through the thickness [38].
The full bending gradient R

⌢
has six components whereas Q

−

has two components. Thus, using the full

bending gradient as static unknown introduces four additional static unknowns. More precisely: R111 and
R222 are respectively the cylindrical bending part of shear forcesQ1 andQ2, R121 andR122 are respectively
the torsion part of these shear forces and R112 and R221 are linked to strictly self-equilibrated stresses.
Equilibrium equations and stress boundary conditions are detailed in Appendix A.
Generalized stresses N

∼

, M
∼

, and R
⌢

work respectively with the associated strain variables: eαβ, the
conventional membrane strain, χαβ the curvature and Γαβγ the third order tensor related to generalized
shear strains. These strain fields must comply with the compatibility conditions and boundary conditions
detailed in Appendix A.
Finally, assuming uncoupling between (N

∼

,M
∼

) and R
⌢

(see next section), the Bending-Gradient plate
constitutive equations are written as:















N
∼

= A
∼
∼

: e
∼

+B
∼
∼

: χ
∼

(2a)

M
∼

= tB
∼
∼

: e
∼

+D
∼
∼

: χ
∼

(2b)

Γ
⌢
= f

⌢⌢
∴R

⌢
(2c)

where
(

A
∼
∼

,B
∼
∼

,D
∼
∼

)

are conventional Kirchhoff-Love stiffness tensors. The transpose operation t• is applied

to any order tensors as follows:
(

tA
)

αβ...ψω
= Aωψ...βα. The generalized shear compliance tensor f

⌢⌢
is a

sixth order tensor 2 .
It was demonstrated that if f

⌢⌢
= i

∼
∼

· f
∼

· i
∼
∼

= (iαβγηfηθiθδǫζ), then the Bending-Gradient model is strictly

turned into a Reissner-Mindlin model. Then, Equation 2c reduces to Q
−

= f
∼

−1 · γ
−

. This is exactly the

case for homogeneous plates where f
⌢⌢

= i
∼
∼

· 6h
5 G

∼

−1 · i
∼
∼

leads to Q
−

= 5/6hG
∼

· γ
−

. For this reason, the

Bending-Gradient theory is seen as the extension to heterogeneous plates of the Reissner-Mindlin theory
for homogeneous plates.
When the plate is periodic, the constitutive tensorsA

∼
∼

,B
∼
∼

,D
∼
∼

and f
⌢⌢
are derived using the homogenization

scheme which will be discussed later on. However closed-form expressions exist when the plate is laminated
(i.e.: the local constitutive equation is only function of x3). Kirchhoff-Love stiffness are derived using the
Classical Lamination Theory [39]:

(

A
∼
∼

,B
∼
∼

,D
∼
∼

)

=

∫ h
2

−h
2

(

1, x3, x
2
3

)

c
∼
∼

(x3)dx3 (3)

where c
∼
∼

(x3) is the local plane-stress stiffness tensor (c
∼
∼

= S
∼
∼

−1 is the inverse of the plane part of the 3D

compliance Ŝ
∼
∼

= Ĉ
∼
∼

−1
). The generalized shear compliance tensor is then:

f
⌢⌢
=

∫ h
2

−
h
2

(

∫ x3

−
h
2

(

tb
∼
∼

+ z d
∼
∼

)

: c
∼
∼

(z)dz

)

·G
∼

−1(x3) ·

(

∫ x3

−
h
2

c
∼
∼

(z) :
(

b
∼
∼

+ z d
∼
∼

)

dz

)

dx3 (4)

where
(

a
∼
∼

, b
∼
∼

,d
∼
∼

)

are the Kirchhoff-Love compliances tensors expressing (e
∼

,χ
∼

) in terms of (N
∼

,M
∼

) by

inverting 2a and 2b and G
∼

is the local transverse shear stiffness [1].

2. fαβγδǫζ follows major symmetry: fαβγδǫζ = fζǫδγβα and minor symmetry fαβγδǫζ = fβαγδǫζ . Thus there are only 21
independent components
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3.2. Homogenization scheme

In this section, the derivation of A
∼
∼

, B
∼
∼

, D
∼
∼

and f
⌢⌢

is detailed in the general case of a periodically

heterogeneous plate.
Let us consider a plate generated by periodicity of a unit-cell Y (Figure 2). The upper face ∂Y +

3 and
the lower face ∂Y −

3 are traction free and the lateral faces ∂Yl must fulfill periodicity conditions. AY is the
area of the unit-cell cross section with the plate mid-plane. In the following, the plate is assumed invariant
by π-angle rotation with respect to a vertical axis so that uncoupling between N

∼

,M
∼

and R
⌢

is ensured
[33]. This invariance is the generalization to periodic plates of the monoclinic symmetry classically made
with laminated plates and invoked in Section 2 for the skins and a homogeneous core.

Figure 2. The plate unit-cell

In order to derive a homogenized behavior of the heterogeneous plate, it is assumed that macroscopic
fields (N

∼

,M
∼

,R
⌢
) and their associated stress energy density vary slowly with respect to the size of the

unit-cell. Then, using Hill-Mandel principle, the average of the local energy in the unit-cell (microscopic
energy) is assumed equal to the plate energy (macroscopic energy). This is equivalent to setting:

1

2

(

N
∼

: a
∼
∼

: N
∼

+ 2N
∼

: b
∼
∼

: M
∼

+M
∼

: d
∼
∼

: M
∼

+ tR
⌢

∴ f
⌢⌢
∴R

⌢

)

=
1

2

〈

σ̂
∼

BG(ŷ
−

) : Ŝ
∼
∼

(ŷ
−

) : σ̂
∼

BG(ŷ
−

)
〉

(5)

where

〈f〉 =
1

AY

∫

Y

fdŷ
−

is the normalized average (surface average) on the unit-cell and σ̂
∼

BG is an approximation of the local

stress field in the unit-cell generated by the macroscopic static unknowns
(

N
∼

,M
∼

,R
⌢

)

. More precisely, the

field localization σ̂
∼

BG is a linear application from
(

N
∼

,M
∼

,R
⌢

)

to a 3D stress field in the unit-cell which is
detailed as follows:

σ̂
∼

BG = σ̂
∼

(N)(ŷ
−

) + σ̂
∼

(M)(ŷ
−

) + σ̂
∼

(R)(ŷ
−

)

where σ̂
∼

(N), σ̂
∼

(M), and σ̂
∼

(R) are 3D stress fields generated respectively by N
∼

, M
∼

and R
⌢
:
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

















σ
(N)
ij = s

(N)
ijαβ(ŷ

−

)Nβα

σ
(M)
ij = s

(M)
ijαβ(ŷ

−

)Mβα

σ
(R)
ij = s

(R)
ijαβγ(ŷ

−

)Rγβα

and s
(N)
ijαβ(ŷ

−

), s
(M)
ijαβ(ŷ

−

) and s
(R)
ijαβγ(ŷ

−

) are localization field tensors (unit load fields).

The determination of localization fields necessitates the resolution of auxiliary unit-cell problems. First,
the Kirchhoff-Love homogenization auxiliary problem was suggested by Caillerie [40] and enables the
derivation of the effective Kirchhoff-Love membrane and flexural moduli of the periodic plate A

∼
∼

, B
∼
∼

and

D
∼
∼

, as well as the local 3D stresses ŝ
∼
∼

(e)(ŷ
−

) and ŝ
∼
∼

(χ)(ŷ
−

) related to membrane strains and curvature. Then a

generalized shear auxiliary problem is defined, using Kirchhoff-Love localization fields as loading inputs,
in order to derive the generalized shear compliance f

⌢⌢
and ŝ

∼⌢

(R)(ŷ
−

).

3.2.1. Kirchhoff-Love auxiliary problem

Kirchhoff-Love homogenization of periodic plates was first proposed by Caillerie [40] and followed by
Kohn and Vogelius [41]. The auxiliary problem is stated as follows:

PLK















































σ̂
∼

KL · ∇̂
−

= 0 (6a)

σ̂
∼

KL = Ĉ
∼
∼

(

ŷ
−

)

: ε̂
∼

KL (6b)

ε̂
∼

KL = ê
∼

+ y3χ̂
∼

+ ∇̂
−

⊗s û
−

per (6c)

σ̂
∼

KL · ê
−3

= 0 on free faces ∂Y ±
3 (6d)

σ̂
∼

KL · n̂
−

skew-periodic on lateral boundaries ∂Yl (6e)

û
−

per(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Yl (6f)

Basically it enforces the membrane strains e
∼

and the curvatures χ
∼

on average on the unit-cell while taking

into account periodicity in the (x1, x2)-plane and traction-free conditions on the upper and lower faces of
the plate. In Equation 6, ê

∼

and χ̂
∼

denote the extension to 3D of the 2D tensors:

ê
∼

=











e11 e12 0

e21 e22 0

0 0 0











and χ̂
∼

=











χ11 χ12 0

χ21 χ22 0

0 0 0











Furthermore, there is a Hill-lemma relation for plate [40, 42] which gives the following definition for N
∼

and M
∼

as the average of stress fields in the unit-cell:

Nαβ =
〈

σKLαβ
〉

and Mαβ =
〈

y3σ
KL
αβ

〉

Solving the problem for each individual component of e
∼

and χ
∼

leads to the localization stress fields ŝ
∼
∼

(e)

and ŝ
∼
∼

(χ). Kirchhoff-Love plate moduli are then evaluated as follows:

A
∼
∼

=
〈

t
ŝ
∼
∼

(e) : Ŝ
∼
∼

: ŝ
∼
∼

(e)
〉

, B
∼
∼

=
〈

t
ŝ
∼
∼

(e) : Ŝ
∼
∼

: ŝ
∼
∼

(χ)
〉

, D
∼
∼

=
〈

t
ŝ
∼
∼

(χ) : Ŝ
∼
∼

: ŝ
∼
∼

(χ)
〉

In addition one can derive the following variational principle related to problem PLK :
– Static approach: The set of statically compatible fields SCLK is the set of stress fields σ̂

∼

which fulfill
equilibrium equation (6a), boundary conditions (6d) and periodicity conditions (6e).
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The stress solution σ̂
∼

LK is the one that minimizes the complementary energy per unit surface

P ∗LK :

P ∗LK
(

σ̂
∼

LK
)

= min
σ̂
∼

∈SCLK

{

1

2

〈

t σ̂
∼

: Ŝ
∼
∼

: σ̂
∼

〉

−
〈

t σ̂
∼

:
(

ê
∼

+ y3χ̂
∼

)〉

}

(7)

– Kinematic approach: The set of kinematically compatible fields KCLK is the set of strain fields ε̂
∼

which fulfill compatibility conditions (6c) and periodicity conditions (6f).
The strain solution ε̂

∼

LK is the one that minimizes the potential energy per unit surface PLK :

PLK
(

ε̂
∼

LK
)

= min
ε̂
∼

∈KCLK

{

1

2

〈

t
ε̂
∼

: Ĉ
∼
∼

: ε̂
∼

〉

}

(8)

– Clapeyron’s formula: The following relation holds for the solution:

PLK
(

ε̂
∼

LK
)

= −P ∗LK
(

σ̂
∼

LK
)

=
1

2

(

e
∼

: A
∼
∼

: e
∼

+ 2e
∼

: B
∼
∼

: χ
∼

+ χ
∼

: D
∼
∼

: χ
∼

)

3.2.2. The generalized shear auxiliary problem

The generalized shear auxiliary problem on the unit-cell is defined as:

PBG











































σ̂
∼

(R) · ∇̂
−

+ f̂
−

(R)
(ŷ
−

) = 0 (9a)

σ̂
∼

(R) = Ĉ
∼
∼

(

ŷ
−

)

:
(

∇̂
−

⊗s û
−

(R)
)

(9b)

σ̂
∼

(R) · ê
−3

= 0 on free faces ∂Y ±
3 (9c)

σ̂
∼

(R) · n̂
−
skew-periodic on lateral boundaries ∂Yl (9d)

û
−

(R)(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Yl (9e)

where
f
(R)
i =

(

s
(e)
iγδεbεδβα + s

(χ)
iγδεdεδβα

)

Rαβγ (10)

is the body force generated by linear variations of M
∼

, namely its gradient: R
⌢
. More precisely, it is derived

taking the 3D divergence of the local stress σ̂
∼

(M), where the bending moment is M
∼

= R
⌢

· y
−

. Since f̂
−

(R)

involves localization fields previously derived in Kirchhoff-Love auxiliary problem, one must perform this

computation first. Solving PBG for each component ofR
⌢

leads to the localization stress field s
(R)
ijαβγ related

to R
⌢
. It is then possible to identify the Bending-Gradient compliance tensor as:

f
⌢⌢
=

〈

t(

ŝ
∼⌢

(R)
)

: Ŝ
∼
∼

: ŝ
∼⌢

(R)

〉

Whereas it was possible to define N
∼

and M
∼

as resultant of local stress fields, there is no such a direct
relation for the gradient of the bending moment R

⌢
. However, it is possible to demonstrate:

〈

σ
(R)
α3

〉

= iαβγδRδγβ = Qα and
〈

σ
(R)
33

〉

= 0

In addition one can derive the following variational principle related to problem PBG:
– Static approach: The set of statically compatible fields SCBG is the set of stress fields σ̂

∼

which fulfill
equilibrium equation (9a), boundary conditions (9c) and periodicity conditions (9d).

The stress solution σ̂
∼

(R) is the one that minimizes the complementary energy P ∗BG:

9



P ∗BG
(

σ̂
∼

(R)
)

= min
σ̂
∼

∈SCBG

{

1

2

〈

t
σ̂
∼

: Ŝ
∼
∼

: σ̂
∼

〉

}

– Kinematic approach: The set of kinematically compatible fields KCBG is the set of strain fields ε̂
∼

which derive from a displacement field which fulfills periodicity conditions (9e).

The strain solution ε̂
∼

(R) is the one that minimizes the potential energy PBG:

PBG
(

ε̂
∼

(R)
)

= min
ε̂
∼

∈KCBG

{

1

2

〈

t ε̂
∼

: Ĉ
∼
∼

: ε̂
∼

〉

−
〈

f̂
−

(R)
· û
−

(

ε̂
∼

)

〉

}

(11)

– Clapeyron’s formula: The following relation holds for the solution:

−PBG
(

ε̂
∼

(R)
)

= P ∗BG
(

σ̂
∼

(R)
)

=
1

2
tR
⌢

∴ f
⌢⌢
∴R

⌢

4. The in-plane behavior of sandwich panels

The Kirchhoff-Love behavior of sandwich panels is well-known, especially with homogeneous cores. In
this section, we recall these results and derive bounds when the sandwich panel is cellular.

4.1. The case of homogeneous cores

Let us consider first a sandwich panel with a homogeneous core. Direct application of the Classical
Lamination Theory (Equation 3) leads to the following Kirchhoff-Love stiffness tensors:

A
∼
∼

= 2tsc
∼
∼

s + tcc
∼
∼

c, B
∼
∼

= 0
∼
∼

, D
∼
∼

=
h3 − t3c

12
c
∼
∼

s +
t3c
12

c
∼
∼

c

Then the contrast assumption consists in neglecting the contribution of the core to these stiffness
tensors. In the present case, it is equivalent to assuming:

∀e
∼

, e
∼

: tcc
∼
∼

c :e
∼

≪ e
∼

:2tsc
∼
∼

s :e
∼

(12)

where eαβ is any symmetric second order tensor in 2D. The stiffness tensors become then:

A
∼
∼

= 2tsc
∼
∼

s, B
∼
∼

= 0
∼
∼

, D
∼
∼

=
h3 − t3c

12
c
∼
∼

s

Additionally one can assume also thin skins. The flexural stiffness is simplified into the well known
formula:

D
∼
∼

=
ts
2
(tc + ts)

2
c
∼
∼

s

These very basic results will be extended to the case of cellular sandwich panel in the following.

4.2. The case of cellular cores

The homogenization scheme provided in Section 3.2.1 is designed for any periodic plate. Now we specify
its application to a cellular sandwich panel. The unit-cell Y was detailed in Figure 1. It is separated in
three parts, the upper skin Y s+, the lower skin Y s− and the core Y c (Y = Y s+ ∪ Y c ∪ Y s−). We apply
variational principles for the Kirchhoff-Love auxiliary problem to this unit-cell in order to derive bounds.
Finally, this enables us to formulate the contrast assumption for cellular sandwich panels.
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4.2.1. Bounds for Kirchhoff-Love stiffnesses of cellular sandwich panels

The derivation of bounds is done in two steps. First, compatible trial fields are defined in each part of
the unit-cell. Then, the related energies are derived and compared to the exact solution.

4.2.1.1. Lower bound The derivation of the lower bound is based on the conventional assumption that
only the skins are put under traction and compression when bending the sandwich panel. We choose a
statically compatible stress σ

∼

− ∈ SCLK which is null in the core and plane-stress in the skins:

σ
∼

− =

{

c
∼
∼

s : (e
∼

+ x3χ
∼

) on Y s±

0
∼

on Y c
and σ−

i3 = 0 on Y (13)

The complementary energy (7) related to σ̂
∼

− involves only the skins and is written as:

P ∗LK
(

σ̂
∼

−
)

= −
1

2

〈

t(

e
∼

+ y3χ
∼

)

: c
∼
∼

s :
(

e
∼

+ y3χ
∼

)

〉

s

where 〈f〉s is the normalized average restricted to the skins:

〈f〉s =
1

AY

∫

Y s+
⋃

Y s−

fdŷ
−

Application of the static approach of variational principles leads to:

wLK,s <
1

2

(

e
∼

: A
∼
∼

: e
∼

+ 2e
∼

: B
∼
∼

: χ
∼

+ χ
∼

: D
∼
∼

: χ
∼

)

where we defined the contribution of the skins to the energy as:

wLK,s =
1

2

〈

t(

e
∼

+ y3χ
∼

)

: c
∼
∼

s :
(

e
∼

+ y3χ
∼

)

〉

s

from which the lower bound for Kirchhoff-Love stiffness tensors is extracted:

A
∼
∼

− = 2tsc
∼
∼

s, B
∼
∼

− = 0
∼
∼

D
∼
∼

− =
h3 − t3c

12
c
∼
∼

s

4.2.1.2. Upper bound For the upper bound, we choose the kinematically compatible strain field ε̂
∼

+ ∈

KCLK which is plane-strain in the core and plane-stress in the skins:

ε̂
∼

+ =







ê
∼

+ x3χ̂
∼

+
(

P
∼

s : (e
∼

+ x3χ
∼

)
)

ê
−3

⊗ ê
−3

on Y s±

ê
∼

+ x3χ̂
∼

on Y c

where P sαβ = −
Cs

33αβ

Cs
3333

is the correction which takes into account the out-of-plane Poisson’s effect in the

skins. Assuming plane-stress in the core would lead to incompatibility of strain fields at the skin/core
interface in the general case. The potential energy (8) related to ε̂

∼

+ is written as:

PLK
(

ε̂
∼

+) = wLK,s +
1

2

〈

t(

ê
∼

+ y3χ̂
∼

)

: Ĉ
∼
∼

c
:
(

ê
∼

+ y3χ̂
∼

)

〉

c

where 〈f〉c is the normalized average restricted to the core:

〈f〉c =
1

AY

∫

Y c

fdŷ
−

11



Only the plane part of C
∼
∼

c is involved in the second term of PLK since ei3 = χi3 = 0:

PLK
(

ε̂
∼

+) = wLK,s +
1

2

〈

t(

e
∼

+ y3χ
∼

)

: C
∼
∼

c :
(

e
∼

+ y3χ
∼

)

〉

c

Application of the kinematic approach of variational principles leads to:

1

2

(

e
∼

: A
∼
∼

: e
∼

+ 2e
∼

: B
∼
∼

: χ
∼

+ χ
∼

: D
∼
∼

: χ
∼

)

< wLK,s + wLK,c

where we defined the contribution of the core to the energy as:

wLK,c =
1

2

〈

t(

e
∼

+ y3χ
∼

)

: C
∼
∼

c :
(

e
∼

+ y3χ
∼

)

〉

c

We have the following Kirchhoff-Love stiffness tensors for the upper bound:

A
∼
∼

+ = 2tsc
∼
∼

s +
〈

C
∼
∼

c
〉

c
, B

∼
∼

+ =
〈

y3C
∼
∼

c
〉

c
and D

∼
∼

+ =
h3 − t3c

12
c
∼
∼

s +
〈

y23C∼
∼

c
〉

c

Here, the core contribution is the upper bound for periodic plates from Kolpakov and Sheremet [43]
applied directly to the core alone.

4.2.2. Definition of the contrast assumption

The derivation of bounds led to the following range for the energy:

wLK,s <
1

2

(

e
∼

: A
∼
∼

: e
∼

+ 2e
∼

: B
∼
∼

: χ
∼

+ χ
∼

: D
∼
∼

: χ
∼

)

< wLK,s + wLK,c

The contrast assumption consists in neglecting the contribution of the core:

∀(e
∼

,χ
∼

), wLK,c
(

e
∼

,χ
∼

)

≪ wLK,s
(

e
∼

,χ
∼

)

which is equivalent to:

∀e
∼

, e
∼

:
〈

C
∼
∼

c
〉

c
:e
∼

≪ 2ts e
∼

:c
∼
∼

s :e
∼

(14)

This result is slightly different from the case of homogeneous core because it was not possible to assume
plane-stress in the core. This is further discussed in Section 6.
Finally, under the contrast assumption the actual Kirchhoff-Love stiffness of the sandwich panel is

equated to the lower bound and the related local stress field is considered as a good approximation at
first order of the actual stress distribution.

5. The transverse shear behavior of sandwich panels

Knowing the in-plane behavior of the sandwich panel enables us now to derive its transverse shear
behavior.

5.1. The case of homogeneous cores

In general, for 3-layer plates the Bending-Gradient model does not reduce to the Reissner-Mindlin
model. However, it is possible to demonstrate that it is the case under the contrast assumption.
Direct application of Equation 4 and assumption (12) for a sandwich panel with homogeneous core

leads to:
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f
⌢⌢
=

k2s
t2c

i
∼
∼

·
(

tcg
∼

c + lstsg
∼

s
)

· i
∼
∼

, where ks =
3

2

tc(h
2 − t2c)

h3 − t3c
and ls =

10t2c + 25tcts + 16t2s
15(tc + ts)2

where g
∼

c =
(

G
∼

c
)−1

and g
∼

s =
(

G
∼

s
)−1

are the transverse shear compliances. The factorization of f
⌢⌢

indicates that the constitutive equation is turned into a Reissner-Mindlin model. The corresponding
shear forces stiffness writes as:

F
∼

=
t2c
k2s

(

tcg
∼

c + lstsg
∼

s
)−1

(15)

There is no a priori reason for neglecting the skins contribution since the contrast hypothesis involves
only the plane part of 3D stiffnesses (Equation 12). For instance with carbon fiber reinforced composite
skins, the transverse shear stiffness of the skins is quite low (about 1/25 of the longitudinal stiffness).
With this result, when the thickness of the core goes to 0 we have F

∼

= 5h
6 G

∼

s and when g
∼

c goes to the

infinity, the shear forces stiffness goes to zero which is much more satisfying than FOSDT and classical
approaches. Finally, if the skins are thin and their constitutive material is isotropic, their contribution is
negligible. In this case, Equation 15 simplifies into:

F
∼

=
tc
k2s

G
∼

c

and we get the original result from Kelsey et al. [13].

5.2. A direct homogenization scheme for cellular sandwich panel shear forces stiffness

When dealing with cellular sandwich panels, stress distributions related to the in-plane behavior were
derived in Section 4.2.1.1. Once the Kirchhoff-Love stress is defined, it is possible to apply the second
step of the Bending-Gradient homogenization scheme (Problem 9).
Under the contrast assumption, the stress derived for the lower bound (Equation 13) makes a good

approximation for the actual stress in the sandwich panel. The body load definition (Equation 10) applied
to this stress distribution becomes:

f
−

(R) =







12y3
h3 − t3c

i
∼
∼

∴R
⌢

on Y s±

0 on Y c
and f

(R)
3 = 0 on Y

where we identify directly shear forces: Q
−

= i
∼
∼

∴R
⌢
. Thus, with cellular sandwich panels under contrast

assumption the Bending-Gradient model is also turned into a Reissner-Mindlin model.
Accordingly, we define the body force related to shear forces as:

f
−

(Q) =







12y3
h3 − t3c

Q
−

on Y s±

0 on Y c
and f

(Q)
3 = 0 on Y

Basically, it enforces volume forces in the skins so that the core is put into shearing exactly as suggested
in sandwich theory (Figure 3).

Exactly as for R
⌢
, the 3D stress field σ̂

∼

(Q) related to shear forces is the stress field which equilibrates

f̂
−

(Q)
and the shear force auxiliary problem on the unit-cell is defined as:
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Figure 3. Shear force loading f(Q) for a sandwich panel under contrast assumption

PRM











































σ̂
∼

(Q) · ∇̂
−

+ f̂
−

(Q)
(ŷ
−

) = 0 (16a)

σ̂
∼

(Q) = Ĉ
∼
∼

(

ŷ
−

)

:
(

∇̂
−

⊗s û
−

(Q)
)

(16b)

σ̂
∼

(Q) · ê
−3

= 0 on free faces ∂Y ±
3 (16c)

σ̂
∼

(Q) · n̂
−
skew-periodic on lateral boundaries ∂Yl (16d)

û
−

(Q)(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Yl (16e)

This problem is Cecchi and Sab [36] auxiliary problem for deriving shear forces stiffness applied to a sand-
wich panel under contrast assumption without assuming a priori cylindrical bending. Again, solving PRM

leads to the localization stress field s
(Q)
ijα

(

ŷ
−

)

associated to shear forces, obtained by linear combination:

σ̂
∼

(Q) = ŝ
∼
−

(Q)
(

ŷ
−

)

·Q
−

It is then possible to identify the shear forces compliance tensor with:

f
∼

=
〈

t

ŝ
∼
−

(Q) : Ŝ
∼
∼

: ŝ
∼
−

(Q)
〉

The variational principles related to PRM are strictly identical to those introduced in Section 3.2.2
replacing “R” by “Q”.

Finally, the contrast assumption enables a direct derivation of shear forces stiffness with f̂
−

(Q)
load-

ing and do not request the derivation of Kirchhoff-Love localization fields. Thus PRM defines a direct
homogenization scheme for sandwich panels under contrast assumption.

5.3. Bounds for sandwich panels shear forces stiffness

Now it is possible to provide justification for the bounds commonly used in sandwich theory. Since the
actual shear forces loading is known for a sandwich panel, we apply variational principles to the shear
forces auxiliary problem PRM .
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5.3.1. Voigt and Reuss bounds

Assuming rigid displacement in the skins and uniform shear strain in the core enables the derivation
of a Voigt type upper bound for sandwich panels shear forces stiffness. Computation details are given in
Appendix B. It leads to:

∀γ
−

, tγ
−

· F
∼

· γ
−

< tγ
−

·

〈

G
∼

c
〉

c

k2s
· γ
−

where F
∼

is the actual shear forces stiffness tensor.

Here the effective transverse shear stiffness tensor of the core appears as: Gc,effαβ =
〈

G
∼

c
〉

c
/tc. It is the

Voigt upper bound of transverse shear stiffness in 3D elasticity. Thus, we define the Voigt upper bound

for shear forces stiffness as: F
∼

V =
〈G
∼

c
〉
c

k2s
.

It is also possible to derive a Reuss lower bound, assuming ad hoc compatible stress distribution in the
skins and a uniform shear stress in the core. Computation details are given in Appendix B. This leads to
the following Reuss bound:

∀γ
−

, tγ
−

·
t2c
k2s

(〈

g
∼

c
〉

c
+ lstsg

∼

s
)−1

· γ
−

< tγ
−

· F
∼

· γ
−

(17)

Again, the contribution of the skins does not vanish and the effective transverse shear stiffness of the

core appears as: Gc,effαβ =
(〈

g
∼

c
〉

c
/tc

)−1

. It is the Reuss lower bound for transverse shear stiffness in 3D

elasticity. When the contribution of the skins is negligible, we define the Reuss lower bound for shear

forces stiffness as: F
∼

R =
t2c
k2s

〈

g
∼

c
〉−1

c
.

Since most of cores used in applications are porous, this bound is often null. In order to overcome this
difficulty, Kelsey et al. [13] suggested improved bounds for sandwich panels.

5.3.2. The bounds from Kelsey et al.

The approach from Kelsey et al. [13] is also detailed in [44] and [32]. Let us recall that for the upper
bound, a unit displacement is enforced only on the core, replacing the skins action on it (the unit dis-
placement method). For the lower bound, it is an arbitrary stress distribution which is applied on the
core (unit force method). It is possible to give partial justification to these bounds while separating the
shear forces auxiliary problem PRM in three parts, a part dedicated to the core and two parts dedicated
to the skins. Then, the trial field in the skins is taken similar to the one used for Voigt and Reuss bounds
in the previous section and the problem for the core is exactly the one suggested by Kelsey et al. [13].
For the upper bound, we still assume a uniform displacement in the the skins: û

−

K+ = tc
2 γ̂

−

. Enforc-

ing displacements continuity at the skin/core interface ∂Y ±

int (Figure 1) leads to the following auxiliary
problem in the core:

PK+











































σ̂
∼

K+ · ∇̂
−

= 0

σ̂
∼

K+ = Ĉ
∼
∼

(

ŷ
−

)

:
(

∇̂
−

⊗s û
−

K+
)

û
−

K+ = ±
tc
2
γ̂
−

on interface faces ∂Y ±

int

σ̂
∼

K+ · n̂
−

skew-periodic on ∂Y c
l

û
−

K+(y1, y2, y3) (y1, y2)-periodic on ∂Y c
l

which is exactly the unit displacement method suggested by Kelsey et al. [13]. Solving this problem for
each components of γ

−

leads to the following localization of the strain field in the core: εK+
ij = eK+

ijαγα. The
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application of variational principles for the shear forces auxiliary problem PRM , detailed in Appendix B,
leads to the following upper bound:

∀γ
−

, tγ
−

· F
∼

· γ
−

< tγ
−

· F
∼

K+ · γ
−

where F
∼

K+ = 1
k2s

〈

t

ê
∼
−

K+ : Ĉ
∼
∼

: ê
∼
−

K+
〉

c
is the original upper bound for shear forces stiffness from Kelsey

et al. [13].
The lower bound raises more difficulties. Separating the shear forces auxiliary problem (Problem 16)

into three parts brings out the interface stress σ̂
∼

(Q) (y1, y2,±tc/2)·(±ê
−3

) located on ∂Y ±

int. This interfacial
stress must respect macroscopic equilibrium for each part. Its resultant on each interface is:

1

AY

∫

∂Y
±

int

σ̂
∼

(Q) (y1, y2,±tc/2) · ±ê
−3

dy1dy2 =
1

AY

∫

Y s±

f̂
−

(Q)
dy1dy2dy3 = ±

ks
tc
Q̂
−

, where Q3 = 0

The derivation of the lower bound consists in choosing a priori this interfacial stress distribution. Let us

introduce such arbitrary surface traction T̂
−

d
(y1, y2) fulfilling:

1

AY

∫

∂Y
+

int

T̂
−

d
dy
−

=
ks
tc
Q̂
−

Given T̂
−

d
(y1, y2), the problem in the core is stated as:

PK−







































σ̂
∼

K− · ∇̂
−

= 0 (18a)

σ̂
∼

K− = Ĉ
∼
∼

(

ŷ
−

)

:
(

∇̂
−
⊗s û

−

K−
)

(18b)

σ̂
∼

K− · ±ê
−3

= ±T̂
−

d
, on interfaces ∂Y ±

int (18c)

σ̂
∼

K− · n̂
−

skew-periodic on lateral boundaries ∂Y c
l (18d)

û
−

K−(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Y c
l (18e)

When ks = 1, this problem is exactly the one suggested by Kelsey et al. [13] for deriving the lower bound.
Then, the problems in the skins are stated as:

PK−,s±























































σ̂
∼

K− · ∇̂
−

+
12y3

h3 − t3c
Q
−

= 0 (19a)

σ̂
∼

K− = Ĉ
∼
∼

(

ŷ
−

)

:
(

∇̂
−

⊗s û
−

K−
)

(19b)

σ̂
∼

K− · ∓ê
−3

= ∓T̂
−

d
, on interface ∂Y ±

int (19c)

σ̂
∼

K− · ê
−3

= 0̂
−

on free face ∂Y ±
3 (19d)

σ̂
∼

K− · n̂
−

skew-periodic on lateral boundaries ∂Y s
l (19e)

û
−

K−(y1, y2, y3) (y1, y2)-periodic on lateral boundaries ∂Y s
l (19f)

The combination of variational principles related to the three problems is detailed in Appendix B. This
leads to the following lower bound for shear forces stiffness:

∀γ
−

, tγ
−

·
(

f
∼

K− + f
∼

K−,s+ + f
∼

K−,s−
)−1

· γ
−

< tγ
−

· F
∼

· γ
−

where f
∼

K− is the lower bound from Kelsey et al. [13] for the shear forces stiffness, and f
∼

K−,s± are the

contribution of the skins.
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The fact that the stress energy in the skins is negligible (even with thin skins) might be wrong in the
general case. Yet this seems to be a very common implicit assumption. At best, one can hope that the skins
contribution is of the same magnitude as the one in the case of the Reuss lower bound (Equation 17).
In [33] a comparison between the full Bending-Gradient homogenization scheme and the bounds from
Kelsey et al. [13] shows that the lower bound is not strictly respected.

6. Discussion

In Section 2, several questions were raised about the shear forces stiffness of sandwich panels. The
assumptions usually made seemed antagonistic and the contribution of the skins was controversial. Addi-
tionally, there was a lack of well defined methods for deriving the shear forces stiffness when the sandwich
panel is cellular. The application of the Bending-Gradient theory to sandwich panels enables us now to
clarify these points.
First, the contrast assumption between the skins and the core was stated without explicit assumption

about the skins thickness. When the core is homogeneous, Equation 12 is simply the generalization of the
suggestion from Reissner [10] and compares plane-stress stiffnesses of the skins and the core, weighted by
their respective thicknesses. With cellular cores, it is the plane part of the 3D elasticity stiffness of the
core which must be compared to the plane-stress stiffness of the skins (Equation 14). If the constitutive
materials of the skins and the core are isotropic and provided that Poisson’s ratios are not close to 0.5 or
-1, the cellular case is almost identical to the homogeneous case.
Because the skins stiffness is weighted by their thickness, the contrast assumption might be rather

restrictive. Actually its validity range can be enlarged in some cases. For example, this assumption applied
to a cellular sandwich panel fully made of the same constitutive material leads to ρtc ≪ 2ts where ρ is
the volume fraction of material in the core. An approximate value for ρ is ρ ≈ tf/tc where tf is the facets
thickness of the walls constituting the core. This leads to tf ≪ ts which might seem very restrictive.
However, depending on the actual contribution of the core to the flexural stiffness of the sandwich panel,
this condition can be relaxed. For instance, folded cores contribution is almost negligible and tf can be
almost comparable to ts without much violation of the contrast assumption [33]. This is not the case of
honeycomb cores where the walls are vertical and contribute significantly to the flexural stiffness [28].
Furthermore, the contrast assumption does not state anything about the transverse shear stiffness of the

skins. Hence G
∼

c/tc ≪ G
∼

s/ts (Equation 15) is usually valid but not necessary true a priori as illustrated
with carbon fiber reinforced laminates. This remark leads us to the question of the contribution of the
skins to the shear forces stiffness.
In order to avoid the difficulties regarding the contribution of the skins to the shear forces stiffness, it

is commonly assumed that they are thin. In the present work, we did not invoke the thinness of the skins
to derive the shear forces stiffness of any sandwich panel. It is possible to neglect the skins contribution
afterward in order to retrieve classical results. As already pointed out this assumption goes against the
contrast assumption and in many practical cases is not valid. This is especially the case with cellular
cores where the skins are not fully glued to the core. One must keep the skins thick enough to prevent
wrinkling.
Two contributions of the skins where identified. The first one, already included in the work from Kelsey

et al. [13], is a pure geometric effect: the thicker the skins are, the further from the midplane the resultant

of f
−

(Q) in the skins is. Thus the lever effect of the resultant of f
−

(Q) in the skins is greater (Figure 3).

Taking the skins centroid as application point of f
−

(Q) – as done in [4] – is only true at first order in ts/tc.

This contribution is often not negligible and proportional to 1 + 2ts/tc. The second contribution of the
skins was widely ignored. It involves directly the skins transverse shear stiffness. Even if, in the case of
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homogeneous core (Equation 15), it is rather easy to check that the effect is negligible, when the core is
cellular this is much more difficult and uncertain.
In order to close discussion about the assumptions usually made with sandwich panels, let us explain

why FOSDT is misleading and raised many questions [20]. When the shear correction factor is 1, we
have F

∼

= tcG
∼

c + tsG
∼

s. Assuming simultaneously G
∼

c ≪ G
∼

s and ts ≪ tc leads to an undetermined
limit. It is then not surprising that deriving shear correction factors following different methods leads
to contradictions. Depending on the scaling between G

∼

c ≪ G
∼

s and ts ≪ tc and the order in which the
assumptions are made, the correction might be completely different at limit cases. The sensitivity to limit
case is illustrated on an isotropic sandwich panel in Appendix C where an exact formula is derived for
shear forces stiffness. This situation illustrates clearly that it is much easier to use the concept of shear
forces stiffness as a whole than to split it into uniform transverse shear and shear correction factor.
Finally, the main outcome of this work is the derivation and the justification of a direct homogenization

scheme for sandwich panels shear forces stiffness. The contrast assumption enables not only to completely
separate Kirchhoff-Love and shear force auxiliary problems, but also ensures that the constitutive equa-
tion is turned into a Reissner-Mindlin model whereas this is not the case for periodic plates in general 3 .
The justification of already known bounds in the present work is a first validation of this new homoge-
nization scheme. The shift from Bending-Gradient to Reissner-Mindlin models under contrast assumption
presented in [33] is another validation and clearly illustrates the need of this new homogenization scheme
when classical bounds are loose.
In the present work, we assumed uncoupling between (N

∼

,M
∼

) and R
⌢
. Relaxing this assumption for

the core does not change the results regarding bounds and the direct homogenization scheme. However,
the coupling will remain when deriving the constitutive equation (5) and it is not clear that one could
neglect it in order to get a classical Reissner-Mindlin constitutive equation.

7. Conclusion

The application of the Bending-Gradient plate theory to a sandwich panel enabled us to give some
justification of common results in sandwich theory. First, the application of the Kirchhoff-Love auxiliary
problem brought out bounds for Kirchhoff-Love stiffnesses and a quantified contrast assumption. Then,
we demonstrated that under this assumption, the shear constitutive equation for a sandwich panel is
turned into a Reissner-Mindlin model as it is the case with homogeneous plates. Moreover, we identified
the loading related to shear forces as a volume force distributed in the skins. This loading confirms the
common intuition that the core is put into shear by the skins and enables the direct derivation of shear
forces stiffness for a sandwich panel. Finally, we provided justification for bounds which are commonly
used in sandwich panel design, taking into account the contribution of the skins.
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[10] E. Reissner, On bending of elastic plates, Quarterly of Applied Mathematics 5 (1947) 55 – 68.
[11] E. Reissner, Small Bending and Stretching of Sandwich-Type Shells, Tech. Rep. 1832, NACA, 1949.
[12] Hexcel, Honeycomb Sandwich Design Technology, Hexcel, 2000.
[13] S. Kelsey, R. A. Gellatly, B. W. Clark, The Shear Modulus of Foil Honeycomb Cores: A Theoretical

and Experimental Investigation on Cores Used in Sandwich Construction, Aircraft Engineering and
Aerospace Technology 30 (1958) 294 – 302.

[14] J. N. Reddy, On refined computational models of composite laminates, International Journal for
numerical methods in engineering 27 (1989) 361–382.

[15] H. Altenbach, Theories for laminated and sandwich plates. A review, Mechanics of Composite Ma-
terials 34 (1998) 243–252.

[16] A. K. Noor, M. Malik, An assessment of five modeling approaches for thermo-mechanical stress
analysis of laminated composite panels, Computational Mechanics 25 (2000) 43–58.

[17] E. Carrera, Theories and finite elements for multilayered, anisotropic, composite plates and shells,
Archives of Computational Methods in Engineering 9 (2002) 87–140.

[18] C. Libove, S. Batdorf, General small-deflection theory for flat sandwich plates, Tech. Rep., NACA,
Washington, DC, United States, 1948.

[19] J. R. Vinson, Governing Equations for Plates and Panels of Sandwich Construction, in: Solid Me-
chanics and Its Applications, vol. 120, Springer Netherlands, 295–303, 2005.

[20] V. Birman, C. W. Bert, On the Choice of Shear Correction Factor in Sandwich Structures, Journal
of Sandwich Structures and Materials 4 (2002) 83–95.

[21] G. Shi, P. Tong, The derivation of equivalent constitutive equations of honeycomb structures by a
two scale method, Computational Mechanics 15 (1995) 395–407.

[22] X. F. Xu, P. Qiao, J. F. Davalos, Transverse Shear Stiffness of Composite Honeycomb Core with
General Configuration, Journal of Engineering Mechanics 127 (2001) 1144–1151.

[23] J. Hohe, W. Becker, A mechanical model for two-dimensional cellular sandwich cores with general
geometry, Computational Materials Science 19 (2000) 108 – 115.

[24] J. Hohe, W. Becker, An energetic homogenisation procedure for the elastic properties of general
cellular sandwich cores, Composites Part B: Engineering 32 (2001) 185 – 197.

[25] J. Penzien, T. Didriksson, Effective Shear Modulus of Honeycomb Cellular Structure - Reply, Aiaa
Journal 2 (1964) 1519–1519.

[26] M. Grediac, A Finite-Element Study Of The Transverse-Shear In Honeycomb-Cores, International
Journal of Solids and Structures 30 (1993) 1777–1788.

[27] W. Becker, The in-plane stiffnesses of a honeycomb core including the thickness effect, Archive of
Applied Mechanics 68 (1998) 334–341.

[28] A. Chen, J. F. Davalos, A solution including skin effect for stiffness and stress field of sandwich
honeycomb core, International Journal of Solids and Structures 42 (2005) 2711 – 2739.

19



[29] A. Chen, J. F. Davalos, Transverse Shear Including Skin Effect for Composite Sandwich with Hon-
eycomb Sinusoidal Core, Journal of Engineering Mechanics 133 (2007) 247–256.

[30] G. Shi, P. Tong, Equivalent transverse shear stiffness of honeycomb cores, International Journal of
Solids and Structures 32 (1995) 1383 – 1393.

[31] T. M. Nordstrand, L. A. Carlsson, Evaluation of transverse shear stiffness of structural core sandwich
plates, Composite Structures 37 (1997) 145–153.

[32] A. Lebée, K. Sab, Transverse shear stiffness of a chevron folded core used in sandwich construction,
International Journal of Solids and Structures 47 (2010) 2620–2629.

[33] A. Lebée, K. Sab, Homogenization of thick periodic plates: application of the Bending-Gradient plate
theory to folded core sandwich panel, submitted (2011) .

[34] N. Buannic, P. Cartraud, T. Quesnel, Homogenization of corrugated core sandwich panels, Composite
Structures 59 (2003) 299–312.

[35] J. Hohe, A direct homogenisation approach for determination of the stiffness matrix for microhetero-
geneous plates with application to sandwich panels, Composites Part B: Engineering 34 (2003) 615–
626.

[36] A. Cecchi, K. Sab, A homogenized Reissner-Mindlin model for orthotropic periodic plates: Applica-
tion to brickwork panels, International Journal of Solids and Structures 44 (2007) 6055–6079.

[37] J. Whitney, Cylindrical Bending of Unsymmetrically Laminated Plates, Journal of Composite Ma-
terials 3 (1969) 715–719.

[38] A. Lebée, K. Sab, A Bending-Gradient model for thick plates, Part II: Closed-form solutions for
cylindrical bending of laminates, International Journal of Solids and Structures 48 (2011) 2889–2901.

[39] J. M. Whitney, A. W. Leissa, Analysis of heterogeneous anisotropic plates, Journal of Applied Me-
chanics (1969) 261–266.

[40] D. Caillerie, Thin elastic and periodic plates., Mathematical Methods in the Applied Sciences 6
(1984) 159 – 191.

[41] R. V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness, International
Journal of Solids and Structures 20 (1984) 333–350.

[42] P. G. Ciarlet, P. Destuynder, Justification Of The 2-Dimensional Linear Plate Model, Journal de
Mecanique 18 (1979) 315–344.

[43] A. G. Kolpakov, I. G. Sheremet, The stiffnesses of non-homogeneous plates, Journal of Applied
Mathematics and Mechanics 63 (1999) 633–640.

[44] L. J. Gibson, M. F. Ashby, Cellular solids, Pergamon Press, 1988.
[45] A. Lebée, K. Sab, Homogenization of a space frame as a thick plate: application of the Bending-

Gradient theory to a beam lattice, submitted (2011) .
[46] S. Vlachoutsis, Shear correction factors for plates and shells, Int. J. Numer. Meth. Engng. 33 (1992)

1537–1552.

Appendix A. Compatible fields for the Bending-Gradient theory

Equilibrium equations and boundary conditions involving stress fields are gathered in the set of stati-
cally compatible fields:
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













































N
∼

·∇
−

= 0
−

on ω

M
∼

⊗∇
−
−R

⌢
= 0

⌢
on ω

(

i
∼
∼

∴R
⌢

)

·∇
−

= −p3 on ω

N
∼

· n
−

= V
−

d on ∂ωs

M
∼

= M
∼

d on ∂ωs
(

i
∼
∼

∴R
⌢

)

· n
−

= V d
3 on ∂ωs

where the derivation operator ∇
−

is also formally represented as a vector: a
∼

· ∇
−

= aαβ∇β = aαβ,β is
the divergence and a

∼

⊗∇
−

= aαβ∇γ = aαβ,γ is the gradient. ∂ωs is the portion of edge on which static

boundary conditions apply and n
−

the related outer normal: V̂
−

d
=
(

V d
i

)

is the force per unit length and

M
∼

d the full bending moment enforced on the edge. The plate is loaded exclusively with the out-of-plane
distributed force p̂

−

= p3ê
−3

. This set of equations is almost identical to Reissner-Mindlin equations where

shear forces have been replaced by the bending gradient R
⌢
.

The compatibility conditions and boundary conditions for strain fields are gathered in the set of kine-
matically compatible fields:



































e
∼

= i
∼
∼

:
(

∇
−

⊗U
−

)

on ω (A.1a)

χ
∼

= Φ
⌢

·∇
−

on ω (A.1b)

Γ
⌢
= Φ

⌢
+ i

∼
∼

·∇
−

U3 on ω (A.1c)

Φ
⌢
· n
−

= H
∼

d on ∂ωk (A.1d)

Û
−

= Û
−

d
on ∂ωk (A.1e)

where Û
−

= (Ui) is the average through the thickness of the plate 3D displacement and Φ
⌢

= (Φαβγ) is
the generalized rotation. Γ

⌢
and Φ

⌢
are 2D-third-order tensors with the following symmetry: Φαβγ = Φβαγ .

Moreover, ∂ωk is the portion of edge on which kinematic boundary conditions apply: Û
−

d
=
(

Ud
i

)

is a

given displacement and H
∼

d =
(

Hd
αβ

)

is a symmetric second-order tensor related to a forced rotation

on the edge. These fields are almost identical to Reissner-Mindlin kinematically compatible fields where
the rotation vector is replaced by the generalized rotation Φ

⌢
. Assuming Φ

⌢
= i

∼
∼

· ϕ
−

in (A.1), where ϕ
−

is a vector representing rotations leads to Reissner-Mindlin-like kinematics: Γ
⌢

= i
∼
∼

·
(

ϕ
−

+∇
−

U3

)

= i
∼
∼

· γ
−

and χ
∼

= i
∼
∼

:
(

ϕ
−

⊗∇
−

)

. Thus in the general case, Reissner-Mindlin kinematics can be interpreted as a

restriction of Φ
⌢

to i
∼
∼

· ϕ
−

.

Appendix B. Justification of bounds for the shear forces stiffness of sandwich panels

In Section 5.3, is provided justification of bounds for the transverse shear stiffness of sandwich panels.
Here the computation details are given.
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B.1. Upper bounds for sandwich panels shear forces stiffness

B.1.1. Voigt upper bound

We choose the following kinematically compatible strain field:

ε+α3 =

{

0 on Y s±

γ

2
on Y c and ε+αβ = ε+33 = 0

ε
∼

+ enforces a uniform transverse shear strain in the core. ε
∼

+ is related to the following displacement field:

u
−

+ =







±
tc
2
γ
−

on Y s±

γ
−

y3 on Y c
and u+

3 = 0

With this trial strain field ε
∼

+ the potential energy (11) of the Reissner-Mindlin shear auxiliary problem

PRM becomes:

PRM
(

ε̂
∼

+) =
1

2
γα
〈

Ccα3β3
〉

c
γβ −

3

2

tc(h
2 − t2c)

h3 − t3c
γαQα

Minimizing PRM
(

ε̂
∼

+) with respect to γ
−

leads to:

γ
−

= ks
〈

G
∼

c
〉−1

c
·Q

−

Finally the potential energy for the Reissner-Mindlin auxiliary problem is:

PRM
(

ε̂
∼

+) = −
1

2
tQ
−

· k2s
〈

G
∼

c
〉−1

c
·Q

−

which leads to the Voigt upper bound:

∀Q
−

, tQ
−

· k2s
〈

G
∼

c
〉−1

c
·Q

−

< tQ
−

· f
∼

·Q
−

B.1.2. The upper bound from Kelsey et al.

It is possible to give a sharper bound. We still assume a uniform displacement û
−

K+ = tc
2 γ̂

−

in the the

skins and suggest the following auxiliary problem in the core:

PK+











































σ̂
∼

K+ · ∇̂
−

= 0

σ̂
∼

K+ = Ĉ
∼
∼

(

ŷ
−

)

:
(

∇̂
−
⊗s û

−

K+
)

û
−

K+ = ±
tc
2
γ
−

on interface faces ∂Y ±

int

σ̂
∼

K+ · n̂
−
skew-periodic on ∂Y c

l

û
−

K+(y1, y2, y3) (y1, y2)-periodic on ∂Y c
l

This auxiliary problem is exactly the one suggested by Kelsey et al. [13] for deriving upper bounds of
sandwich panels shear forces stiffness. The potential energy of this problem is:

PK+
(

ε̂
∼

K+
)

=
1

2
tγ
−

·
〈

t

ê
∼
−

K+ : Ĉ
∼
∼

: ê
∼
−

K+
〉

c
· γ
−

Then the potential energy of the core and the skins becomes:

PRM
(

ε̂
∼

K+
)

=
1

2
tγ
−

·
〈

t

ê
∼
−

K+ : Ĉ
∼
∼

: ê
∼
−

K+
〉

c
· γ
−

− ksγ
−

·Q
−
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and the minimization over γ
−

leads to:

PRM
(

ε̂
∼

K+
)

= −
1

2
tQ
−

· k2s

〈

t

ê
∼
−

K+ : Ĉ
∼
∼

: ê
∼
−

K+
〉−1

c
·Q

−

Then the related shear forces stiffness is: F
∼

K+ = 1
k2s

〈

t

ê
∼
−

K+ : Ĉ
∼
∼

: ê
∼
−

K+
〉

c
which is the upper bound for

shear forces stiffness from Kelsey et al..

B.2. Lower bound for sandwich panels shear forces stiffness

B.2.1. Reuss lower bound

We choose a statically compatible stress field of the form:

σ−

α3 =



















3

2

h2

h3 − t3c

(

1−

(

2y3
h

)2
)

Qα on Y s±

3

2

h2 − t2c
h3 − t3c

Qα on Y c

and σ−

αβ = σ−

33 = 0

σ
∼

− is uniform in the core and fulfills traction free boundary conditions on the upper and lower faces.
With this definition of σ

∼

−, the complementary energy becomes:

P ∗RM
(

σ̂
∼

−
)

=
1

2
tQ
−

·

(

k2s
t2c

〈

g
∼

c
〉

c
+

10t2c + 25tcts + 16t2s
15(tc + ts)2

tsk
2
sg
∼

s

)

·Q
−

B.2.2. The lower bound from Kelsey et al.

The complementary energy in the core derived with PK− problem (Problem 18) is:

P ∗K−

(

σ̂
∼

K−
)

=
1

2

〈

t

σ̂
∼

K− : Ŝ
∼
∼

c
(ŷ
−

) : σ̂
∼

K−
〉

c

it is a quadratic form of Q
−

which can be written as:

P ∗K−

(

σ̂
∼

K−
)

=
1

2
tQ
−

·
k2s
tc

g
∼

K− ·Q
−

Again, the complementary energy of problems in each skin PK−,s± (Problem 19) is:

P ∗K−,s±
(

σ̂
∼

K−
)

=
1

2

〈

t

σ̂
∼

K− : Ŝ
∼
∼

c
(ŷ
−

) : σ̂
∼

K−
〉

s±

it is a quadratic form of Q
−

where it is possible to bring out the correction for thick skins:

P ∗K−,s±
(

σ̂
∼

K−
)

=
1

2
tQ
−

· f
∼

K−,s± ·Q
−

Then the complementary energy of the whole unit-cell becomes:

P ∗RM
(

σ̂
∼

K−
)

=
1

2
tQ
−

·
(

f
∼

K− + f
∼

K−,s+ + f
∼

K−,s−
)

·Q
−

where f
∼

K− =
k2s
tc
g
∼

K− is the lower bound for shear forces stiffness from Kelsey et al..
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Appendix C. An exact shear forces stiffness for isotropic sandwich panels

We consider a sandwich panel made of isotropic materials having same Poisson’s coefficient: C
∼
∼

c = ǫC
∼
∼

s.
Direct application of Equation 4 without any contrast assumption, reveals that in this specific case
the transverse shear constitutive equation reduces to a Reissner-Mindlin model. Because the Bending-
Gradient theory is closely related to the approach from Whitney [37] for deriving transverse shear stress
distribution, similar results where derived in [46] and [20] but not interpreted this way. The corresponding
Reissner-Mindlin shear forces stiffness writes as:

F
∼

=

(

2η
(

4η2 + 6η + 3
)

+ ǫ
)2

ǫ2 + 2ǫη (5 + 5η + 10η2 + 25η3 + 16η4) + 30η2 (1 + η)
2

5tc
6
G
∼

c

where η = ts/tc. It turns out that this formula is sensitive to the scaling between ǫ and η when going
to the limit. More precisely, assuming η = 0 as well as η = ∞ leads to the shear forces stiffness of a
homogeneous plate (F

∼

= 5/6hG
∼

). Assuming only stiffness contrast between skins and core (ǫ = 0) leads
to the formula from Kelsey et al. [13]. Furthermore assuming η = 0 after ǫ = 0 lead to F

∼

= hG
∼

c which
is different from the limit when only η = 0.
More generally, setting a specific scaling between stiffness ratio and thickness ratio: ǫ = ηα lead to

different limit cases when η goes to 0. If α > 1 the skins stiffness increases fast enough to compensate
thickness reduction and the limit case is F

∼

= hG
∼

c. Whereas, if α < 1 the limit case is F
∼

= 5/6hG
∼

c.
Finally, α = 1 leads to F

∼

= 245/246hG
∼

c. Beyond the game with limit cases, this observation illustrates
the sensitivity to the order in which the assumptions are made by authors, when deriving shear forces
stiffness for sandwich panels and explains some contradictions already pointed out in the literature.
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