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FINITE-TIME STABILIZATION OF SYSTEMS OF CONSERVATION LAWS

ON NETWORKS

VINCENT PERROLLAZ AND LIONEL ROSIER

Abstract. We investigate the finite-time boundary stabilization of a 1-D first order quasilinear
hyperbolic system of diagonal form on [0,1]. The dynamics of both boundary controls are
governed by a finite-time stable ODE. The solutions of the closed-loop system issuing from
small initial data in Lip([0,1]) are shown to exist for all times and to reach the null equilibrium
state in finite time. When only one boundary feedback law is available, a finite-time stabilization
is shown to occur roughly in a twice longer time. The above feedback strategy is then applied
to the Saint-Venant system for the regulation of water flows in a network of canals.

1. Introduction

Solutions of certain asymptotically stable ODE may reach the equilibrium state in finite time.
This phenomenon, which is common when using feedback laws that are not Lipschitz continuous,
was termed finite-time stability in [5] and investigated in that paper.

A finite-time stabilizer is a feedback control for which the closed-loop system is finite-time
stable around some equilibrium. In some sense, it satisfies a controllability objective with
a control in feedback form. On the other hand, a finite-time stabilizer may be seen as an
exponential stabilizer yielding an arbitrarily large decay rate for the solutions to the closed-
loop system. This explains why some efforts were made in the last decade to construct finite-
time stabilizers for controllable systems, including the linear ones. See [29, 30] for some recent
developments and up-to-date references, and [2] for some connections with Lyapunov theory.

For PDEs, the relationship between exact controllability and rapid stabilization was inves-
tigated in [34, 22, 23]. (See also [24] for the rapid semiglobal stabilization of the Korteweg-de
Vries equation using a time-varying feedback law.)

To the best knowledge of the authors, the analysis of the finite-time stabilization of PDE
is not developed yet. However, the phenomenon of finite-time extinction exists naturally for
certain nonlinear evolution equations (see [36, 11, 6]). On the other hand, it is well-known
since [28] that solutions of the wave equation on a bounded domain may disappear when using
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“transparent” boundary conditions. For instance, the solution of the 1-D wave equation

∂2t y − ∂2xy = 0, in (0, T ) × (0, 1), (1.1)

∂xy(t, 1) = −∂ty(t, 1), in (0, T ), (1.2)

∂xy(t, 0) = ∂ty(t, 1), in (0, T ), (1.3)

(y(0, .), ∂ty(0, .)) = (y0, z0), in (0, 1), (1.4)

is finite-time stable in {(y, z) ∈ H1(0, 1)×L2(0, 1); y(0) + y(1) +
∫ 1
0 z(x)dx = 0}, with T = 1 as

extinction time (see e.g. [23, Theorem 0.5] for the details.) The condition (1.2) is transparent
in the sense that a wave y(t, x) = f(x − t) traveling to the right satisfies (1.2) and leaves the
domain at x = 1 without generating any reflected wave. Note that we can replace (1.3) by
the boundary condition y(t, 0) = 0 (or ∂xy(t, 0) = 0). Then a finite-time extinction still occurs
(despite the fact that waves bounce at x = 0) with an extinction time T = 2. We refer to [8] for
the analysis of the finite-time extinction property for a nonhomogeneous string with a viscous
damping at one extremity, and to [1] for the investigation of the finite-time stabilization of a
network of strings.

The finite-time stability of (1.1)-(1.4) is easily established when writing (1.1) as a first order
hyperbolic system

∂t

(

r
s

)

− ∂x

(

s
r

)

= 0

with (r, s) = (∂xy, ∂ty), and next introducing the Riemann invariants u = r − s, v = r + s that
solve the system of two transport equations

∂tu+ ∂xu = 0,

∂tv − ∂xv = 0.

The boundary conditions (1.2) and (1.3) yield u(t, 0) = v(t, 1) = 0 (and hence u(t, .) = v(t, .) = 0
for t ≥ 1), while the boundary conditions (1.2) and y(t, 0) = 0 yield v(t, 1) = 0 and u(t, 0) =
v(t, 0) (and hence v(t, .) = 0 for t ≥ 1 and u(t, .) = 0 for t ≥ 2).

The goal of this paper is to show that the finite-time extinction property can be realized for
1-D first order quasilinear hyperbolic systems

∂tY + ∂xF (Y ) = 0, (1.5)

that can be put in diagonal form, i.e. for which there is a smooth change of (dependent) variables
that transforms (1.5) into a system of two nonlinear transport equations of the form

∂tu+ λ(u, v)∂xu = 0, (1.6)

∂tv + µ(u, v)∂xv = 0, (1.7)

where µ(u, v) ≤ −c < c ≤ λ(u, v) are smooth functions and c > 0 is some constant. In practice,
the functions u and v are Riemann invariants of (1.5) (see e.g. [13]).

The generalization of the finite-time extinction property of the wave equation to systems of the
form (1.6)-(1.7) is the main aim of this paper. Of course, one could just consider homogeneous
Dirichlet conditions

u(t, 0) = v(t, 1) = 0,
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but this would impose to restrict ourselves to initial data (u0, v0) fulfilling the compatibility
conditions

u0(0) = v0(1) = 0.

Rather, we shall consider boundary conditions whose dynamics obey a finite-time stable ODE,
namely

d

dt
u(t, 0) = −Ksgn(u(t, 0))|u(t, 0)|γ , (1.8)

d

dt
v(t, 1) = −Ksgn(v(t, 1))|v(t, 1)|γ , (1.9)

((K, γ) ∈ (0,+∞) × (0, 1) being some constants) and supplement the system (1.6)-(1.7), (1.8)-
(1.9) with the initial condition

u(0, x) = u0(x), v(0, x) = v0(x). (1.10)

The first main result in this paper (Theorem 1) asserts that for any pair (u0, v0) of (small enough)
Lipschitz continuous initial data, system (1.6)-(1.7) and (1.8)-(1.10) admits a unique solution
in some class of Lipschitz continuous functions, and that this solution is defined for all times
t ≥ 0 and vanishes for roughly t ≥ 1/c. Theorem 1 is proved by using a fixed-point argument
(Schauder Theorem) and energy estimates.

Sometimes, the boundary condition at one extremity of the domain (say 0) is imposed by the
context, so that we cannot chose the condition u(t, 0) = 0 (or its generalization (1.8)) for the
Riemann invariant u. Then, we have to replace (1.8) by a boundary condition of the form

u(t, 0) = h(v(t, 0), t), (1.11)

for some (smooth) function h = h(v, t). The second main result in this paper (Theorem 2)
asserts that the system (1.6)-(1.7) and (1.9)-(1.11) is still locally well-posed with roughly an
extinction time T = 2/c. The result is obtained for small initial data and for ||∂th||∞ small
enough.

The results obtained in this paper can be applied to:

(1) the p−system

∂tr − ∂xs = 0, (1.12)

∂ts− ∂x[p(r)] = 0, (1.13)

where p ∈ C1(R) is any given function;
(2) the shallow water equations (also called Saint-Venant equations [33])

∂tH + ∂x(HV ) = 0, (1.14)

∂tV + ∂x(
V 2

2
+ gH) = 0, (1.15)

where H is the water depth and V (t, x) the averaged horizontal velocity of water in a
canal, and g the gravitation constant;

(3) Euler’s equations for barotropic compressible gas

∂tρ+ ∂x(ρV ) = 0, (1.16)

∂t(ρV ) + ∂x(ρV
2 + p) = 0, (1.17)
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where ρ is the mass density, V the velocity, and p = p(ρ) the pressure of the gas.
(4) The same strategy could in theory be applied to any system possessing Riemann invari-

ants. Riemann invariants exist for most 2× 2 systems, and also for some larger systems
(e.g. the 3×3 system of Euler’s equations for compressible gas, see [35, chapters 18,20]).

For the sake of shortness, we will limit ourselves to the stabilization of Saint-Venant equations,
and will give an extension of the above finite-time stabilization results to a tree-shaped network
of canals. The obtained extinction time will be roughly d/c, where d denotes the depth of the
tree (Theorem 5).

There is a huge literature about the controllability and stabilization of first order hyperbolic
equations (see e.g. [15, 14, 26, 31, 27, 16, 19]). In particular, the control of Saint-Venant
equations has attracted the attention of the control community because of its relevance to the
regulation of water flows in networks of canals or rivers. We refer the reader to e.g. [7, 37, 25,
20, 17, 4, 12, 18, 3], where Riemann invariants played often a great role in the design of the
controls. Our main contribution here is to notice that a finite-time stabilization can be achieved
as well, i.e. that bounces of waves at the two ends of the domain can be avoided.

A numerical scheme and some numerical experiments for the finite-time stabilization of water
flows in a canal may be found in [32], in which certain results of this paper were announced.

The paper is outlined as follows. Classical but important properties of linear transport equa-
tions are recalled in Section 2. In Section 3, we introduce two boundary controls whose dynamics
are governed by a finite-time stable ODE, and prove the existence and uniqueness of a solution
to the closed-loop system, and the fact that this solution reaches the null state in finite time. In
Section 4, we investigate the same problem with only one boundary control, the other boundary
condition being imposed by the physical context. In the last section, we apply the results in
Sections 3 and 4 to the regulation of water flows in a canal with one or two boundary controls,
and extend the finite-time stabilization results to any tree-shaped network of canals.

2. Some background about linear transport equations

2.1. Notations. C0([0, T ]× [0, 1]) denotes the space of continuous functions u : [0, T ]× [0, 1] →
R. It is endowed with the norm

||u||C0([0,T ]×[0,1]) = sup
(t,x)∈[0,T ]×[0,1]

|u(t, x)|.

The norm of the space Lp(0, 1) is denoted || · ||p for 1 ≤ p ≤ ∞. Lip([0, 1]) denotes the space
of Lipschitz continuous functions u : [0, 1] → R. It may be identified with the Sobolev space
W 1,∞(0, 1). Lip([0, 1]) is endowed with the W 1,∞(0, 1)-norm; that is

||u||Lip([0,1]) = ||u||W 1,∞(0,1) = ||u||∞ + ||u′||∞·

We use similar norms for Lip(R), Lip([0, T ]× [0, 1]), etc.

2.2. Linear transport equation. In this section we consider the initial boundary-value prob-
lem for the following linear transport equation

∂ty + a(t, x)∂xy = 0. (2.1)
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We assume thereafter that

a ∈ C
0([0, T ] × [0, 1]) ∩ L∞(0, T ; Lip([0, 1])), (2.2)

a(t, x) ≥ c > 0, ∀(t, x) ∈ [0, T ]× [0, 1], (2.3)

where c denotes some constant. Note that the case when a(t, x) ≤ −c < 0 can be reduced to
(2.3) by the transformation x→ 1− x.

2.3. Properties of the flow. By (2.2), a is uniformly Lipschitz continuous in the variable x,
with say a Lipschitz constant L = ||a||L∞(0,T ;Lip([0,1])). Since we intend to use the method of
characteristics to solve (2.1), we need to study the flow associated with a.

Definition 1. For (t, x) ∈ [0, T ] × [0, 1], let φ(., t, x) denote the C1 maximal solution to the
Cauchy problem

{

∂sφ(s, t, x) = a(s, φ(s, t, x)),

φ(t, t, x) = x,
(2.4)

which is defined on a certain subinterval [e(t, x), f(t, x)] of [0, T ] (which is closed since [0, 1] is
compact), and with possibly e(t, x) and/or f(t, x) = t. Let

Domφ = {(s, t, x); (t, x) ∈ [0, T ] × [0, 1], s ∈ [e(t, x), f(t, x)]}
denote the domain of φ.

Note that
e(t, x) > 0 ⇒ φ(e(t, x), t, x) = 0. (2.5)

We take into account the influence of the boundaries by introducing the sets

P := {(s, φ(s, 0, 0)); s ∈ [0, f(0, 0)]},
I := {(t, x) ∈ [0, T ]× [0, 1] \ P ; e(t, x) = 0},
J := {(t, x) ∈ [0, T ]× [0, 1] \ P ; φ(e(t, x), t, x) = 0}.

(See Figure 1.) Note that both I and J are open in [0, T ] × [0, 1].

�(0; t; x)
T t

(t; x) 2 I
(t; x) 2 P

1
x

e(t; x)
(t; x) 2 J

Figure 1. Partition of [0, T ] × [0, 1] into I ∪ P ∪ J .
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Proposition 2.1. Let a satisfying (2.2), let L = ||a||L∞(0,T ;Lip([0,1])), and let

K := max(1, ||a||C0([0,T ]×[0,1]))e
LT .

Then φ is K-Lipschitz on its domain; that is, for all (s1, t1, x1), (s2, t2, x2) ∈ Domφ

|φ(s1, t1, x1)− φ(s2, t2, x2)| ≤ K (|s1 − s2|+ |t1 − t2|+ |x1 − x2|) . (2.6)

The proof of Proposition 2.1 is given in appendix, for the sake of completeness.
We can now study the regularity of e.

Proposition 2.2. Let a be as in Proposition 2.1, let (t, x) ∈ [0, T ]× [0, 1], let {an} ⊂ C0([0, T ]×
[0, 1]) ∩ L∞(0, T ; Lip([0, 1])) be a sequence such that ||an||L∞(0,T ;Lip([0,1])) is bounded and

||an − a||C0([0,T ]×[0,1]) → 0 as n→ +∞,

and let {(tn, xn)} ⊂ [0, T ]× [0, 1] be a sequence such that (tn, xn) → (t, x). Then

en(tn, xn) → e(t, x). (2.7)

Proof. We use again the extension operator Π introduced in the proof of Proposition 2.1 (see

the appendix) and set ãn = Π(an) and ã = Π(a). Let φ̃n and φ̃ denote their respective flows.

Recall that φ̃ and φ coincide on Dom φ (resp. φ̃n and φn coincide on Dom φn). From

|∂s[φ̃n(s, t, x)− φ̃(s, t, x)]| = |ãn(s, φ̃n(s, t, x)) − ã(s, φ̃(s, t, x))|
≤ |ãn(s, φ̃n(s, t, x)) − ã(s, φ̃n(s, t, x))|

+|ã(s, φ̃n(s, t, x))− ã(s, φ̃(s, t, x))|
≤ ||ãn − ã||L∞(R2) + ||ã||L∞(R;Lip(R))|φ̃n(s, t, x)− φ̃(s, t, x)|,

(5.39), (5.40) and Gronwall’s lemma, we infer that for all n ≥ 0 and all (s, t, x) ∈ [0, T ]2 × [0, 1],
we have

|(φ̃n − φ̃)(s, t, x)| ≤ T ||an − a||C0([0,T ]×[0,1])e
T ||a||L∞(0,T ;Lip([0,1])) . (2.8)

It may be seen that

en(tn, xn) = min{s ∈ [0, tn]; ∀r ∈ [s, tn], φ̃n(r, tn, xn) ∈ [0, 1]}.
• If (t, x) ∈ I, then since we have excluded the characteristic coming from (0, 0), we have
that

inf
s∈[0,t]

dist((s, φ(s, t, x)), [0, t] × {0}) > 0,

where dist((t, x), F ) = inf(t′,x′)∈F (|t − t′| + |x − x′|). So we infer from (2.8) that for n
large enough φn(., t, x) is defined on [0, t], i.e. en(t, x) = 0. Then (2.7) is obvious.

• From now on, we assume that (t, x) ∈ J ∪ P . We claim that

lim sup
n→∞

en(tn, xn) ≤ e(t, x). (2.9)

Indeed, if e(t, x) = t, then

lim sup
n→∞

en(tn, xn) ≤ lim sup
n→∞

tn = t = e(t, x).
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Otherwise, we have e(x, t) < t, and using (2.3) we obtain for any ǫ ∈ (0, (t− e(t, x))/2),

cǫ ≤ φ(s, t, x) ≤ 1− cǫ, ∀s ∈ [e(t, x) + ǫ, t− ǫ]. (2.10)

However, we have for n large enough

||φ̃n − φ̃||C0([0,T ]2×[0,1]) ≤
cǫ

4
, (2.11)

|φ̃n(s, tn, xn)− φ̃n(s, t, x)| ≤
cǫ

4
, (2.12)

the second estimate coming from the uniform bound on ||an||L∞(0,T ;Lip([0,1])) and Propo-
sition 2.1. Combining (2.10), (2.11) and (2.12), we see that for n large and for all
s ∈ [e(t, x) + ǫ, t− ǫ], φn(s, tn, xn) is well defined and

φn(s, tn, xn) ≥
cǫ

2
.

This yields lim supn→∞ en(tn, xn) ≤ e(t, x) + ǫ, and since ǫ was arbitrarily small, (2.9)
follows.

If (t, x) ∈ P the proof of (2.7) is complete, for lim infn→∞ en(tn, xn) ≥ 0 = e(t, x).
Assume finally that (t, x) ∈ J , so that e(t, x) > 0. Pick any s ∈ (0, e(t, x)). We obviously

have φ̃(s, t, x) < 0, thanks to the lower bound on ã (see (5.41)). But we know from (2.8)
and Proposition 2.1 that

φ̃n(s, tn, xn) →
n→+∞

φ̃(s, t, x),

and hence for n large enough, φ̃n(s, tn, xn) < 0 and s < e(tn, xn). Thus, we conclude
that lim infn→∞ en(tn, xn) ≥ s. As s was arbitrarily close to e(t, x), we end up with

lim inf
n→∞

en(tn, xn) ≥ e(t, x).

The proof of (2.7) is complete. �

Remark 1. (1) For an = a, this shows that e is continuous on [0, T ] × [0, 1].
(2) Since [0, T ]×[0, 1] is compact, Proposition 2.2 implies that en converges uniformly toward

e on [0, T ] × [0, 1].

Proposition 2.3. If, in addition to (2.2)-(2.3), we have that ∂xa ∈ C0([0, T ]× [0, 1]), then φ is
C1 on Dom φ and e is C1 on [0, T ]× [0, 1] \ P , with for (t, x) ∈ J

∂te(t, x) =
a(t, x) exp(−

∫ t

e(t,x)∂xa(r, φ(r, t, x))dr)

a(e(t, x), 0)
, ∂xe(t, x) = −

exp(−
∫ t

e(t,x)∂xa(r, φ(r, t, x))dr)

a(e(t, x), 0)
·

(2.13)

Proof. The regularity of φ is a classical result (see e.g. [21]). If (t, x) ∈ I, e(t, x) = 0 and the
result is obvious. For (t, x) ∈ J ∩(0, T )×(0, 1) we have φ(e(t, x), t, x) = 0 and ∂sφ(e(t, x), t, x) >
0, therefore the Implicit Function Theorem allows us conclude. Finally, for (t, x) ∈ J \ (0, T )×
(0, 1), it is sufficient to pass to the limit in (2.13). �
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Proposition 2.4. Let a fulfill (2.2) and (2.3), and let L = ||a||L∞(0,T ;Lip([0,1])). Then the

function e is K̄-Lipschitz on [0, T ]× [0, 1] where K̄ is given by

K̄ = c−1 max
(

1, ||a||C0([0,T ]×[0,1])

)

eLT .

Proof. Consider (t1, x1) and (t2, x2) in [0, T ]×[0, 1]. Let us also suppose that e(t1, x1) > e(t2, x2),
the other case being symmetrical. We infer from Proposition 2.1 that

|φ(e(t1, x1), t1, x1)− φ(e(t1, x1), t2, x2)| ≤ max
(

1, ||a||C0([0,T ]×[0,1])

)

eLT (|t1 − t2|+ |x1 − x2|).
(2.14)

Since e(t1, x1) > 0, we have that φ(e(t1, x1), t1, x1) = 0, and

φ(e(t1, x1), t2, x2) ≥ c(e(t1, x1)− e(t2, x2)) ≥ 0. (2.15)

Therefore we end up with

|e(t1, x1)− e(t2, x2)| ≤ K̄(|t1 − t2|+ |x1 − x2|). (2.16)

�

2.4. Strong solutions. Let a ∈ C0([0, T ];C1([0, 1])), yl ∈ C1([0, T ]), and y0 ∈ C1([0, 1]) be
given, and assume that the following compatibility conditions hold:

yl(0) = y0(0), y′l(0) + a(0, 0)y′0(0) = 0. (2.17)

We consider the following boundary initial value problem:

∂ty + a(t, x)∂xy = 0, (t, x) ∈ (0, T ) × (0, 1), (2.18)

y(t, 0) = yl(t), t ∈ (0, T ), (2.19)

y(0, x) = y0(x), x ∈ (0, 1). (2.20)

A strong solution of (2.18)-(2.20) is any function y ∈ C1([0, T ] × [0, 1]) such that (2.18)-(2.20)
hold pointwise.

We define a function y : [0, T ]× [0, 1] → R in the following way:

y(t, x) =

{

yl(e(t, x)) if (t, x) ∈ J,

y0(φ(0, t, x)) if (t, x) ∈ I ∪ P. (2.21)

Proposition 2.5. Let y be as in (2.21). Then y is a strong solution of (2.18)-(2.20). Besides,
we have the estimates

||y||C0([0,T ]×[0,1]) ≤ max
(

||y0||C0([0,1]), ||yl||C0([0,T ])

)

, (2.22)

||∇y||C0([0,T ]×[0,1]) ≤ max

(

||y′0||C0([0,1]), ||y′l||C0([0,T ])

||a||C0([0,T ]×[0,1])

c

)

exp
(

T ||∂xa||C0([0,T ]×[0,1])

)

.

(2.23)



FINITE-TIME STABILIZATION OF SYSTEMS OF CONSERVATION LAWS ON NETWORKS 9

Proof. One can see that y is of class C1 on I and J , with the derivatives given by:

∂ty(t, x) = y′l(e(t, x))
a(t, x)

a(e(t, x), 0)
exp

(

−
∫ t

e(t,x)
∂xa(s, φ(s, t, x))ds

)

, ∀(t, x) ∈ J,

∂xy(t, x) = −y′l(e(t, x))
1

a(e(t, x), 0)
exp

(

−
∫ t

e(t,x)
∂xa(s, φ(s, t, x))ds

)

, ∀(t, x) ∈ J,

∂ty(t, x) = −y′0(φ(0, t, x))a(t, x) exp
(

−
∫ t

0
∂xa(s, φ(s, t, x))ds

)

, ∀(t, x) ∈ I,

∂xy(t, x) = y′0(φ(0, t, x)) exp

(

−
∫ t

0
∂xa(s, φ(s, t, x))ds

)

, ∀(t, x) ∈ I.

It follows from the first equation in (2.17) and the continuity of e that y is continuous at each
point of P . Note that y is differentiable in directions t and x in the following way: for all
t ∈ (0, f(0, 0))

lim
h→0+

y(t+ h, φ(t, 0, 0))

h
= y′l(0)

a(t, φ(t, 0, 0))

a(0, 0)
exp

(

−
∫ t

0
∂xa(s, φ(s, 0, 0))ds

)

,

lim
h→0−

y(t+ h, φ(t, 0, 0))

h
= −y′0(0)a(t, φ(t, 0, 0)) exp

(

−
∫ t

0
∂xa(s, φ(s, 0, 0))ds

)

,

lim
h→0+

y(t, φ(t, 0, 0) + h)

h
= y′0(0) exp

(

−
∫ t

0
∂xa(s, φ(s, 0, 0))ds

)

,

lim
h→0−

y(t, φ(t, 0, 0) + h)

h
= −y′l(0)

1

a(0, 0)
exp

(

−
∫ t

0
∂xa(s, φ(s, 0, 0))ds

)

.

Using the second equation in (2.17), we see that y ∈ C1([0, T ]× [0, 1]). The fact that y satisfies
(2.1) follows from a straightforward calculation. �

2.5. Weak solutions. Now we consider the case when a ∈ C0([0, T ] × [0, 1]) and ∂xa ∈
L∞((0, T ) × (0, 1)). We still assume that

a(t, x) ≥ c > 0, ∀(t, x) ∈ [0, T ] × [0, 1]. (2.24)

We begin by introducing the space:

T = {ψ ∈ C
1([0, T ]× [0, 1]); ψ(t, 1) = ψ(T, x) = 0 ∀(t, x) ∈ [0, T ]× [0, 1]}. (2.25)

We say that a function y ∈ L1((0, T )× (0, 1)) is a weak solution of (2.18)-(2.20) if for any ψ ∈ T

we have
∫∫

(0,T )×(0,1)
y(t, x)(ψt(t, x) + a(t, x)ψx(t, x) + ax(t, x)ψ(t, x))dtdx

+

∫ T

0
ψ(t, 0)yl(t)a(t, 0)dt +

∫ 1

0
ψ(0, x)y0(x)dx = 0. (2.26)

Using the results of Section 2.4, it is clear that a strong solution is also a weak solution. Con-
versely, any weak solution which is in C1([0, T ] × [0, 1]) is a strong solution. Note that the
definition of weak solution makes sense for yl ∈ L1(0, T ) and y0 ∈ L1(0, 1).
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Proposition 2.6. Let us suppose that a, yl and y0 are uniformly Lipschitz continuous with
Lipschitz constants L, Ll and L0, respectively, and that yl(0) = y0(0). Then the function y
defined by

y(t, x) =

{

yl(e(t, x)) if (t, x) ∈ J,

y0(φ(0, t, x)) if (t, x) ∈ I ∪ P, (2.27)

is a weak solution of (2.18)-(2.20). Furthermore, y is M -Lipschitz continuous on [0, T ] × [0, 1]
with M defined by

M := max(
Ll

c
, L0)max

(

1, ||a||C0([0,T ]×[0,1])

)

eLT . (2.28)

Finally, y is the unique solution in the class Lip([0, T ] × [0, 1]) of system (2.18)-(2.20), with
(2.18) understood in the distributional sense, and (2.19)-(2.20) pointwise.

Proof. Using standard regularization arguments, it is possible to find an ∈ C1([0, T ] × [0, 1]),
yn0 ∈ C1([0, 1]) and ynl ∈ C1([0, 1]) such that:

∀ǫ ∈ (0,min(T, 1)) ||an − a||C0([0,T ]×[0,1]) + ||yn0 − y0||C0([ǫ,1]) + ||ynl − yl||C0([ǫ,T ]) →
n→+∞

0,

(2.29)

||an||C0([0,T ]×[0,1]) ≤ 2||a||C0([0,T ]×[0,1]), ||∂xan||L∞((0,T )×(0,1)) ≤ 2||∂xa||L∞((0,T )×(0,1)), (2.30)

||yn0 ||C0([0,1]) ≤ 2||y0||C0([0,1]), ||yn0 ′||L∞(0,1) ≤ 2||y′0||L∞(0,1), (2.31)

||ynl ||C0([0,T ]) ≤ 2||yl||C0([0,T ]), ||ynl ′||L∞(0,T ) ≤ 2||y′l||L∞(0,T ), (2.32)

yn0 (0) = ynl (0), yn0
′(0) = ynl

′(0) = 0 ∀n ∈ N. (2.33)

Using Proposition 2.5 we infer the existence of a strong solution yn ∈ C1([0, T ] × [0, 1]) of
{

∂ty
n + an∂xy

n = 0,

yn(t, 0) = ynl (t), yn(0, x) = yn0 (x),
∀(t, x) ∈ (0, T ) × (0, 1). (2.34)

yn is given by (2.21), with yl, y0, e and φ replaced by ynl , y
n
0 , e

n and φn, respectively. Note that
(t, x) ∈ In (resp. (t, x) ∈ Jn) for n large enough if (t, x) ∈ I (resp. (t, x) ∈ J). Using Proposition
2.2, (2.8) and (2.21), we see that

yn(t, x) →
n→+∞

y(t, x), ∀(t, x) ∈ I ∪ J. (2.35)

Note that P = [0, T ]×[0, 1]\(I∪J) has zero Lebesgue measure. An application of the dominated
convergence theorem yields

||yn − y||L1((0,T )×(0,1)) →
n→+∞

0.

Using the other convergence assumptions about an, ynl , and yn0 , we can pass to the limit in
(2.26). This shows that y is a weak solution of (2.1).

To prove the regularity of y we distinguish two cases.
Assume first that both (t1, x1) and (t2, x2) are in J ∪ P . Using (2.21) and Proposition 2.4, we
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have that

|y(t1, x1)− y(t2, x2)| = |yl(e(t1, x1))− yl(e(t2, x2))|
≤ Ll|e(t1, x1)− e(t2, x2))|

≤ Ll

c
max

(

1, ||a||C0([0,T ]×[0,1])

)

eLT (|t1 − t2|+ |x1 − x2|).

Next, if we assume that (t1, x1) and (t2, x2) are in I ∪P , then we can use (2.21) and Proposition
2.1 to obtain that

|y(t1, x1)− y(t2, x2)| = |y0(φ(0, t1, x1))− y0(φ(0, t2, x2))|
≤ L0|φ(0, t1, x1)− φ(0, t2, x2)|

≤ L0 max
(

1, ||a||C0([0,T ]×[0,1])

)

eLT (|t1 − t2|+ |x1 − x2|).

Finally, if (t1, x1) ∈ J and (t2, x2) ∈ I, we consider an intermediate point on P belonging to
the boundary of the rectangle [min(t1, t2),max(t1, t2)] × [min(x1, x2),max(x1, x2)] and use the
estimates above.

Let us now check that y is the only solution to (2.18)-(2.20) in the class Lip([0, T ] × [0, 1]).
First, picking any ψ ∈ C∞

0 ((0, T )×(0, 1)) in (2.26), we see that (2.18) holds in D′((0, T )×(0, 1)).
Note that each term in (2.18) belongs to L∞((0, T )× (0, 1)), so that (2.18) holds also pointwise
a.e. Scaling in (2.18) by ψ ∈ T and comparing to (2.26), we obtain that (2.19) and (2.20)
hold a.e., and also everywhere by continuity of yl, y0, and y. Thus y solves (2.18)-(2.20). If
ỹ ∈ Lip([0, T ] × [0, 1]) is another solution of (2.18)-(2.20), then ŷ := y − ỹ ∈ Lip([0, T ] × [0, 1])
solves

∂tŷ + a(t, x)∂xŷ = 0 in D
′((0, T ) × (0, 1)), (2.36)

ŷ(t, 0) = 0 in (0, T ), (2.37)

ŷ(0, x) = 0 in (0, 1). (2.38)

Scaling in (2.36) by 2ŷ, integrating by parts and using (2.3), (2.37), and (2.38), we obtain

||ŷ(t)||22 =

∫ t

0

∫ 1

0
(∂xa)|ŷ|2dxds−

∫ t

0
a(t, 1)|ŷ(t, 1)|2dt ≤ L

∫ t

0
||ŷ(s)||22ds.

This yields ŷ ≡ 0 by Gronwall’s lemma. The proof of Proposition 2.6 is complete. �

3. Finite-time boundary stabilization of a system of two conservation laws

In this section, we consider the system
{

∂tu+ λ(u, v)∂xu = 0,

∂tv + µ(u, v)∂xv = 0,
(t, x) ∈ (0,+∞)× (0, 1). (3.1)

where λ and µ are given functions with

λ, µ ∈ C
∞(R2,R), (3.2)

µ(u, v) ≤ −c < 0 < c ≤ λ(u, v), ∀(u, v) ∈ R
2 (3.3)
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for some constant c > 0. We aim to prescribe a control in a feedback form on the boundary
conditions u(t, 0) and v(t, 1) so that for some time T we have for any small (in Lip([0, 1])) initial
data u0 and v0

u(T, x) = v(T, x) = 0, ∀x ∈ (0, 1). (3.4)

Remark 2. (1) If we intend to stabilize the system around a non null (but constant) equi-
librium state (ū, v̄) ∈ R

2, it is sufficient to consider the new unknowns ũ := u − ū,
ṽ := v − v̄ that satisfy a system similar to (3.1), and to stabilize (ũ, ṽ) around (0, 0).

(2) Note that, since we are only interested in proving a local stabilization result, the condition
(3.3) is not too much restrictive. It should be seen as λ(ū, v̄) > 0 and µ(ū, v̄) < 0.

After introducing the boundary feedback law, we will show the existence and uniqueness of
the solution to the closed loop system and check that the property (3.4) indeed holds for this
choice of feedback law.

We now come back to the quasilinear system (3.1) that we complete as follows:
{

∂tu+ λ(u, v)∂xu = 0, (t, x) ∈ (0,+∞)× (0, 1),

∂tv + µ(u, v)∂xv = 0, (t, x) ∈ (0,+∞) × (0, 1),
(3.5)











d

dt
u(t, 0) = −Ksgn(u(t, 0))|u(t, 0)|γ , t > 0,

d

dt
v(t, 1) = −Ksgn(v(t, 1))|v(t, 1)|γ , t > 0,

(3.6)

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1) (3.7)

with (K, γ) ∈ (0,+∞) × (0, 1) arbitrarily chosen. We aim to use Schauder fixed-point theorem
to prove the local in time existence of solutions (u, v) of (3.5)-(3.7) in some class of Lipschitz
continuous functions. By solution, we mean that (3.5) is satisfied in the distributional sense,
and that (3.6)-(3.7) are satisfied pointwise. Actually, we shall use the results of the previous
section and define u as the weak solution of the transport equation (2.18)-(2.20) with a(t, x) =
λ(ũ(t, x), ṽ(t, x)) for some given pair (ũ, ṽ) in the same class, yl(t) = ul(t) (see below (3.10)),
and y0(x) = u0(x), and similarly for v.

3.1. Notations. Let C1 > 0 and C2 > 0 be given, and pick any u0, v0 ∈ Lip([0, 1]) with

max(||u0||∞, ||v0||∞) ≤ C1, (3.8)

max(||u′0||∞, ||v′0||∞) ≤ C2. (3.9)

Let

T :=
1

c
+

C1−γ
1

(1− γ)K
·

We define ul and vr as the solutions of the following ODEs










d

dt
ul(t) = −Ksgn(ul(t))|ul(t))|γ , ul(0) = u0(0),

d

dt
vr(t) = −Ksgn(vr(t))|vr(t)|γ , vr(0) = v0(1).

(3.10)
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An obvious calculation gives

ul(t) =







sgn(u0(0))
(

|u0(0)|1−γ − (1− γ)Kt
)

1
1−γ if 0 ≤ t ≤ |u0(0)|1−γ

(1−γ)K ,

0 if t ≥ |u0(0)|1−γ

(1−γ)K ,

and

vr(t) =







sgn(v0(1))
(

|v0(1)|1−γ − (1− γ)Kt
)

1
1−γ if 0 ≤ t ≤ |v0(1)|1−γ

(1−γ)K ,

0 if t ≥ |v0(1)|1−γ

(1−γ)K ,

Clearly

∀t ≥ T − 1

c
, vr(t) = ul(t) = 0, (3.11)

max(||ul||∞, ||vr||∞) ≤ C1, (3.12)

max(||u′l||∞, ||v′r||∞) ≤ KCγ
1 . (3.13)

Let us also introduce

M1 := max
(

||λ||C0([−C1,C1]2), ||µ||C0([−C1,C1]2)

)

, (3.14)

M2 := max
(

||∂uµ||C0([−C1,C1]2), ||∂vµ||C0([−C1,C1]2), ||∂uλ||C0([−C1,C1]2), ||∂vλ||C0([−C1,C1]2)

)

.

(3.15)

Let us pick a positive number C3. Let D denote the domain

D :=
{

(u, v) ∈ Lip([0, T ] × [0, 1])2; max(||u||∞, ||v||∞) ≤ C1, and u and v are C3-Lipschitz
}

.

(3.16)
Let us equip the domainD with the topology of the uniform convergence. Then, by Ascoli-Arzela
theorem, D is a compact set in C0([0, T ]× [0, 1])2.

The main result in this section is the following

Theorem 1. Assume that C1 > 0 and C2 > 0 are such that

TM2 max
(

1,M1

)

max
(KCγ

1

c
, C2

)

≤ 1

2e
(3.17)

and let C3 = (2TM2)
−1. Pick any pair (u0, v0) ∈ Lip([0, 1])2 satisfying (3.8)-(3.9). Then there

exists a unique solution (u, v) of (3.5)-(3.7) in the class D. Furthermore, the solution is global
in time with u(t, .) = v(t, .) = 0 for t ≥ T . Finally, the equilibrium state (0, 0) is stable in
Lip([0, 1])2 for (3.5)-(3.7); that is

||(u, v)||L∞(R+;Lip([0,1])2) → 0 as ||(u0, v0)||Lip([0,1])2 → 0. (3.18)

The first task consists in constructing a solution of the closed loop system as a fixed point of
a certain operator.
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3.2. Definition of the operator. If (ũ, ṽ) ∈ D are given, we define (u, v) = F(ũ, ṽ) as follows:
the function u is the weak solution of the system

{

∂tu+ λ(ũ, ṽ)∂xu = 0,

u(t, 0) = ul(t), u(0, x) = u0(x),
∀(t, x) ∈ [0, T ] × [0, 1], (3.19)

and the function v is the weak solution of the system
{

∂tv + µ(ũ, ṽ)∂xv = 0,

v(t, 1) = vr(t), v(0, x) = v0(x),
∀(t, x) ∈ [0, T ]× [0, 1]. (3.20)

3.3. Stability of the domain. In this part, we show that for a certain choice of C1, C2, C3,
we have

F(D) ⊂ D.

We first apply the results of Section 2 to get the following

Lemma 1. Let C1, C2, C3 be any positive numbers, and let u0, v0 ∈ Lip([0, 1]) satisfying (3.8)-
(3.9). For given (ũ, ṽ) ∈ D, let (u, v) = F(ũ, ṽ). Then the functions u and v are Lipschitz
continuous on [0, T ] × [0, 1] and they satisfy the following estimates

max(||u||C0([0,T ]×[0,1]), ||v||C0([0,T ]×[0,1])) ≤ C1, (3.21)

max(||∂xu||L∞((0,T )×(0,1)), ||∂xv||L∞((0,T )×(0,1)), ||∂tu||L∞((0,T )×(0,1)), ||∂tv||L∞((0,T )×(0,1)))

≤ max
(KCγ

1

c
, C2

)

max
(

1,M1

)

exp
(

2TM2C3

)

.

(3.22)

Proof. Estimate (3.21) follows directly from (3.19), (3.20), (2.27), (3.8) and (3.12).
Estimate (3.22) can be deduced applying (2.28) for (3.19) and (3.20), and using (3.9), (3.13),

(3.14), (3.15) and (3.16). �

Thanks to Lemma 1, we see that the domain D is stable by F as soon as

max
(KCγ

1

c
, C2

)

max
(

1,M1

)

exp
(

2TM2C3

)

≤ C3. (3.23)

This can be written as

max
(KCγ

1

c
, C2

)

≤
C3 exp

(

− 2TM2C3

)

max
(

1,M1

) . (3.24)

For given C1 and C2, T,M1 and M2 are fixed. Note that T , M1 and M2 are independent of
C2, and that they are nondecreasing in C1. Therefore, as a function of C3 the supremum of the
right-hand side of (3.24) is attained for C3 = (2TM2)

−1, and for this value of C3 the condition
on C1 and C2 for the domain to be stable reads

TM2max
(

1,M1

)

max
(KCγ

1

c
, C2

)

≤ 1

2e
. (3.25)

But the term in the left-hand side of (3.25) tends to 0 when C1 and C2 tend to 0, so that for
C1, C2 small enough the condition (3.25) is satisfied and D is stable by F.
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3.4. Continuity of the operator. In this part we consider a sequence {(ũn, ṽn)} ⊂ D and a
couple (ũ, ṽ) ∈ D such that

max
(

||ũn − ũ||C0([0,T ]×[0,1]), ||ṽn − ṽ||C0([0,T ]×[0,1])

)

→
n→+∞

0. (3.26)

Let us now define

(un, vn) = F(ũn, ṽn) for n ≥ 0, and (u, v) = F(ũ, ṽ). (3.27)

Our goal in this subsection is to show that

max
(

||un − u||C0([0,T ]×[0,1]), ||vn − v||C0([0,T ]×[0,1])

)

→
n→+∞

0. (3.28)

We need the following

Lemma 2. For almost all (t, x) ∈ [0, T ] × [0, 1], we have

(un(t, x), vn(t, x)) →
n→+∞

(u(t, x), v(t, x)). (3.29)

Proof. Let us show that un(t, x) → u(t, x), the convergence vn(t, x) → v(t, x) being similar.
The fact that (ũn, ṽn) converges uniformly toward (ũ, ṽ) on [0, T ]× [0, 1] implies that λ(ũn, ṽn)

converges uniformly toward λ(ũ, ṽ) on [0, T ] × [0, 1]. Furthermore, since (ũn, ṽn) ∈ D for all n,
we see that the functions λ(ũn, ṽn) are uniformly Lipschitz continuous for n ≥ 0. This will allow
us to use Proposition 2.2. To this end, we consider the flow φn (resp. φ) of λ(ũn, ṽn) (resp.
λ(ũ, ṽ)). In the same way, we define en and e, In and I, Jn and J , Pn and P . Using (2.27) we
have that

un(t, x) =

{

ul(en(t, x)) if (t, x) ∈ Jn,

u0(φn(0, t, x)) if (t, x) ∈ In ∪ Pn,
(3.30)

and also

u(t, x) =

{

ul(e(t, x)) if (t, x) ∈ J,

u0(φ(0, t, x)) if (t, x) ∈ I ∪ P. (3.31)

We infer from Proposition 2.2 that

en(t, x) →
n→+∞

e(t, x), ∀(t, x) ∈ [0, T ]× [0, 1]. (3.32)

This shows in particular that if (t, x) ∈ J , then e(t, x) > 0 and hence en(t, x) > 0 for n large
enough, i.e. (t, x) ∈ Jn for n large enough. Therefore

un(t, x) →
n→+∞

u(t, x), ∀(t, x) ∈ J.

Now if (t, x) ∈ I, then e(t, x) = 0 and φ(0, t, x) > 0. Since λ ≥ c > 0, this implies the existence
of ǫ > 0 such that

ǫ < φ(s, t, x), ∀s ∈ [0, t]. (3.33)

Combined with (2.8), this shows that for n large enough en(t, x) = 0 and φn(0, t, x) → φ(0, t, x),
so we conclude that

un(t, x) = u0(φn(0, t, x)) →
n→+∞

u0(φ(0, t, x)) = u(t, x). (3.34)

Finally, P is clearly negligible and I ∪ P ∪ L = [0, T ]× [0, 1]. �
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To strengthen this convergence, we just need to recall that for every n ≥ 0, we have (un, vn) ∈
D which is compact in C0([0, T ] × [0, 1]). According to Lemma 2, the only possible limit point
is (u, v) and therefore we get the convergence of the whole sequence in D; that is,

max
(

||un − u||C0([0,T ]×[0,1]), ||vn − v||C0([0,T ]×[0,1])

)

→
n→+∞

0. (3.35)

This shows that the operator F is continuous on the domain D, which is a convex compact set in
C0([0, T ] × [0, 1])2. It follows then from Schauder fixed-point theorem that F has a fixed-point.
This proves the existence of solutions on the time interval [0, T ].

3.5. Uniqueness of the solution. Let u0, v0 ∈ Lip([0, 1]) be as in (3.8)-(3.9). Assume given
two pairs (u1, v1), (u2, v2) ∈ D of solutions of (3.5)-(3.7); that is, if ul and vr are defined as in
(3.10), then ui, i = 1, 2, is a (weak) solution of

{

∂tu
i + λ(ui, vi)∂xu

i = 0,
ui(t, 0) = ul(t), ui(0, x) = u0(x),

(t, x) ∈ (0, T ) × (0, 1),

while vi, i = 1, 2, is a (weak) solution of
{

∂tv
i + µ(ui, vi)∂xv

i = 0,
vi(t, 1) = vr(t), vi(0, x) = v0(x),

(t, x) ∈ (0, T ) × (0, 1).

Let û = u1 − u2 and v̂ = v1 − v2. Note that û, v̂ ∈ Lip([0, T ] × [0, 1]) =W 1,∞((0, T ) × (0, 1))
and that û, v̂ fulfill

∂tû+ λ1∂xû+ λ̂∂xu
2 = 0, (t, x) ∈ (0, T ) × (0, 1), (3.36)

∂tv̂ + µ1∂xv̂ + µ̂∂xv
2 = 0, (t, x) ∈ (0, T )× (0, 1), (3.37)

û(t, 0) = v̂(t, 1) = 0, û(0, x) = v̂(0, x) = 0, (3.38)

where λi = λ(ui, vi), µi = µ(ui, vi), and λ̂ = λ1 − λ2, µ̂ = µ1 − µ2.
Multiplying in (3.36) by 2û, in (3.37) by 2v̂, integrating over (0, t) × (0, 1), and adding the

two equations gives

||û(t)||22 + ||v̂(t)||22 + 2

∫ t

0

∫ 1

0
(λ1û∂xû+ µ1v̂∂xv̂) dxds + 2

∫ t

0

∫ 1

0
(λ̂û∂xu

2 + µ̂v̂∂xv
2) dxds = 0.

Using (3.38) and an integration by parts, we obtain

2

∫ t

0

∫ 1

0
(λ1û∂xû+ µ1v̂∂xv̂)

= −
∫ t

0

∫ 1

0
[(∂xλ

1)|û|2 + (∂xµ
1)|v̂|2] dxds+

∫ t

0
[λ1|û(s, 1)|2 − µ1|v̂(s, 0)|2]ds

≥ −
∫ t

0

∫ 1

0
[(∂xλ

1)|û|2 + (∂xµ
1)|v̂|2] dxds

where we used (3.3). On the other hand, since λ and µ are M2-Lipschitz continuous on
[−C1, C1]

2, we infer that λi and µi are 2M2C3-Lipschitz continuous on [0, T ]×[0, 1]. In particular,

||∂xλ1||∞ ≤ 2M2C3, ||∂xµ1||∞ ≤ 2M2C3
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and

|λ̂| ≤ M2(|û|+ |v̂|),
|µ̂| ≤ M2(|û|+ |v̂|).

This yields

|2
∫ t

0

∫ 1

0
(λ̂û∂xu

2 + µ̂v̂∂xv
2) dxds| ≤ 2M2C3

∫ t

0

∫ 1

0
(|û|+ |v̂|)2dxds.

We conclude that for all t ∈ (0, T )

||û(t)||22 + ||v̂(t)||22 ≤ 6M2C3

∫ t

0
(||û||22 + ||v̂||22)ds.

This yields û = v̂ ≡ 0, by Gronwall’s lemma.

3.6. Finite-time extinction of the maximal solutions. In this section, (u, v) denotes the
only solution of (3.5)-(3.7) in the class D.

Lemma 3. At time t = T we have

u(T, x) = v(T, x) = 0, ∀x ∈ [0, 1]. (3.39)

Proof of Lemma 3: We infer from (3.6) that

u(t, 0) = v(t, 1) = 0, ∀t ≥ T − 1

c
. (3.40)

Thanks to (3.2)-(3.3), we have that

λ(u(t, x), v(t, x)) ≥ c > 0 > −c > µ(u(t, x), v(t, x)), ∀(t, x) ∈ [0, T ]× [0, 1].

Let φλ (resp. φµ) denote the flow of λ(u, v) (resp. µ(u, v)), and let eλ (resp. eµ) denote the
corresponding entrance times. (Note that eµ > 0 implies φµ(eµ(t, x), t, x) = 1.) Then the
following holds:

eµ(T, x) ≥ T − 1

c
and eλ(T, x) ≥ T − 1

c
, ∀x ∈ [0, 1].

Combining this with (3.40) and (2.27), we obtain (3.39). �

Finally, it is sufficient to extend u and v by 0 for t ≥ T to get a global in time solution. The
stability property (3.18) follows at once from (3.21)-(3.22), as the r.h.s. in (3.21) and (3.22)
tend to 0 as (C1, C2) → (0, 0). The proof of Theorem 1 is complete. �

4. Finite time stabilization with a control from one side

In this section, we consider a system of the form

∂tu+ λ(u, v)∂xu = 0, (t, x) ∈ (0,+∞)× (0, 1), (4.1)

∂tv + µ(u, v)∂xv = 0, (t, x) ∈ (0,+∞) × (0, 1), (4.2)

u(t, 0) = h(v(t, 0), t), u(0, x) = u0(x), (4.3)

v(t, 1) = vr(t), v(0, x) = v0(x), (4.4)
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where vr still solves the ODE

d

dt
vr(t) = −Ksgn(vr(t))|vr(t)|γ , vr(0) = v0(1). (4.5)

In (4.3), h denotes some function in C1([−C1, C1]×R
+)∩W 1,∞((−C1, C1)× (0,+∞)) for some

number C1 > 0 such that, for some time Th > 0,

h(0, t) = 0 ∀t ≥ Th. (4.6)

We introduce the numbers

C1 ∈ (0, C1],

T :=
1

c
+max(Th,

1

c
+

C1−γ
1

(1− γ)K
),

C ′
1 := max(C1, ||h||L∞((−C1,C1)×(0,+∞))),

D1 := ||∂vh||L∞((−C1,C1)×(0,+∞)),

D2 := ||∂th||L∞((−C1,C1)×(0,+∞)),

M1 := max
(

||λ||C0([−C′

1,C
′

1]×[−C1,C1]), ||µ||C0([−C′

1,C
′

1]×[−C1,C1])

)

,

M2 := max
(

||∂uµ||C0([−C′

1,C
′

1]×[−C1,C1]), ||∂vµ||C0([−C′

1,C
′

1]×[−C1,C1]),

||∂uλ||C0([−C′

1,C
′

1]×[−C1,C1]), ||∂vλ||C0([−C′

1,C
′

1]×[−C1,C1])

)

,

C3 := max(
1

2TM2
, C2),

C ′
3 := max(

KCγ
1

c
, C2)max(1,M1) exp(2TM2C3).

Note that, if ||v||C0([0,T ]×[0,1]) ≤ C1, then for all t ∈ (0, T )

|u(t, 0)| ≤ C ′
1 and |∂tu(t, 0)| ≤ D1|∂tv(t, 0)| +D2.

We shall consider the following conditions

C ′
3 ≤ C3, (4.7)

C ′′
3 := max(

1

c
(D1C

′
3 +D2), C2)max(1,M1) exp(2TM2C3) ≤ C3. (4.8)

Note that (4.7) and (4.8) are satisfied if C1, C2, and D2 are small enough.
We introduce the set

D :=
{

(u, v) ∈ Lip([0, T ] × [0, 1])2; ||u||C0([0,T ]×[0,1]) ≤ C ′
1, ||v||C0([0,T ]×[0,1]) ≤ C1,

u is C3-Lipschitz, v is C ′
3-Lipschitz

}

.

We pick a pair (u0, v0) ∈ Lip([0, 1])2 fulfilling (3.8)-(3.9) and the following compatibility
condition

u0(0) = h(v0(0), 0). (4.9)
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Let us do some comments about the boundary condition (4.3). For a system of conserva-
tion laws on the interval (0, 1), a very general boundary condition at x = 0 takes the form
f(u(t, 0), v(t, 0)) = 0. If ∂uf(u0, v0) 6= 0, then around (u0, v0) an application of the Implicit
Function Theorem gives a relation of the form

u(t, 0) = h(v(t, 0))

with h a smooth function of v in a neighborhood of v0. Assume now that the interval represents
an edge in a network, and that the left endpoint is a multiple node (i.e. it belongs to at least
two edges). The contributions of the other edges at this multiple node can be taken into account
in h through its dependence in t in (4.3).

We are in a position to state the main result of this section.

Theorem 2. Assume that C1, C2 and D2 are such that the conditions (4.7) and (4.8) are
satisfied. Then for any pair (u0, v0) ∈ Lip([0, 1])2 fulfilling (3.8), (3.9) and (4.9), there exists a
unique solution (u, v) of (4.1)-(4.5) in the class D. Furthermore, the solution is global in time
with u(t, .) = v(t, .) = 0 for t ≥ T . Finally, if h = h(v), then the equilibrium state (0, 0) is stable
in Lip([0, 1])2 for (4.1)-(4.5); that is

||(u, v)||L∞(R+;Lip([0,1])2) → 0 as ||(u0, v0)||Lip([0,1])2 → 0. (4.10)

Proof. It is very similar to those of Theorem 1. If (ũ, ṽ) ∈ D is given, we define (u, v) = F(ũ, ṽ)
as follows: u is the weak solution of the system

{

∂tu+ λ(ũ, ṽ)∂xu = 0,

u(t, 0) = h(ṽ(t, 0), t), u(0, x) = u0(x),
∀(t, x) ∈ [0, T ] × [0, 1],

and v is the weak solution of the system
{

∂tv + µ(ũ, ṽ)∂xv = 0,

v(t, 1) = vr(t), v(0, x) = v0(x),
∀(t, x) ∈ [0, T ]× [0, 1].

Then, using Proposition 2.6 and (4.7)-(4.8), one readily sees that

||u||C0([0,T ]×[0,1]) ≤ C ′
1, ||v||C0([0,T ]×[0,1]) ≤ C1,

u is C ′′
3 -Lipschitz, hence u is C3-Lipschitz, (4.11)

v is C ′
3-Lipschitz, (4.12)

so that F maps D into itself. Let us prove that F is continuous, D being equipped with the
topology of the uniform convergence. Consider a sequence {(ũn, ṽn)} ⊂ D and a pair (ũ, ṽ) ∈ D

such that

max
(

||ũn − ũ||C0([0,T ]×[0,1]), ||ṽn − ṽ||C0([0,T ]×[0,1])

)

→
n→+∞

0. (4.13)

Let

(un, vn) = F(ũn, ṽn) for n ≥ 0, and (u, v) = F(ũ, ṽ). (4.14)
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We aim to prove that un → u and vn → v uniformly on [0, T ] × [0, 1] as n → ∞. We focus
on un, the argument for vn being the same as those given in Lemma 2. We consider the same
φn, φ, en, e, In, I, Jn, J, Pn and P , as in the proof of Lemma 2. Then

un(t, x) =

{

h(ṽn(en(t, x), 0), en(t, x)) if (t, x) ∈ Jn,

u0(φn(0, t, x)) if (t, x) ∈ In ∪ Pn

and

u(t, x) =

{

h(ṽ(e(t, x), 0), e(t, x)) if (t, x) ∈ J,

u0(φ(0, t, x)) if (t, x) ∈ I ∪ P.

Assume first that (t, x) ∈ J . Then e(t, x) > 0 and en(t, x) > 0 for n large enough, by Proposition
2.2. Since ṽn → ṽ uniformly on [0, T ]× [0, 1] and en(t, x) → e(t, x), we infer that

un(t, x) = h(ṽn(en(t, x), 0), en(t, x)) → h(ṽ(e(t, x), 0), e(t, x)) = u(t, x).

If now (t, x) ∈ I, one can repeat the argument in Lemma 2 to conclude that

un(t, x) = u0(φn(0, t, x)) → u0(φ(0, t, x)) = u(t, x).

Thus, un(t, x) → u(t, x) for (t, x) ∈ I ∪ J , hence for a.e. (t, x) ∈ [0, T ] × [0, 1]. We have also
that vn(t, x) → v(t, x) for a.e. (t, x) ∈ [0, T ] × [0, 1]. We infer from the compactness of D

in C0([0, T ] × [0, 1])2 that (un, vn) → (u, v) in C0([0, T ] × [0, 1])2. We conclude with Schauder
fixed-point theorem that F has a fixed-point (u, v)∈D, which is a solution of (4.1)-(4.5) on
[0, T ]× [0, 1].

Let us now establish the uniqueness of the solution of (4.1)-(4.5) in the class D. Assume given
two pairs (u1, v1), (u2, v2) ∈ D of solutions of (4.1)-(4.5); that is, with vr defined as in (4.5), vi,
i = 1, 2, is a (weak) solution of

{

∂tv
i + µ(ui, vi)∂xv

i = 0,
vi(t, 1) = vr(t), vi(0, x) = v0(x),

(t, x) ∈ (0, T ) × (0, 1),

while ui, i = 1, 2, is a (weak) solution of
{

∂tu
i + λ(ui, vi)∂xu

i = 0,
ui(t, 0) = h(vi(t, 0), t), ui(0, x) = u0(x),

(t, x) ∈ (0, T ) × (0, 1).

Let û = u1 − u2 and v̂ = v1 − v2. Note that û, v̂ ∈W 1,∞((0, T )× (0, 1)) and that û, v̂ satisfy

∂tû+ λ1∂xû+ λ̂∂xu
2 = 0, (4.15)

∂tv̂ + µ1∂xv̂ + µ̂∂xv
2 = 0, (4.16)

û(t, 0) = h(v1(t, 0), t) − h(v2(t, 0), t), (4.17)

v̂(t, 1) = 0, (4.18)

û(0, x) = v̂(0, x) = 0 (4.19)

where λi = λ(ui, vi), µi = µ(ui, vi), and λ̂ = λ1 − λ2, µ̂ = µ1 − µ2.
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Multiplying in (4.15) by 2û and integrating over (0, t)× (0, 1) gives

||û(t)||2 = −2

∫ t

0

∫ 1

0
[λ1û∂xû+ λ̂û∂xu

2]dxds

=

∫ t

0

∫ 1

0
[(∂xλ

1)|û|2 − 2λ̂û∂xu
2]dxds −

∫ t

0
λ1|û|2

∣

∣

1

0
ds

≤ 2M2C3

∫ t

0

∫ 1

0
[|û|2 + |û|(|û|+ |v̂|)]dxds

+||λ||C0([−C′

1,C
′

1]×[−C1,C1])D
2
1

∫ t

0
|v̂(s, 0)|2ds (4.20)

where we used (3.3).
Multiplying in (4.16) by 2v̂ and integrating over (0, t) × (0, 1) gives

||v̂(t)||2 = −2

∫ t

0

∫ 1

0
[µ1v̂∂xv̂ + µ̂v̂∂xv

2]dxds

=

∫ t

0

∫ 1

0
[(∂xµ

1)|v̂|2 − 2µ̂v̂∂xv
2]dxds +

∫ t

0
µ1|v̂(s, 0)|2ds

≤ 2M2C3

∫ t

0

∫ 1

0
[|v̂|2 + |v̂|(|û|+ |v̂|)]dxds − c

∫ t

0
|v̂(s, 0)|2ds (4.21)

where we used (3.3) again. Let us introduce the energy

E(t) = ||û(t)||2 + ||λ||C0([−C′

1,C
′

1]×[−C1,C1])
D2

1

c
||v̂(t)||2.

Combining (4.20) with (4.21) yields

E(t) ≤ C

∫ t

0
E(s)ds,

for some C depending only on D, so that E ≡ 0, by Gronwall’s lemma. This proves the
uniqueness. For the extinction time, we notice that from the proof of Theorem 1

v(t, x) = 0, for
1

c
+

C1−γ
1

(1− γ)K
≤ t ≤ T, 0 ≤ x ≤ 1.

Combined with (4.6), this yields

u(t, 0) = h(v(t, 0), t) = 0, for max

(

Th,
1

c
+

C1−γ
1

(1− γ)K

)

≤ t ≤ T.

Using (3.3), we conclude that

u(T, x) = 0 ∀x ∈ [0, 1].

Assume now that h = h(v), i.e. D2 = 0. The stability property (4.10) follows at once from (4.6)
and (4.7)-(4.8), as C ′

1 ≤ max(1,D1)C1 and (C ′
3, C

′′
3 ) → (0, 0) as (C1, C2) → (0, 0). The proof of

Theorem 2 is complete. �
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5. Application to the regulation of water flow in channels

In this section, we investigate the regulation of water flow in a network of open horizontal
channels. We assume that the channels have a rectangular cross section and that the friction on
the walls can be neglected. In this context, the flow of the fluid can be described in a satisfactory
way by the shallow water equations (also called Saint-Venant equations) (see [20]). The control
in feedback form is applied at the vertices of the network, which is assumed to be a tree.

We introduce some notations needed in what follows (we follow closely [9]). Let T be a tree,
whose vertices (or nodes) are numbered by the index n ∈ N = {1, ..., N}, and whose edges are
numbered by the index i ∈ I = {1, ..., I} with I = N − 1. We choose a simple vertex, called
the root of T and denoted by R, and which corresponds to the index n = N . We choose an
orientation of the edges in the tree such that R is the “last” encountered vertex. It is similar to
those of a fluvial network in which each edge stands for a river, and R indicates the place where
the last river enters into the ocean.

We denote by li the length of the edge with index i. Once the orientation is chosen, each
point of the i-th edge is identified with a real number x ∈ [0, li]. The points x = 0 and x = li
are termed the initial point and the final point of the i-edge, respectively.

Renumbering the edges if needed, we may assume that the edge with index i has as initial
point the vertex with the (same) index n = i for all i ∈ I.

We denote by In ⊂ I, n = 1, ..., N , the set of indices of those edges having the vertex of index
n as one of their ends. Let

εi,n =

{

0 if the vertex with index n is the initial point of the edge with index i;
1 if the vertex with index n is the final point of the edge with index i.

Note that εi,i = 0 for all i ∈ I, and that εN−1,N = 1. A node with index n is said to be simple
(resp. multiple) if #(In) = 1 (resp. #(In) ≥ 2). The sets of indices of simple and multiple nodes
are denoted by NS and NM , respectively. The depth of the tree is the greater number of edges
in a path from one simple node to R.

12R0
R

21 3 4 5 6 71098
11 12
13
14

1 23 4 5 6

13

7108 911

Figure 2. A tree with 14 nodes, a depth equal to 5, with simple nodes NS =
{1, 2, 4, 5, 6, 7, 8, 14} and multiple nodes NM = {3, 9, 10, 11, 12, 13}.
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Pick any channel represented by (say) the i-th edge of the tree, which is identified with the
segment [0, li]. Then the shallow water equations read

∂tHi + ∂x(HiVi) = 0, t > 0, 0 < x < li, (5.1)

∂tVi + ∂x(
V 2
i

2
+ gHi) = 0, t > 0, 0 < x < li, (5.2)

whereHi(t, x) (resp. Vi(t, x)) is the water depth (resp. the water velocity) along the i-th channel,
and g is the gravitation constant. The equations (5.1)-(5.2) have to be supplemented with some
initial conditions

Hi(0, x) = Hi,0(x), Vi(0, x) = Vi,0(x), 0 < x < li (5.3)

and with two boundary conditions. In general, there are at the two ends of the channel (i.e. at
x = 0 and at x = li) some hydraulic devices to assign the values of the flow rate. Recall that
the flow rate is defined along the channel as

Qi(t, x) := Hi(t, x)Vi(t, x).

At any multiple node n ∈ NM , the equation of conservation of the flow
∑

i∈In

(−1)εi,nQi(t, εi,nli) = 0 (5.4)

has to be taken into consideration. It yields a boundary condition (coming from the physics)
in which no control applies. Let i0 ∈ In be the only index such that εi0,n = 0, namely i0 = n.
Then (5.4) can be written

Qi0(t, 0) =
∑

i∈In,i 6=i0

Qi(t, li). (5.5)

Thus, the flow rate may be controlled at the final points of the edges of indices i 6= i0, while it
is prescribed by (5.5) at the initial point of the edge of index i0.

We aim to stabilize the system around some equilibrium state, represented by a sequence
{(H∗

i , V
∗
i )}1≤i≤I of pairs of positive numbers. Let Q∗

i = H∗
i V

∗
i . For (5.4) to be valid as t→ ∞,

we impose that
∑

i∈In

(−1)εi,nQ∗
i = 0, ∀n ∈ NM . (5.6)

Introduce the characteristic velocities

µi = Vi −
√

gHi, (5.7)

λi = Vi +
√

gHi (5.8)

and the Riemann invariants (see [13, 20])

ui = Vi + 2
√

gHi − (V ∗
i + 2

√

gH∗
i ), (5.9)

vi = Vi − 2
√

gHi − (V ∗
i − 2

√

gH∗
i ). (5.10)

We shall assume thereafter that the flow is subcritical or fluvial; that is, the characteristic
velocities are of opposite sign

µi < 0 < λi.
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Clearly, this holds if
0 < V ∗

i <
√

gH∗
i (5.11)

and max(|Hi −H∗
i |, |Vi − V ∗

i |) is small enough. From now on, we assume that (5.11) holds for
all i ∈ I, and we pick a number c > 0 such that

√

gH∗
i − V ∗

i > 2c, ∀i ∈ I. (5.12)

Note that (5.9)-(5.10) may be inverted as

Hi =

(

√

H∗
i +

1

4
√
g
(ui − vi)

)2

, (5.13)

Vi = V ∗
i +

1

2
(ui + vi). (5.14)

Substituting the values of Hi, Vi in (5.9)-(5.10) yields

µi = V ∗
i −

√

gH∗
i +

1

4
(ui + 3vi), (5.15)

λi = V ∗
i +

√

gH∗
i +

1

4
(3ui + vi). (5.16)

Combined with (5.12), this shows that

max(|ui|, |vi|) ≤ c ⇒ µi < −c < c < λi.

The shallow water equations (5.1)-(5.2), when expressed in terms of the Riemann invariants ui
and vi, read

∂tui + λi(ui, vi)∂xui = 0, t > 0, 0 < x < li, (5.17)

∂tvi + µi(ui, vi)∂xvi = 0, t > 0, 0 < x < li. (5.18)

Let us now turn our attention to the boundary conditions. Consider first a boundary condition
associated with an active control, e.g.

d

dt
vi(t, li) = −Ksgn(vi(t, li))|vi(t, li)|γ . (5.19)

In practice, one would like to assign the value of Qi(t, li) = Hi(t, li)Vi(t, li) by using the output
Hi(t, li) only. Using (5.10), it is sufficient to set

Qi(t, li) = Hi(t, li)
(

vi(t, li) + 2
√

gHi(t, li) + V ∗
i − 2

√

gH∗
i

)

, (5.20)

where vi solves (5.19) together with the initial condition

vi(0, li) = Vi(0, li)− 2
√

gHi(0, li)− V ∗
i + 2

√

gH∗
i . (5.21)

For a control applied to the initial point of the i-edge, we set

Qi(t, 0) = Hi(t, 0)
(

ui(t, 0) − 2
√

gHi(t, 0) + V ∗
i + 2

√

gH∗
i

)

, (5.22)

where ui(., 0) solves

d

dt
ui(t, 0) = −Ksgn(ui(t, 0))|ui(t, 0)|γ , (5.23)

ui(0, 0) = Vi(0, 0) + 2
√

gHi(0, 0) − V ∗
i − 2

√

gH∗
i . (5.24)
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Consider next a boundary condition without any active control. For a simple node n ∈ NS and
the corresponding edge i ∈ In, if εi,n = 0 (i.e. the node n is the initial point of the edge i), then
n = i and a natural boundary condition at the node n is given by the relation

Qi(t, 0) = Q∗
i , (5.25)

that is
Fi(ui(t, 0), vi(t, 0)) = 0 (5.26)

where

Fi(u, v) =
(√

H∗
i +

1

4
√
g
(u− v)

)2(
V ∗
i +

1

2
(u+ v)

)

−H∗
i V

∗
i .

Since

Fi(0, 0) = 0 and
∂Fi

∂u
(0, 0) =

1

2

√

H∗
i (
√

H∗
i +

V ∗
i√
g
) > 0

it follows from the Implicit Function Theorem that there exist a number δi > 0 and a function
hi ∈ C1(R) with hi(0) = 0 such that for max(|u|, |v|) < δi,

Fi(u, v) = 0 ⇐⇒ u = hi(v).

Thus (5.26) may be written, at least locally, in the form

ui(t, 0) = hi(vi(t, 0)).

Finally, for a multiple node n ∈ NM , if i0 ∈ In is the only index such that εi0,n = 0 (i.e. i0 = n),
then (5.5) may be written

Fi0(Ui0(t, 0), vi0(t, 0), U(t), V (t)) = 0

where U(t) = (ui(t, li))i∈In,i 6=i0 , V (t) = (vi(t, li))i∈In,i 6=i0 and

Fi0(ui0 , vi0 , U, V ) =
(

√

H∗
i0
+

1

4
√
g
(ui0 − vi0)

)2(
V ∗
i0
+

1

2
(ui0 + vi0)

)

−
∑

i∈In,i 6=i0

(
√

H∗
i +

1

4
√
g
(ui − vi)

)2(
V ∗
i +

1

2
(ui + vi)

)

.

Note that, by (5.6), Fi0(0, 0, 0, 0) = 0 and

∂Fi0

∂ui0
(0, 0, 0, 0) =

1

2

√

H∗
i0
(
√

H∗
i0
+
V ∗
i0√
g
) > 0.

We may pick a number δi0 > 0 and a function Hi0 of class C1 around 0 such that, if |ui| < δi0
and |vi| < δi0 for all i ∈ In, we have

Fi0(ui0 , vi0 , U, V ) = 0 ⇐⇒ ui0 = Hi0(vi0 , U, V ).

Replacing (ui, vi) by (ui(t, li), v(t, li)) for i 6= i0 in U, V , we see that (5.5) may be written, at
least locally, in the form

ui0(t, 0) = hi0(vi0(t, 0), t) (5.27)

where hi0 ∈ C1(R2) and hi0(0, t) = 0 if ui(t, li) = vi(t, li) = 0 for all i ∈ In \ {i0}.
We are in a position to state our results for the regulation of water flow in channels. Consider

first one channel (N = {1, 2}, I = {1}) represented by the segment [0, l1].



26 VINCENT PERROLLAZ AND LIONEL ROSIER

Theorem 3. (Two boundary controls) Assume that (5.11) holds for i = 1, and pick any c > 0
as in (5.12). Then there exists a number δ > 0 such that for all (H1,0, V1,0) ∈ Lip([0, l1])

2 with

max(||H1,0 −H∗
1 ||W 1,∞(0,l1), ||V1,0 − V ∗

1 ||W 1,∞(0,l1)) < δ, (5.28)

there exists for any T > 0 a unique solution (H1, V1) ∈ Lip([0, T ] × [0, l1])
2 of (5.1)-(5.3) and

(5.19)-(5.24). Furthermore, there exists a function t∗(H∗
1 , V

∗
1 , c, δ,K, γ) with limδ→0 t

∗ = 0 such
that

H1(t, x) = H∗
1 , V1(t, x) = V ∗

1 t ≥ l1
c
+ t∗, x ∈ (0, l1). (5.29)

Finally, the equilibrium point (H∗
1 , V

∗
1 ) is stable in Lip([0, 1])2 for the system (5.1)-(5.3) and

(5.19)-(5.24).

Proof. Noticing that the map Θ : (H1, V1) → (u1, v1) defined along (5.9)-(5.10) is locally around
(H∗

1 , V
∗
1 ) a diffeomorphism of class C∞, the condition (5.28) implies (3.8)-(3.9) for C1 and C2 as

in Theorem 1 (applied actually on the interval (0, l1) rather than (0, 1)), provided that δ < δ0 is
small enough. We modify the functions µ1(u, v) and λ1(u, v) outside [−c, c]2 so that

µ1(u, v) ≤ −c < c ≤ λ1(u, v), (u, v) ∈ R
2.

Let (u1, v1) be the solution given by Theorem 1, and let (H1, V1) := Θ−1(u1, v1). If C1 is chosen
sufficiently small, then we infer from (3.21) that

max(|u1(t, x)|, |v1(t, x)|) ≤ C1 < c, t ≥ 0, 0 < x < l1,

max(|H1(t, x)−H∗
1 |, |V1(t, x) − V ∗

1 |) < δ, t ≥ 0, 0 < x < l1.

It follows that for all T > 0, (H1, V1) ∈ Lip([0, T ]× [0, l1 ])
2 is a solution of (5.1)-(5.3) and (5.19)-

(5.24) such that (5.29) holds with t∗ = C1−γ
1 /((1− γ)K). Note that the range of C1 in Theorem

1 depends on H∗
1 , V

∗
1 and c through the constants M1 and M2, and that (C1, C2) → (0, 0) as

δ → 0. Thus t∗ → 0 as δ → 0 with K and γ kept constant. The uniqueness of (H1, V1) in the
class Lip([0, T ] × [0, l1])

2 for all T > 0 follows at once from those of (u1, v1) in the same class,
as stated in Theorem 1. The stability property follows from (3.18). �

If the control is active at one endpoint of the channel only, a finite-time stabilization may be
derived as well.

Theorem 4. (One boundary control) Assume that (5.11) holds for i = 1, and pick any c > 0
as in (5.12). Then there exists a number δ > 0 such that for all (H1,0, V1,0) ∈ Lip([0, l1])

2 with

max(||H1,0 −H∗
1 ||W 1,∞(0,l1), ||V1,0 − V ∗

1 ||W 1,∞(0,l1)) < δ, (5.30)

H1,0(l1)V1,0(l1) = H∗
1V

∗
1 , (5.31)

there exists for any T > 0 a unique solution (H1, V1) ∈ Lip([0, T ]× [0, l1 ])
2 of (5.1)-(5.3), (5.19)-

(5.21) and (5.25). Furthermore, there exists a function t∗(H∗
1 , V

∗
1 , c, δ,K, γ) with limδ→0 t

∗ = 0
such that

H1(t, x) = H∗
1 , V1(t, x) = V ∗

1 t ≥ 2l1
c

+ t∗, x ∈ (0, l1). (5.32)

Finally, the equilibrium point (H∗
1 , V

∗
1 ) is stable in Lip([0, 1])2 for the system (5.1)-(5.3), (5.19)-

(5.21) and (5.25).
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Proof. It is sufficient to proceed as for the proof of Theorem 3, and to use Theorem 2 (on the
domain [0, l1] and with a control active at the final point only). �

A direct application of Theorem 4 gives the following result for a chain of two channels
(N = {1, 2, 3}, I = {1, 2}), for which there is no active control at the internal node.

Corollary 1. (Two channels and two controls) Assume that (5.11) holds for i = 1, 2 with
Q∗

1 = Q∗
2, and pick any c > 0 as in (5.12). Then there exists a number δ > 0 such that for all

(H1,0, V1,0,H2,0, V2,0) ∈ Lip([0, l1])
2 × Lip([0, l2])

2 with

max(||Hi,0 −H∗
i ||W 1,∞(0,li), ||Vi,0 − V ∗

i ||W 1,∞(0,li)) < δ, i = 1, 2, (5.33)

H1,0(l1)V1,0(l1) = Q∗
1 = Q∗

2 = H2,0(0)V2,0(0), (5.34)

there exists for any T > 0 a unique solution (Hi, Vi) ∈ Lip([0, T ] × [0, l1])
2 of (5.1)-(5.3) for

i = 1, 2, (5.19)-(5.21) for i = 2, (5.22)-(5.24) for i = 1, and

Q1(t, l1) = Q∗
1 = Q∗

2 = Q2(t, 0), t > 0.

Furthermore, there exists a function t∗(H∗
1 , V

∗
1 ,H

∗
2 , V

∗
2 , c, δ,K, γ) with limδ→0 t

∗ = 0 such that

Hi(t, x) = H∗
i , Vi(t, x) = V ∗

i t ≥ 2max(l1, l2)

c
+ t∗, x ∈ (0, li), i = 1, 2. (5.35)

We can extend the above results to a network of open channels which is a tree. We assume that
the incoming flows can be controlled at each multiple node (the outgoing flow being uncontrolled
and deduced from the conservation of the flows). In terms of Riemann invariants, for the edge
with index i, the function vi is controlled at x = li according to (5.19), while the function ui
is controlled at x = 0 according to (5.23) only if the initial point of the edge is a simple node
(otherwise, ui(t, 0) is given by (5.27)).

The main result of this section is the following

Theorem 5. (Network of open channels) Consider a tree with N nodes and I = N − 1 edges.
Assume that (5.11) holds for i = 1, ..., I, that (5.6) holds, and pick any c > 0 as in (5.12).
Then there exists a number δ > 0 such that for all (H1,0, V1,0, ...,HI,0, VI,0) ∈ Lip([0, l1])

2×· · ·×
Lip([0, lI ])

2 with

max(||Hi,0 −H∗
i ||W 1,∞(0,li), ||Vi,0 − V ∗

i ||W 1,∞(0,li)) < δ, i = 1, ..., I, (5.36)

Hn,0(0, 0)Vn,0(0, 0) =
∑

i∈In,i 6=n

Hi,0(0, li)Vi,0(0, li), ∀n ∈ NM , (5.37)

there exists for any T > 0 a unique function (H1, V1, ...,HI , VI) ∈ Lip([0, T ] × [0, l1])
2 × · · · ×

Lip([0, T ] × [0, lI ])
2 such that, for all i = 1, ..., I, (5.1)-(5.3) and (5.19)-(5.21) hold, and (5.22)-

(5.24) hold if the initial point of the i-th edge is simple, while (5.5) holds if the initial point of
the i-th edge is multiple. Furthermore, there exists a function t∗(H∗

1 , V
∗
1 , ...,H

∗
I , V

∗
I , δ, c,K, γ)

with limδ→0 t
∗ = 0 such that

Hi(t, x) = H∗
i , Vi(t, x) = V ∗

i t ≥ pmax1≤i≤I li
c

+ t∗, x ∈ (0, li), i = 1, ..., I, (5.38)

where p denotes the depth of the tree. Finally, the equilibrium state (H∗
i , V

∗
i )1≤i≤I is stable in

Lip([0, l1])
2 × · · · × Lip([0, lI ])

2 for the system.
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Proof. The proof is done by induction on the number of edges I ≥ 1. For I = 1, the result was
already proved in Theorem 3. Note that the norm ||(u1, v1)||L∞(R+;Lip([0,l1])2) in Theorem 3 is as
small as desired if δ is small enough. Let I ≥ 2, and assume the result true for any tree with at
most I − 1 edges, with the norms ||(ui, vi)||L∞(R+;Lip([0,li])2) in the edges of the tree as small as
desired if δ is small enough. Pick any tree with I edges. Recall that the root R is the node with
index N , and that it is the final point of the edge of index I = N − 1. Denote by R′ the initial
point of the edge of index I, i.e. the node of index N − 1. Let k = #(IN−1), and let us denote
by T1, ..., Tk−1 the subtrees of T with R′ as root. (R does not belong to any of them.) Note
that the subsystem associated with any subtree Ti is decoupled from the other subtrees and
from the last edge of index I. An application of the induction hypothesis on each subtree Ti,
1 ≤ i ≤ k − 1, yields the existence (and uniqueness) of the functions (Hi, Vi) for i = 1, ..., I − 1.
Next, the existence and uniqueness of (HI , VI) follows at once from Theorem 2. Indeed, the
constant D2 in Theorem 2 may be taken as small as we want if δ is sufficiently small, for the
quantities ||∂tui(., li)||∞ and ||∂tvi(., li)||∞ for i ∈ IN−1 \{N − 1} may be taken arbitrarily small
by the induction assumption. Furthermore, the norm ||(uI , vI)||L∞(R+;Lip([0,lI ])2) tends to 0 with
δ, by (4.11)-(4.12). The condition (5.38) is obtained by an obvious induction on the depth of
the tree. �

Appendix: Proof of Proposition 2.1.

First, we introduce some extension operator Π which maps a function a : [0, T ] × [0, 1] → R

to a function ã = Π(a) : R2 → R defined as follows:

• for 0 ≤ t ≤ T

ã(t, x) =

{

a(t, x) if x ∈ [0, 1],
a(t, 2 − x) if x ∈ [1, 2],

and ã(t, x) is 2-periodic in x (i.e. ã(t, x+ 2) = ã(t, x));
• for t > T , ã(t, x) = ã(T, x) for all x ∈ R;
• for t < 0, ã(t, x) = ã(0, x) for all x ∈ R;

It is easy to see that Π is a (linear) operator from C0([0, T ] × [0, 1]) to C0(R2) (resp. from
L∞(0, T ; Lip([0, 1])) to L∞(R; Lip(R)) such that

||Π(a)||L∞(R2) = ||a||C0([0,T ]×[0,1]), (5.39)

||Π(a)||L∞(R;Lip(R)) = ||a||L∞(0,T ;Lip([0,1])), (5.40)

Π(a)(t, x) ≥ c ∀(t, x) ∈ R
2 if a(t, x) ≥ c ∀(t, x) ∈ [0, T ]× [0, 1]. (5.41)

Let a fulfill (2.2), and let φ (resp. φ̃) denote the flow associated with a (resp. with ã = π(a)).

Then φ̃ is defined in R
3, and

φ(s, t, x) = φ̃(s, t, x) ∀(s, t, x) ∈ Dom φ. (5.42)
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Thus it is sufficient to prove that φ̃ is K-Lipschitz on [0, T ]2 × [0, 1]. To this end, pick any
(s1, t1, x1), (s2, t2, x2) ∈ [0, T ]2 × [0, 1]. Then

|φ̃(s1, t1, x1)− φ̃(s2, t2, x2)|
≤ |φ̃(s1, t1, x1)− φ̃(s2, t1, x1)|+ |φ̃(s2, t1, x1)− φ̃(s2, t2, x1)|+ |φ̃(s2, t2, x1)− φ̃(s2, t2, x2)|
=: I1 + I2 + I3.

First,

I1 = |
∫ s2

s1

∂sφ̃(τ, t1, x1)dτ | = |
∫ s2

s1

ã(τ, φ̃(τ, t1, x1))dτ | ≤ ||a||C0([0,T ]×[0,1])|s1 − s2|, (5.43)

where we used (5.39). For I2, we notice that for all s

|∂s[φ̃(s, t1, x1)− φ̃(s, t2, x1)]| = |ã(s, φ̃(s, t1, x1))− ã(s, φ̃(s, t2, x1))|
≤ L|φ̃(s, t1, x1)− φ̃(s, t2, x1)|

where we used (5.40). Gronwall’s lemma combined to the estimate for I1 yields then

|φ̃(s2, t1, x1)− φ̃(s2, t2, x1)| ≤ |φ̃(t2, t1, x1)− φ̃(t2, t2, x1)|eL|s2−t2|

≤ |φ̃(t2, t1, x1)− φ̃(t1, t1, x1)|eLT

≤ ||a||C0([0,T ]×[0,1])e
LT |t1 − t2|. (5.44)

Finally, for I3, we notice that for all s

|∂s[φ̃(s, t2, x1)− φ̃(s, t2, x2)]| = |ã(s, φ̃(s, t2, x1))− ã(s, φ̃(s, t2, x2))|
≤ L|φ̃(s, t2, x1)− φ̃(s, t2, x2)|,

which, combined with Gronwall lemma, yields

|φ̃(s2, t2, x1)− φ̃(s2, t2, x2)| ≤ eL|s2−t2||x1 − x2| ≤ eLT |x1 − x2|. (5.45)

Then (2.6) follows at once from (5.43)-(5.45).
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[10] R. Dáger, E. Zuazua, Wave propagation, observation and control in 1-d flexible multi-structures.
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[18] M. Gugat, G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with

friction, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 1, 257–270.
[19] M. Gugat, M. Dick, G. Leugering, Gas flow in fan-shaped networks: classical solutions and feedback stabi-

lization, SIAM J. Control Optim. 49 (2011), no. 5, 2101–2117.
[20] J. de Halleux, C. Prieur, J.-M. Coron, B. d’Andréa-Novel, and G. Bastin, Boundary feedback control in
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Techniques, Parc de Grandmont, 37200 Tours, France

E-mail address: Vincent.Perrollaz@lmpt.univ-tours.fr

Institut Elie Cartan, UMR 7502 UdL/CNRS/INRIA, B.P. 70239, 54506 Vandœuvre-lès-Nancy
Cedex, France

E-mail address: Lionel.Rosier@univ-lorraine.fr


